JPS6031767B2 - Denitration equipment for uranyl nitrate and/or plutonium nitrate - Google Patents

Denitration equipment for uranyl nitrate and/or plutonium nitrate

Info

Publication number
JPS6031767B2
JPS6031767B2 JP14724281A JP14724281A JPS6031767B2 JP S6031767 B2 JPS6031767 B2 JP S6031767B2 JP 14724281 A JP14724281 A JP 14724281A JP 14724281 A JP14724281 A JP 14724281A JP S6031767 B2 JPS6031767 B2 JP S6031767B2
Authority
JP
Japan
Prior art keywords
nitrate
plutonium
fluidized bed
lumps
uranyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14724281A
Other languages
Japanese (ja)
Other versions
JPS5849627A (en
Inventor
皓 田中
敏雄 小野下
克幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP14724281A priority Critical patent/JPS6031767B2/en
Publication of JPS5849627A publication Critical patent/JPS5849627A/en
Publication of JPS6031767B2 publication Critical patent/JPS6031767B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明は流動層を使用して硝酸ウラニルまたは/および
硝酸プルトニウムを熱分解により脱硝して三酸化ウラン
または/および二酸化プルトニウムを製造する際に削成
する三酸化ウランまたは/および二酸化プルトニウムよ
りなる塊状物の摩耗減少化を可能ならしめる硝酸ウラニ
ルまたは/および硝酸プルトニウムからの三酸化ウラン
または/および二酸化プルトニウムの脱硝装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention uses uranyl trioxide or plutonium nitrate to remove uranium trioxide or plutonium dioxide when producing uranium trioxide or/and plutonium dioxide by thermal denitrification using a fluidized bed. The present invention relates to an apparatus for denitrifying uranium trioxide and/or plutonium dioxide from uranyl nitrate and/or plutonium nitrate, which makes it possible to reduce the wear of lumps made of plutonium dioxide.

本発明は、以上のように、硝酸ウラニルまたは/および
硝酸プルトニウムの脱硝に関するものであるが、記述を
簡略化するため、以下、硝酸ウラニルまたは/および硝
酸プルトニウムをUNHと、また三酸化ウランまたは/
および二酸化プルトニウムをU03とそれぞれ略称する
As described above, the present invention relates to the denitrification of uranyl nitrate or/and plutonium nitrate, but to simplify the description, below, uranyl nitrate or/and plutonium nitrate will be referred to as UNH, uranium trioxide or/
and plutonium dioxide are respectively abbreviated as U03.

使用済核燃料の再処理工場等に由来する場合、通常ウラ
ンはUNHの形で精製され、それからU03に転化され
る。
When originating from spent nuclear fuel reprocessing plants, uranium is usually refined in the form of UNH and then converted to U03.

このUQは更に、必要に応じてU02(二酸化ウラン)
あるいはUF6(六フッ化ウラン)に転化される。ウラ
ンがUNHの形からU03に転化される工程は一般に脱
硝と称せられ、その方法としてはいくつかの方法、すな
わち、ポット法、損梓床法、マイクロ波加熱法、流動層
法等が提案されている。その中で、流動層法はその連続
運転の可能性の故に最も効率の良い方法として注目を集
め、かつ一部実用化に到っている。流動層法によるUN
Hの脱硝は原料であるUNHを気体とともに噴霧ノズル
より流動層内に吹込み、外部より熱を与えて熱分解させ
、UQ粉末を製造するのが常法である。
This UQ can be further converted to U02 (uranium dioxide) as necessary.
Alternatively, it is converted to UF6 (uranium hexafluoride). The process in which uranium is converted from the UNH form to U03 is generally referred to as denitrification, and several methods have been proposed for this purpose, including the pot method, the denitrification method, the microwave heating method, and the fluidized bed method. ing. Among these, the fluidized bed method has attracted attention as the most efficient method due to its possibility of continuous operation, and has partially been put into practical use. UN by fluidized bed method
The conventional method for denitration of H is to blow the raw material UNH together with gas into a fluidized bed through a spray nozzle, and heat it from the outside to thermally decompose it to produce UQ powder.

