JPS6031887A - Microorganism phase discriminating apparatus - Google Patents

Microorganism phase discriminating apparatus

Info

Publication number
JPS6031887A
JPS6031887A JP58140420A JP14042083A JPS6031887A JP S6031887 A JPS6031887 A JP S6031887A JP 58140420 A JP58140420 A JP 58140420A JP 14042083 A JP14042083 A JP 14042083A JP S6031887 A JPS6031887 A JP S6031887A
Authority
JP
Japan
Prior art keywords
microorganism
image
floc
microorganisms
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58140420A
Other languages
Japanese (ja)
Inventor
Masakatsu Hiraoka
平岡 正勝
Kazuyuki Tsumura
津村 和志
Shunsuke Nokita
舜介 野北
Kenji Baba
研二 馬場
Shunji Mori
俊二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58140420A priority Critical patent/JPS6031887A/en
Publication of JPS6031887A publication Critical patent/JPS6031887A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Activated Sludge Processes (AREA)
  • Image Processing (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To accurately and automatically detect the particle size and the particle size distribution of Zoogloea flocs, by judging an observed picture element as a picture element corresponding to a non-fibriform microorganism when the brightness level of the observed picture element is the one other than a set width. CONSTITUTION:When a definite amount of a liquid to be examined containing activated sludge is collected on a preparation and microscopically examined in the bright field of an optical microscope 2, an original image having contrast can be fabricated. In the original image, a dark part is present in a liquid phase part B being a bright background and is floc part Z and a fibriform microorganism part F. Image information obtained by a vidicon camera 3 is processed by an image information processing apparatus 9 and only the image of a Zooglea microorganism (floc) is displayed by CRT8. A brightness information processing circuit 4 performs the A/D conversion of the brightness information from the vidicon camera 3 into a digital signal.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は微生物相の出現種類及び出現数を自動的に検出
する微生物相認識装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a microbiota recognition device that automatically detects the type and number of microbiota that appear.

〔発明の背景〕[Background of the invention]

大量の微生物を利用する代表的な例として、生物学的下
水処理法が知られている。活性汚泥法は好気性微生物の
酸化分解作用を利用して下水中の有機物を処理する方法
である。プロセスは好気性状態に維持される曝気槽と、
微生物を重力沈降させる沈殿池とから構成される。この
プロセスの運転管理と、特に重要なことは沈降性の良好
な微生物を育成することである。これは、沈降性の悪い
微生物が出現すると、沈殿池から流出して処理水質を悪
化させるだけでなく、プロセス系内の4微生物量の低下
を招いて処理不能に陥らせるためである。
Biological sewage treatment methods are known as a representative example that utilizes large amounts of microorganisms. The activated sludge method is a method of treating organic matter in sewage using the oxidative decomposition action of aerobic microorganisms. The process includes an aeration tank maintained in aerobic conditions;
It consists of a sedimentation tank that allows microorganisms to settle by gravity. The operational management of this process, and especially important, is the cultivation of microorganisms with good sedimentation properties. This is because when microorganisms with poor sedimentation properties appear, they not only flow out of the settling basin and deteriorate the quality of the treated water, but also cause a decrease in the amount of four microorganisms in the process system, making it impossible to treat the water.

ところで、一般に活性汚泥法でよく出現する微生物の種
類は50種程度と云われている。これらの微生物群の総
称でおる活性汚泥を大別すると、2つのタイプの微生物
に分類できる。1つは凝集性の有るズーグレア(Zoo
gloea)タイプの微生物で、良好なフロックを形成
するため沈降性に浸れている。他方は糸状性の微生物で
、フロック相互の接近を妨害し、沈降性及び圧密性に劣
っている。
By the way, it is said that there are generally about 50 types of microorganisms that often appear in the activated sludge method. Activated sludge, which is a general term for these microorganism groups, can be broadly classified into two types of microorganisms. One is zooglare, which has cohesive properties.
gloea) type microorganisms, which are immersed in sedimentation to form good flocs. The other type of microorganisms are filamentous microorganisms that prevent flocs from approaching each other and have poor sedimentation and compaction properties.

