JPS6031677A - Device for optically calculating correlation - Google Patents

Device for optically calculating correlation

Info

Publication number
JPS6031677A
JPS6031677A JP14142583A JP14142583A JPS6031677A JP S6031677 A JPS6031677 A JP S6031677A JP 14142583 A JP14142583 A JP 14142583A JP 14142583 A JP14142583 A JP 14142583A JP S6031677 A JPS6031677 A JP S6031677A
Authority
JP
Japan
Prior art keywords
image
lens
light modulation
pattern
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14142583A
Other languages
Japanese (ja)
Other versions
JPH0366686B2 (en
Inventor
Takeshi Hayakawa
毅 早川
Isuke Hirano
平野 伊助
Tsutomu Hara
勉 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP14142583A priority Critical patent/JPS6031677A/en
Publication of JPS6031677A publication Critical patent/JPS6031677A/en
Publication of JPH0366686B2 publication Critical patent/JPH0366686B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06EOPTICAL COMPUTING DEVICES; COMPUTING DEVICES USING OTHER RADIATIONS WITH SIMILAR PROPERTIES
    • G06E3/00Devices not provided for in group G06E1/00, e.g. for processing analogue or hybrid data
    • G06E3/001Analogue devices in which mathematical operations are carried out with the aid of optical or electro-optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To perform operation for obtaining congruent transformation-type correlation in a speed approximated real time, by constituting a calculating device with two space light modulation tubes, a laser source, two lenses and a detector. CONSTITUTION:A pattern 21 of an aggregate of bacteria at a time of t0 is magnified by a lens 1, and a pattern (g) is read and stored in an optoelectric crystal 22c of a space light modulation tube 22. The state (h) upon expiring of 50msec is read and stored also in said tube 22 at a distance 22b away from the pattern (g). Parallel beams from a laser source 30 are projected onto the crystal 22c through half-mirrors 24 and 23, and reflecting light including said information (g) and (h) is taken out. The light which is reflected by the half-mirror 23 is Fourier-transformed by a lens 2. Its pattern is read and stored in an optoelectric crystal 25c of a space light modulation tube 25. This information is read by the parallel laser beams which are supplied by the light source 30 through half- mirrors 24 and 26 and a total reflection mirror 27, and the light including this information if Fourier-transformed by a lens 3, thereby being focused on a detector 28.

Description

【発明の詳細な説明】 (発明の属する分野) 本発明は、2つの像間の相関を光学的に演算する装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to an apparatus for optically calculating the correlation between two images.

(従来技術の説明) 例えば多数のバクテリヤ、精子などの集合体のある時刻
toでの集合体の密度分布と、toからある時間経過し
たtlの密度分布との相関をめることにより、その集合
体の運動の様子を把握することができる。
(Description of Prior Art) For example, by determining the correlation between the density distribution of a large number of bacteria, sperm, etc., at a certain time to, and the density distribution at tl after a certain time elapsed from to, You can understand the state of your body's movements.

toでの集合体の密度分布と、tlでの密度分布との相
関が大きければ、その集合体の運動は小さいことになり
、逆に相関が小さければ、激しい運動をしていることに
なる。
If the correlation between the density distribution of the aggregate at to and the density distribution at tl is large, the movement of the aggregate is small, and conversely, if the correlation is small, it means that it is moving violently.

また時間間隔を変えることによって、例えば元の状態か
らlQmsec後、50m5ec後等、時間毎の相関値
をとれば、どの程度の運動をしているかを検討すること
ができる。
Furthermore, by changing the time interval, for example, after 1Qmsec or 50m5ec from the original state, by taking the correlation value for each time, it is possible to examine how much exercise is being performed.

光学的演算により対象の相互相関を得るために合同変換
型相関法が用いられている。
A joint transform correlation method is used to obtain the cross-correlation of objects by optical calculation.

この合同変換型相関法の原理を、第1図を参照して時刻
toの点の分布のパターンをg (X) 、それからあ
る時刻経過したtlでのパターンh(x)の相関をめる
場合について簡単に説明する。
The principle of this joint transformation type correlation method can be explained by referring to Fig. 1 and calculating the correlation between the distribution pattern of points at time to as g (X) and the pattern h (x) at tl after a certain time has elapsed. I will briefly explain about.

まず、第1図(A)に示すように時刻1(、の点の分布
のパターンをg (X) 、それからある時刻経過した
tlでのパターンh (x)をそれぞれある中心間隔(
=2 b ; g (x)とh (x)が重ならないよ
うに)を隔ててフィルムIに記録し現像する。前記記録
はtoの時点のフィルムを、tlの時刻に2bだけ移動
させることにより簡単に実現できる。
First, as shown in Figure 1 (A), the pattern of the distribution of points at time 1 (, g (
=2 b ; g (x) and h (x) so that they do not overlap) are recorded on film I and developed. The recording can be easily realized by moving the film at time to by 2b at time tl.