このUNHの熱分解脱硝反応は急激な吸熱反応のため、
頃霧ノズル先端付近は温度がかなり低下するので、贋霧
ノズル先端には未分解UNH、凝縮したQ○、U03粉
末等が付着し、徐々に成長して塊状物となることがしば
いまである。この塊状物はある程度成長すると、流動層
内ははげしい糟梓状態にあるため、噴霧ノズル先端より
落下する。この塊状物は装置壁や温度等の検出器等の先
端にも成長することがある。更に、操業条件、特に温度
コントロール等が損乱された場合にU03粒子の凝集等
により粗大粒子が発生することもある。この塊状物の発
生を完全に防止する方法はいまなお完成されておらず、
このようにして生成された塊状物が流動層内に徐々に蓄
積し、長時間運転を実施する場合には流動特性に悪影響
を及ぼし、運転停止に到ることもある。
This pyrolysis denitrification reaction of UNH is a rapid endothermic reaction, so
Since the temperature near the tip of the mist nozzle drops considerably, undecomposed UNH, condensed Q○, U03 powder, etc. adhere to the tip of the mist nozzle, and it is often the case that they gradually grow and become lumps. . When these lumps grow to a certain extent, they fall from the tip of the spray nozzle because the inside of the fluidized bed is in a sludgy state. These lumps may also grow on the walls of the equipment and on the tips of temperature and other detectors. Furthermore, if operating conditions, particularly temperature control, etc. are disturbed, coarse particles may be generated due to agglomeration of U03 particles. A method to completely prevent the occurrence of these lumps has not yet been perfected.
The thus generated lumps gradually accumulate in the fluidized bed, and when operating for a long time, they may adversely affect the flow characteristics and may even lead to the shutdown of the operation.

また運転停止後に該塊状物を流動層内から除去する場合
には装置を分解する必要があるので、分解時のU03粉
末等の飛散防止対策設備等を設けなければならない。流
動層が充分に大口径の場合には流動層下部に設ける抜出
管径を塊状物が通過可能なものとすることにより、この
塊状物抜出しの問題を解決することも可能であるが、使
用済核燃料の再処理等濃縮ウランやプルトニウムを取扱
う場合(この場合、臨界管理上流動層口径が制限される
)のように、それが不可能な4・口径の場合には抜出管
上部に金属製スクリーンを設け、塊状物が抜出管に入ら
ないようにする等の対策を実施している(特藤昭53−
78521号)が、その場合には塊状物は流動層内の整
流板上に残留し、根本的な解決策にはなっていない。本
発明者等は先にこの問題の一対策法を特鹿昭56一82
04ぞ号明細書において開示しているが、その方法はや
や複雑な構成と操作とを必要とするものである。
Furthermore, in order to remove the lumps from the fluidized bed after the operation has been stopped, it is necessary to disassemble the apparatus, so equipment must be provided to prevent U03 powder and the like from scattering during disassembly. If the diameter of the fluidized bed is sufficiently large, it is possible to solve the problem of extracting the lumps by making the diameter of the extraction pipe installed at the bottom of the fluidized bed large enough for the lumps to pass through. When handling enriched uranium or plutonium such as reprocessing nuclear fuel (in this case, the diameter of the fluidized bed is restricted due to criticality control), if this is not possible with a diameter of 4. Measures are being taken such as installing a plastic screen to prevent lumps from entering the extraction pipe (Tokuto Sho 53-
No. 78521), but in that case, the lumps remain on the baffle plate in the fluidized bed, and this is not a fundamental solution. The inventors of the present invention previously proposed a method to deal with this problem in 1982.
Although disclosed in the specification of No. 04, the method requires a rather complicated structure and operation.

この塊状物については原則的にはそれが完全に除去され
ることが望ましいが、本発明者らはUNHの脱硝流動層
装置の運転試験によって、この塊状物は装置の大きさ、
運転条件、塊状物の物性等にもよるが、その生成量があ
る一定量以下であれば、特に流動特性に悪影響を及ぼす
ことなくUNHの脱硝流動装置の運転を可能ならしめる
ものであることを見出しており、実際にも、現在実用化
されている流動層装置内にも運転時にはある程度の塊状
物は存在するものである。
In principle, it is desirable to completely remove these lumps, but the inventors have found through operational tests of UNH's denitrification fluidized bed equipment that these lumps can be removed due to the size of the equipment.
Although it depends on the operating conditions and the physical properties of the lumps, it is possible to operate UNH's denitrification fluidization equipment without adversely affecting the flow characteristics as long as the amount of produced lumps is below a certain amount. It has been found that a certain amount of lumps are actually present in the fluidized bed apparatus currently in practical use during operation.