この糸状性微生物が異常に増殖すると、バルキング状態
(汚泥膨化)を引き起こし、沈殿池での固液分離ができ
ず、活性汚泥が流出する。
When these filamentous microorganisms proliferate abnormally, a bulking state (sludge swelling) occurs, and solid-liquid separation cannot be performed in the sedimentation tank, causing activated sludge to flow out.

これらズーグレア性微生物及び糸状性微生物の増殖は、
曝気槽における有機物負荷(単位活性汚泥重量当シの有
機物質量)や曝気条件等によシ異なる。したがって、流
入条件が一日単位、あるいは季節等で大きく変化する下
水処理場では安定したフロックを形成する微生物相の維
持管理が大切である。そのためには、活性汚泥の状態を
把握することが必要となる。
The growth of these zooglai microorganisms and filamentous microorganisms is
It varies depending on the organic matter load in the aeration tank (amount of organic matter per unit weight of activated sludge) and aeration conditions. Therefore, in sewage treatment plants where inflow conditions vary greatly on a daily or seasonal basis, it is important to maintain and manage the microbiota that form stable flocs. For this purpose, it is necessary to understand the condition of activated sludge.

活性汚泥の状態を把握するには通常光学顕微鏡が用いら
れている。顕微鏡像は多くの情報を含んでおシ、出現し
ている微生物の種類やその数を観察することによシ、活
性汚泥の状態を知ることができる。従来、微生物の種類
や数を測定するには顕微鏡像そのものを目視で観察する
か、あるいは写真撮影してその撮像結果を目視で観察す
る方法が採られている。しかし、この情報を読みとるに
は熟練を要しまた、微生物に詳しい熟練オペレータでも
長時間を費し、頻度高い観察が困難である。
An optical microscope is usually used to understand the state of activated sludge. Microscopic images contain a lot of information, and by observing the types and numbers of microorganisms that appear, the condition of activated sludge can be determined. Conventionally, the types and numbers of microorganisms have been measured by visually observing the microscopic image itself, or by taking photographs and visually observing the imaging results. However, reading this information requires skill, and even experienced operators who are familiar with microorganisms spend a long time, making frequent observation difficult.

活性汚泥フロックの沈降性を左右する因としては、その
粒径分布がある。すなわち、フロック粒径が大きい時に
は、通常は沈降性が良い。しかし、粒径が大であっても
糸状菌が大量に繁植してみかけ上粒径が大きくみえる場
合には沈降性は逆に悪くなる。一方、フロック粒径が小
さい時には、沈降性は悪く、このため最終沈殿池で沈降
しきれず流出する。
The particle size distribution is a factor that influences the settling properties of activated sludge flocs. That is, when the floc particle size is large, the settling property is usually good. However, even if the particle size is large, if a large number of filamentous fungi are planted and the particle size appears large, the settling property will be adversely affected. On the other hand, when the floc particle size is small, the sedimentation property is poor, and therefore the floc does not settle completely in the final sedimentation tank and flows out.

したがって、沈降し易いズーグレア性フロックの粒径を
正確にめることは、プロセスの維持管理上きわめて重安
である。−投に粒度分布をめる方法に、画像処理により
める方法が知られている。ところが、糸状菌が繁殖した
ときには、第1図に示すように汚泥フロックの粒径が見
かけよシ大きく測定されてしまう。すなわちズーグレア
性汚泥フロックをz1糸状菌をFとしだとき、ズーグレ
ア性汚泥フロックZの粒径はdzであるにもかかわらず
、繁殖した糸状菌のために、フロック径がd、と測定さ
れてしまう。この様に従来の画像処理技術では、糸状菌
が多い場合には、ズーグレア性汚泥フロックの粒径を正
確に測定できない欠点があった。
Therefore, accurately determining the particle size of zooglare flocs that tend to settle is extremely important in terms of process maintenance and management. - A known method for determining particle size distribution in particles is by image processing. However, when filamentous fungi proliferate, the particle size of the sludge flocs becomes larger than it appears, as shown in FIG. In other words, when zooglare sludge flocs are z1 and filamentous bacteria are F, the diameter of the flocs is measured as d due to the propagated filamentous bacteria even though the particle size of zooglare sludge floc Z is dz. . As described above, conventional image processing techniques have the disadvantage that the particle size of zooglare sludge flocs cannot be accurately measured when there are many filamentous bacteria.

〔発明の目的〕[Purpose of the invention]

本発明は、従来の問題点に対処して成されたもので、そ
の目的とするところは顕微鏡像の情報を短時間で解析し
、特に、ズーグレア性フロックの粒径及び粒径分布を正
確に、かつ自動的に検出する微生物相認識装置を提供す
ることにある。
The present invention has been made in response to the conventional problems, and its purpose is to analyze information from microscopic images in a short time, and in particular, to accurately determine the particle size and particle size distribution of zooglare flocs. An object of the present invention is to provide a microbiota recognition device that automatically detects microbiota.

〔発明の概要〕[Summary of the invention]

本発明は、顕微鏡像を輝度情報に変換するとズーグレア
性微生物と糸状性微生物とで濃度ヒストグラムが相違し
、任意のスレジオルトレベルを設定することによりそれ
ぞれの微生物に対応した画素数を積分し、この画素数と
微生物数との間に相関関係を有することを実験的にめ、
ズーグレア性微生物と糸状性微生物との微生物相の状態
を自動的に検知できることを新たに見い出したことによ
る。
In the present invention, when a microscopic image is converted into brightness information, the density histograms differ between zooglare microorganisms and filamentous microorganisms, and by setting an arbitrary threshold level, the number of pixels corresponding to each microorganism is integrated, We experimentally found that there is a correlation between the number of pixels and the number of microorganisms.
This is due to the new discovery that it is possible to automatically detect the state of the microbiota of zooglare microorganisms and filamentous microorganisms.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例によシ本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail by way of examples.

第2図は本発明の一実施例である。像拡大装置2は光学
顕微鏡のように微生物相を拡大する。活性汚泥を含む検
液をプレパラート1上に一定量Vを採シ、光学顕微鏡2
の囮視野で検、鏡すると、第3図に示すコントラストの
ある原画像を作製できる。
FIG. 2 shows an embodiment of the present invention. The image magnifying device 2 magnifies the microflora like an optical microscope. Collect a certain amount of the test solution containing activated sludge on preparation 1, and apply it to optical microscope 2.
When examined and mirrored in the decoy field of view, the original image with contrast shown in Figure 3 can be created.

原画像は、明るい背景である液相部Bの中に、暗い部分
が存在する。暗い部分はフロック部Zと糸状性微生物部
Fである。ビジコンカメラ3は、原画像を輝度情報に変
換する順次走査型撮像装置である。ビジコンカメラ3に
よって得られた画像情報は、画像情報処理装置9によっ
て情報処理されて、ズーグレア性微生物(フロック)の
みの画像をCRT8に表示する。ここで、画像情報処理
装置9における信号処理の過程を以下に説明する。
In the original image, a dark portion exists in the liquid phase portion B, which is a bright background. The dark areas are the floc part Z and the filamentous microorganism part F. The vidicon camera 3 is a progressive scanning type imaging device that converts an original image into luminance information. The image information obtained by the vidicon camera 3 is processed by the image information processing device 9, and an image of only zooglare microorganisms (floc) is displayed on the CRT 8. Here, the process of signal processing in the image information processing device 9 will be explained below.