本発明者等はこのような知見および上記のU03を主体
とする塊状物が比較的やわらかく摩耗し易い点に着目し
て、本発明に到達した。
The present inventors have arrived at the present invention by paying attention to such findings and the fact that the above-mentioned lumps mainly composed of U03 are relatively soft and easily abraded.

すなわち、本発明は前記特厭昭56一82042号明細
書記載の方法より簡略化された構成と操作とによって、
上記塊状物を摩耗、減少化し、もって連続運転を可能な
らしめる硝酸ウラニルまたは/および硝酸プルトニウム
の脱硝装置を提供するもので、その要旨とするところは
、贋霧ノズルを有する流動層を使用して硝酸ウラニルま
たは/および硝酸プルトニウムを分解により脱硝して三
酸化ウランまたは/および二酸化プルトニウムを製造す
る硝酸ゥラニルまたは/および硝酸プルトニウムの脱硝
装置において、装置の径を贋霧ノズル取付部分から流動
層下部の整流板方向に向って複数段に順次絞った構造と
したことを特徴とする硝酸ウラニルまたは/および硝酸
プルトニウムの脱硝装置、にある。次に、本発明を図面
によって説明する。
That is, the present invention has a simpler structure and operation than the method described in the specification of Tokuho Sho 56-82042, and
The purpose of the present invention is to provide a uranyl nitrate and/or plutonium nitrate denitrification device that abrades and reduces the above-mentioned lumps and thereby enables continuous operation. In a denitrification equipment for uranyl nitrate and/or plutonium nitrate that produces uranium trioxide and/or plutonium dioxide by denitrating uranyl nitrate and/or plutonium nitrate by decomposition, the diameter of the equipment is changed from the installation part of the mist nozzle to the bottom of the fluidized bed. A denitrification device for uranyl nitrate and/or plutonium nitrate, characterized by having a structure in which a plurality of stages are successively narrowed toward the direction of the current plate. Next, the present invention will be explained with reference to the drawings.

図面は本発明の一実施例の要部の断面図である。The drawing is a sectional view of a main part of an embodiment of the present invention.

本実施例は円筒型の流動層の場合で、装置の径を頃霧ノ
ズル先端4の取付部分から流動層3下部の整流板2方向
に向って複数段(図では3段)に順次絞った構成である
In this example, a cylindrical fluidized bed is used, and the diameter of the device is sequentially reduced in multiple stages (three stages in the figure) from the installation part of the fog nozzle tip 4 toward the direction of the rectifying plate 2 at the bottom of the fluidized bed 3. It is the composition.

すなわち、頃霧ノズル4の取付部分から整流板2にかけ
ての装置は径を順次絞った円筒部b,c,dとこれら円
筒部b,c,dを連結する接続部e,f,gとからなる
構造で、それら接続部e,f,gの傾斜角度は生成U0
3粒子の安息角より大きく、水平方向に対して70oで
ある。噴霧ノズル4の取付部分より上方の円筒部aおよ
びこれら円筒部b,c,dの径はそれぞれ155.2側
および106.3肌,81.1肋,53.5側であり、
またこれら円筒部b,c,dの長さはいずれも125肋
である。図において、流動化気体6はウィンドボックス
1および整流板2を経て流動層3に導入され、一方贋霧
ノズル4からはUNH溶液7と贋繁用気体8が流動層3
内に吹き込まれ、UNHの熱分解脱硝によってU03粒
子を生成する。
That is, the device from the installation part of the mist nozzle 4 to the rectifying plate 2 consists of cylindrical parts b, c, and d whose diameters are successively narrowed, and connecting parts e, f, and g that connect these cylindrical parts b, c, and d. In this structure, the inclination angles of the connecting parts e, f, and g are generated by U0
It is larger than the angle of repose of 3 particles and is 70 degrees with respect to the horizontal direction. The diameters of the cylindrical part a above the attachment part of the spray nozzle 4 and these cylindrical parts b, c, and d are respectively 155.2 side, 106.3 side, 81.1 rib, and 53.5 side,
Further, the lengths of these cylindrical portions b, c, and d are all 125 ribs. In the figure, the fluidizing gas 6 is introduced into the fluidized bed 3 via the wind box 1 and the baffle plate 2, while the UNH solution 7 and the counterfeiting gas 8 are introduced into the fluidized bed 3 from the counterfeit nozzle 4.
The pyrolytic denitrification of UNH generates U03 particles.