輝度情報処理回路4はビジコンカメラ3からの輝度情報
をA/D変換してディジタル信号に処理する。第4図は
、第3図のA−A’線上を走査した場合の輝度情報処理
による輝度ヒストグラムである。第4図では、8ピツ)
 (256目盛)に処理しておシ、液相部Bは高い値を
示し、フロック部Zは低値を示し、その中間に糸状性微
生物部Fが表示されている。判定回路5は、輝度ヒスト
グラムから輝度レベルの最大値8bと最低値Stを取り
出す輝度レベル判定回路である。最大値8bは液相部B
が対象となり、最小値SLはフロック部Zが対象となり
、それぞれ平均値を用いる。設定回路6は、糸状性微生
物を検出する為の輝度レベルSつを設定する回路である
。輝度レベル8つは、フロック部Zに対応する信号レベ
ルSLよシも高い値に選ぶ。例えば、S、を次式に従っ
て選ぶことができる。
The brightness information processing circuit 4 A/D converts the brightness information from the vidicon camera 3 and processes it into a digital signal. FIG. 4 is a brightness histogram obtained by brightness information processing when scanning along line AA' in FIG. 3. In Figure 4, 8 pits)
(256 scale), the liquid phase part B shows a high value, the floc part Z shows a low value, and the filamentous microorganism part F is displayed in the middle. The determination circuit 5 is a brightness level determination circuit that extracts the maximum value 8b and minimum value St of the brightness level from the brightness histogram. Maximum value 8b is liquid phase part B
The target is the minimum value SL, and the flock part Z is the target, and the average value is used for each. The setting circuit 6 is a circuit for setting brightness levels S for detecting filamentous microorganisms. The brightness level 8 is selected to be higher than the signal level SL corresponding to the flock part Z. For example, S can be chosen according to the following equation:

混=St+a・(Sk−8o)・・・・旧・・(1)こ
こで、aは定数であって、0.05ないし0,3位の値
が好適である。第4図には、a=0.2の時の例が示さ
れている。
Mixed=St+a.(Sk-8o)...Old...(1) Here, a is a constant, and a value of 0.05 to 0.3 is preferable. FIG. 4 shows an example when a=0.2.

次に、判別回路7は、輝度がS、より低い値を示す時に
は、その部分をフロック部と見なし、一方、輝度がSヨ
よシ高い場合には、フロック部以外すなわち糸状性微生
物と液相部と見なす。この様に8.を選択することによ
シフ0ツク部のみの画素を抽出することができる。この
選択法に従って画素毎にフロック部とそれ以外の部分と
を判別する。
Next, when the brightness shows a value lower than S, the discrimination circuit 7 considers that part to be a floc part, and on the other hand, when the brightness is higher than S, the discrimination circuit 7 considers that part to be a floc part. considered as a department. Like this 8. By selecting , it is possible to extract pixels only in the shift 0 section. According to this selection method, a flock portion and other portions are determined for each pixel.

具体的には以下の通シである。Specifically, the rules are as follows.

第5図に示すような256X256の画素において蓋行
j列の画素allをもつ画像を例にとる。
As an example, an image having 256×256 pixels as shown in FIG. 5 and having pixels all in the cover row and column j is taken as an example.

この各画素S目について、次式に従って、フロック部と
それ以外の部分とを判別する。
For each S-th pixel, a flock portion and other portions are determined according to the following equation.

ここで、fIJ−1のときはフロック部を表し、一方f
、、:Qのときはフロック部以外を表す。この操作が判
別回路7で実施され、得られた1出力信号が、画像とし
てCl(T 8に表示される。第3図の画像を処理した
出力信号を第6図に示し、このときAA’線での出力信
号を第7図に示す。この様にしてフロック部Zの部分の
みを表示することができる。
Here, fIJ-1 represents a flock part, while f
, , :Q indicates a part other than the flock part. This operation is carried out in the discrimination circuit 7, and the obtained one output signal is displayed as an image on Cl(T8).The output signal obtained by processing the image in FIG. 3 is shown in FIG. The output signal as a line is shown in Fig. 7. In this way, only the part of the flock part Z can be displayed.