本実施例では贋霧ノズル4の取付部分より下方に行くほ
ど、ガス速度が段々遠くなる。
In this embodiment, the gas velocity becomes progressively farther downward from the attachment part of the mist nozzle 4.

たとえば、円筒部aにおける空塔基準の気体線速度が4
0伽/秒の場合には、円筒部bでは85仇/秒、円筒部
cでは146肌/秒、円筒部dでは337肌/秒である
。流動層3内で生成された粗大粒子あるいは頃霧ノズル
4の先端に生成した塊状物(この塊状物はある程度成長
すると、噴霧ノズル4の先端よりほとんど落下する)等
は一度流動層3下部部に落下するが、それらは円筒部b
,c,dにおける上記の速いガス流速により上方に吹き
上げられるU03粒子によって摩耗され、あるいは塊状
物が円筒部b,c,dで転動することにより、塊状物同
志および塊状物と流動層装置の内壁との衝突によつて、
摩耗、減少化し、もつて連続運転を可能ならしめるので
ある。
For example, the gas linear velocity based on the sky tower in the cylindrical part a is 4
In the case of 0 k/sec, the cylindrical part b is 85 k/sec, the cylindrical part c is 146 k/sec, and the cylindrical part d is 337 k/sec. Coarse particles generated in the fluidized bed 3 or lumps formed at the tip of the spray nozzle 4 (after these lumps grow to a certain extent, most of them fall from the tip of the spray nozzle 4) are once deposited in the lower part of the fluidized bed 3. They fall, but they fall into the cylindrical part b
, c, and d due to the U03 particles blown upward by the high gas flow rate, or the lumps roll in the cylindrical portions b, c, and d, causing the lumps to be separated from each other and the fluidized bed apparatus. Due to the collision with the inner wall,
It wears out and decreases, making continuous operation possible.

なお、上記説明は一実施例について述べたものであるが
、円筒部aと円筒部dの径の比は2〜4が望ましい。
Although the above description is based on one embodiment, the ratio of the diameters of the cylindrical portion a and the cylindrical portion d is preferably 2 to 4.

また、円筒部の接続部の傾斜角度は上述したように安息
角以上が望ましいが、安息角以下でも効果はある。絞り
の段数にていては特に制限はなく、装置のサイズ操業条
件に基づき工学的に決定される。
Further, as described above, it is desirable that the inclination angle of the connecting portion of the cylindrical portion be equal to or greater than the angle of repose, but the effect can be obtained even if the angle is equal to or less than the angle of repose. There is no particular restriction on the number of stages of the aperture, and it is determined engineeringly based on the size and operating conditions of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例の要部の断面図である。 図において、1……ウインドボックス、2……整流板、
3・・・・・・流動層、4・・・・・・噴霧ノズル、5
・・・・・・抜出管、6・・・・・・流動化気体、7・
・・・・・UNH溶液、8・・・・・・燈霧用気体、a
,b,c,d・・・・・・円筒部、e,f,g・・・・
・・接続部。
The drawing is a sectional view of a main part of an embodiment of the present invention. In the figure, 1... Wind box, 2... Rectifier plate,
3...Fluidized bed, 4...Spray nozzle, 5
...Extraction pipe, 6...Fluidization gas, 7.
...UNH solution, 8...Lamp gas, a
, b, c, d... Cylindrical part, e, f, g...
...Connection part.