一旦、画像が第6図に示すように変換されてしまえば、
フロック部Zの粒径は、公知の従来技術で容易にめるこ
とができる。例えば、代表粒径の算出法としては、第8
図に示す一方向径d、で代表する方法、第9図に示すよ
うに最長径をdl、8、最短径をd 、1mとしたとき
の平均値d1で代表する方法などがある。この場合の計
算式は次式である。
Once the image has been transformed as shown in Figure 6,
The grain size of the flock part Z can be easily determined using known conventional techniques. For example, as a method for calculating the representative particle size,
There is a method represented by the one-way diameter d shown in the figure, and a method represented by the average value d1 when the longest diameter is dl, 8, and the shortest diameter is d2, 1 m, as shown in FIG. The calculation formula in this case is as follows.

d1=(屯−+d−1−) /2 =(4)また、第1
0図に示すように、フロック部2の面積Axをめて、等
側面積をもつ円の直径dcで代表する方法もある。
d1=(tun-+d-1-)/2=(4) Also, the first
As shown in Figure 0, there is also a method in which the area Ax of the flock portion 2 is determined and represented by the diameter dc of a circle having an equal surface area.

代表直径dcの計算法は例えば次式である。A method for calculating the representative diameter dc is, for example, the following equation.

dc=V’4・λ2/π ・・・・・・・・・(5)次
に、一般的な場合の例として、−画面内に複数個の活性
汚泥フロックがある場合の画像を第11図に示し、この
時AA’線での輝度レベルの分布を第12図に示す。前
述の信号処理法に従って、フロック部2とそれ以外の部
分とを判別表示した画像の図を第13図に示し、この時
AA’線での出力信号値を第14図に示す。
dc=V'4・λ2/π (5) Next, as an example of a general case, - the image when there are multiple activated sludge flocs in the screen is FIG. 12 shows the luminance level distribution along the AA' line at this time. FIG. 13 shows an image in which the flock portion 2 and other portions are distinguished and displayed according to the signal processing method described above, and FIG. 14 shows the output signal value on the AA' line at this time.

第13図に示す様にフロック部のみが抽出できるので、
このフロック部の各々の代表粒径を精度よくめることが
できる。
As shown in Figure 13, only the floc part can be extracted, so
The representative grain size of each of the floc parts can be determined with high precision.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、活性汚泥フロックの画像にお(9) いて、糸状性微生物を除いたフロック部の画素のみを抽
出表示できるので、活性汚泥フロックの粒径を精度よく
測定できる。
According to the present invention, it is possible to extract and display only the pixels of the floc part excluding filamentous microorganisms in the image of the activated sludge floc (9), so that the particle size of the activated sludge floc can be measured with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は活性汚泥フロックの模式図、第2図は本発明の
実施例の構成を表す図、第3図から第7図までは本発明
の信号処理過程を表す図、第8図から第10図までは、
代表径のめ方を示す図、第11図から第14図までは本
発明の信号処理過程を表す図である。 1・・・フレハラート、2・・・像拡大装置、3・・・
ビジコンカメラ、4・・・輝度情報処理回路、5・・・
判定回路、(10) 第 I 口 活 20 も 30 躬40 躬 5 口 第 60 第712] 鵠 11 図 躬120 56 2 28
Fig. 1 is a schematic diagram of an activated sludge floc, Fig. 2 is a diagram showing the configuration of an embodiment of the present invention, Figs. 3 to 7 are diagrams showing the signal processing process of the present invention, and Figs. Up to figure 10,
FIGS. 11 to 14 are diagrams showing how to determine the representative diameter, and are diagrams showing the signal processing process of the present invention. 1... Flehalato, 2... Image magnifying device, 3...
Vidicon camera, 4... Brightness information processing circuit, 5...
Judgment circuit, (10) Part I 20 30 40 5 60 712] 11 120 56 2 28

Claims (1)

【特許請求の範囲】[Claims] 1、微生物の代謝能力を利用し、有害物質の除去あるい
は有用物質の生産を行う微生物利用プロセスにおいて、
前記微生物の鏡像を輝度情報に変換し画素表示する際の
観察画素の輝度レベルが設定幅以外の場合に該観察画素
が非糸状性微生物に対応する画素であると判断すること
を特徴とする微生物相認識装置。
1. In microbial utilization processes that utilize the metabolic abilities of microorganisms to remove harmful substances or produce useful substances,
A microorganism characterized in that when the brightness level of the observed pixel when the mirror image of the microorganism is converted into brightness information and displayed as a pixel is outside a set width, the observed pixel is determined to be a pixel corresponding to a non-filamentous microorganism. Phase recognition device.
JP58140420A 1983-07-28 1983-07-28 Microorganism phase discriminating apparatus Pending JPS6031887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58140420A JPS6031887A (en) 1983-07-28 1983-07-28 Microorganism phase discriminating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58140420A JPS6031887A (en) 1983-07-28 1983-07-28 Microorganism phase discriminating apparatus

Publications (1)

Publication Number Publication Date
JPS6031887A true JPS6031887A (en) 1985-02-18

Family

ID=15268294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58140420A Pending JPS6031887A (en) 1983-07-28 1983-07-28 Microorganism phase discriminating apparatus

Country Status (1)

Country Link
JP (1) JPS6031887A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429765A (en) * 1987-07-27 1989-01-31 Hitachi Ltd Diagnosing device for number and activity of cells
JPH0533058A (en) * 1991-07-31 1993-02-09 Sumitomo Metal Ind Ltd Method for heat-treating steel pipe
JP2005287337A (en) * 2004-03-31 2005-10-20 Matsushita Electric Ind Co Ltd Method for counting number of mold cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429765A (en) * 1987-07-27 1989-01-31 Hitachi Ltd Diagnosing device for number and activity of cells
JPH0533058A (en) * 1991-07-31 1993-02-09 Sumitomo Metal Ind Ltd Method for heat-treating steel pipe
JP2005287337A (en) * 2004-03-31 2005-10-20 Matsushita Electric Ind Co Ltd Method for counting number of mold cell

Similar Documents

Publication Publication Date Title
Mesquita et al. Identifying different types of bulking in an activated sludge system through quantitative image analysis
Mesquita et al. Activated sludge characterization through microscopy: A review on quantitative image analysis and chemometric techniques
Fry 2 Direct methods and biomass estimation
Amaral et al. Activated sludge monitoring of a wastewater treatment plant using image analysis and partial least squares regression
Costa et al. Quantitative image analysis for the characterization of microbial aggregates in biological wastewater treatment: a review
Li et al. Size distribution of activated sludge flocs
JPH0627014A (en) Method and apparatus for monitoring contamination of water
Khan et al. Digital image processing and analysis for activated sludge wastewater treatment
Lopez et al. Evaluation of microscopic techniques (epifluorescence microscopy, CLSM, TPE-LSM) as a basis for the quantitative image analysis of activated sludge
Koivuranta et al. Optical monitoring of activated sludge flocs in bulking and non-bulking conditions
JPH07114685B2 (en) Sewage treatment equipment
JPH0790234B2 (en) Sewage treatment method and device with activated sludge
JPH05263411A (en) Object observation method and device
JPS6031887A (en) Microorganism phase discriminating apparatus
JPS6253791A (en) Apparatus for detecting microorganism
JPH0462798B2 (en)
JPH05146791A (en) Microbe recognizer
Yong et al. An approach for the segmentation and quantification of activated sludge floc blobs
JPH032037B2 (en)
JPS6031888A (en) Microorganism phase detecting apparatus
JPH02135198A (en) Microbe treating equipment and waste water treating equipment
JPS6031889A (en) Microorganism phase detecting apparatus
JPH08197084A (en) Biological phase diagnosis support system
JPH0671599B2 (en) Image recognition method for activated sludge
JPH0628453A (en) Microorganism recognizing device and monitoring method by the device