Claims (1)

【特許請求の範囲】[Claims] 1 噴霧ノズルを有する流動層を使用して硝酸ウラニル
または/および硝酸プルトニウムを熱分解により硝脱し
た三酸化ウランまたは/および二酸化プルトニウムを製
造する硝酸ウラニルまたは/および硝酸プルトニウムの
脱硝装置において、装置の径を噴霧ノズル取付部から流
動層下部の整流板方向に向つて複数段に順次絞つた構造
としたことを特徴とする硝酸ウラニルまたは/および硝
酸プルトニウムの脱硝酸装置。
1. In a uranyl nitrate or/and plutonium nitrate denitrification equipment that produces uranium trioxide and/or plutonium dioxide by nitrifying uranyl nitrate or/and plutonium nitrate by thermal decomposition using a fluidized bed having a spray nozzle, 1. A denitrification device for uranyl nitrate and/or plutonium nitrate, characterized in that the diameter is successively narrowed in multiple stages from the spray nozzle attachment part toward the rectifier plate at the bottom of the fluidized bed.
JP14724281A 1981-09-18 1981-09-18 Denitration equipment for uranyl nitrate and/or plutonium nitrate Expired JPS6031767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14724281A JPS6031767B2 (en) 1981-09-18 1981-09-18 Denitration equipment for uranyl nitrate and/or plutonium nitrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14724281A JPS6031767B2 (en) 1981-09-18 1981-09-18 Denitration equipment for uranyl nitrate and/or plutonium nitrate

Publications (2)

Publication Number Publication Date
JPS5849627A JPS5849627A (en) 1983-03-23
JPS6031767B2 true JPS6031767B2 (en) 1985-07-24

Family

ID=15425788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14724281A Expired JPS6031767B2 (en) 1981-09-18 1981-09-18 Denitration equipment for uranyl nitrate and/or plutonium nitrate

Country Status (1)

Country Link
JP (1) JPS6031767B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455792A (en) * 1987-08-27 1989-03-02 Canon Kk Recording and reproducing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291924A (en) * 1985-06-17 1986-12-22 Nippon Steel Corp Manufacture of steel sheet for press forming superior in workability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455792A (en) * 1987-08-27 1989-03-02 Canon Kk Recording and reproducing device

Also Published As

Publication number Publication date
JPS5849627A (en) 1983-03-23

Similar Documents

Publication Publication Date Title
DE3872757T2 (en) METHOD AND INSTALLATION FOR CONTROLLING THE COLLECTIVE EFFICIENCY OF THE CYCLONE AND THE RECOVERY DEGREE IN FLUIDIZED LAYER REACTORS.
US4008050A (en) Apparatus for combining oxygen and hydrogen
DE69125788T2 (en) Cyclone for centrifugal separation of a mixture of gas and solid particles with heat recovery
KR830002100B1 (en) How to convert uranium hexafluoride to uranium oxide
US7521007B1 (en) Methods and apparatuses for the development of microstructured nuclear fuels
JPS6031767B2 (en) Denitration equipment for uranyl nitrate and/or plutonium nitrate
US4152287A (en) Method for calcining radioactive wastes
US4202861A (en) Method for dry reprocessing of irradiated nuclear fuels
RU2371792C2 (en) Method and plant for recycling of spent nuclear fuel
DE69526968T2 (en) SEPARATION OF SMOKE PARTICLES IN COMBUSTION AND GASIFICATION OF FOSSILER FUELS
JPS6144811B2 (en)
JPS6031766B2 (en) Denitration equipment for uranyl nitrate and/or plutonium nitrate
DE3430212C2 (en)
JPS5939375B2 (en) Method for producing uranium trioxide from uranyl nitrate
Adanez et al. Modelling and simulation of the sulphur retention in circulating fluidized bed combustors
US5544204A (en) Method of influencing the reactivity of a neutron chain reaction in a nuclear reactor
JPS6050730B2 (en) Denitration equipment for uranyl nitrate and/or plutonium nitrate
JPS623095B2 (en)
JPS6051560A (en) Spray nozzle
CA1077680A (en) Fluidized reactor reduction of uf6 to uo2
Souply et al. Fluid bed direct denitration process for plutonium nitrate to oxide conversion
Smiley et al. FLUID-BED PROCESSING OF UNIRRADIATED URANIUM DIOXIDE REACTOR FUEL ON A SEMIWORKS SCALE.
JPS6031765B2 (en) Denitration equipment for uranyl nitrate and/or plutonium nitrate
Roddy et al. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: fabrication of high-temperature gas-cooled reactor fuel containing uranium-233 and thorium
Christian et al. Critical assessment of methods for treating airborne effluents from high-level waste solidification processes