このようにして得られたフィルムIの透過度分布特性は
、前記パターンの任意の一次元像に着目すると、 像g (X)の中心をbに、像h (x)の中心を−b
に、その中点を原点におけば、 U+ (X)=g (x−b) +h (x+b)で表
される。
The transmittance distribution characteristics of the film I obtained in this way are as follows when focusing on an arbitrary one-dimensional image of the pattern, the center of the image g (X) is b, and the center of the image h (x) is -b
If we set the midpoint as the origin, it is expressed as U+ (X)=g (x-b) +h (x+b).

次に、第1図(B)に示すように、フィルムIの像をフ
ーリエ変換し、フィルム■に露光する。
Next, as shown in FIG. 1(B), the image on film I is subjected to Fourier transformation and exposed on film 2.

このようにして得たフィルム■はフィルム■の画像の周
波数成分の大きさを、座標軸を周波数、a度を成分の大
きさとして表したものとなる。
The thus obtained film (2) represents the magnitude of the frequency component of the image of the film (2), with the coordinate axis representing the frequency and the degree a representing the magnitude of the component.

その結果、フィルム■の濃度分布はgのフーリエ変換を
G、hのフーリエ変換をHおよび推移定数を用いれば、 U2 (f)=lG−exp (−j2πf−b)+H
−exp(j2πf−b)12 =G−G’+H−H’ 十G−H’exp (−j4yrf−b)+G’ −H
exp (j4πf−b)ただしG′はGの、H′はH
の共役複素数次に第1図(C)に示すようにフィルム■
に垂直に平行なレーザ光を照射し、透過光をレンズして
フーリエ変換すると、パターンはフィルムI上の画像g
 (x)の自己相関像g*g (x)と。
As a result, the density distribution of film ■ can be obtained by using the Fourier transform of g as G, the Fourier transform of h as H, and the transition constant as follows: U2 (f)=lG-exp (-j2πf-b)+H
-exp (j2πf-b)12 =G-G'+H-H'10G-H'exp(-j4yrf-b)+G' -H
exp (j4πf-b) where G' is G, H' is H
The conjugate complex number of the film ■
When a parallel laser beam is irradiated perpendicular to , and the transmitted light is subjected to Fourier transformation using a lens, the pattern becomes the image g on film I.
Autocorrelation image g*g (x) of (x).

h (x)の自己相関像h*h(x)と、g (x)と
h (x)を距離2bだけ移動した像の相互相関像g*
h (x 2b)と、 h (x)とg (X)を距離
−2bだけ移動した像の相互相関像h*g (x+2b
)とを合成した像U3 (X)になる。
The autocorrelation image h*h(x) of h (x) and the cross-correlation image g* of the image obtained by moving g (x) and h (x) by a distance of 2b.
h (x 2b), and the cross-correlation image h*g (x+2b) of images obtained by moving h (x) and g (X) by a distance of -2b
), resulting in an image U3 (X).

03 (X)=ff*g (x)+h*h (X)十g
th(x 2b) +h*g (x+2b) このように自己相関g*g(x)およびh*h (X)
はX=Oに、相互相関g*hはx=2 bに、h+kg
ばx=−2bに明るい点として現れる。
03 (X)=ff*g (x)+h*h (X) 10g
th(x 2b) +h*g (x+2b) Thus the autocorrelation g*g(x) and h*h (X)
is X=O, cross correlation g*h is x=2 b, h+kg
It appears as a bright spot at x=-2b.

g*g (x)、h*h (x)の明るさを1とすれば
、g*h (x 2b) 、h*g (x+2b)の明
るさば1よりも小さく、それらより暗く現れ、gとhの
濃度分布が類似していれば1に近<、類似していなげれ
ばOに近い。
If the brightness of g*g (x) and h*h (x) is 1, then the brightness of g*h (x 2b) and h*g (x+2b) is smaller than 1 and appears darker than them, and g If the concentration distributions of and h are similar, it is close to 1<, and if they are not similar, it is close to O.

このような像の座標2bまたは/および座標−2b点の
光強度を検出器で検出し、明るい場合は相関が大きく、
暗い時は相関が小さいという結果が得られる。
The light intensity at coordinate 2b and/or coordinate -2b point of such an image is detected by a detector, and if it is bright, the correlation is large;
The results show that the correlation is small when it is dark.

以上のようにして合同変換型相関を得ることができる。A joint transformation type correlation can be obtained in the above manner.

しかしながら、前述のように現像の工程を必要とするた
め、結果が得られるまでの時間が長くなると言う問題が
ある。
However, as mentioned above, since the development step is required, there is a problem that it takes a long time to obtain the result.

(発明の詳細な説明) 本発明の目的は前述の操作を実時間に近い速度で行うこ
とができる光学的に相関を演算する装置を提供すること
にある。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to provide an optical correlation calculation device that can perform the above-described operations at a speed close to real time.

(構成の説明) 前記目的を達成するために、本発明による光学的に相関
を演算する装置は、相関をとるべき物体像を適当な時間
間隔をおいて入力し、各々異なる場所に記憶する第1の
空間光変調管と、前記記憶された像を読み出すための平
行化された光を発生するレーザ光源と、読み出された像
をフーリエ変換するレンズと、前記フーリエ変換された
像が書き込まれる第2の空間光変調管と、第2の空間光
変調管の像を読み出す平行化されたレーザ光源と、前記
読み出された像を逆フーリエ変換するためのレンズと、
逆フーリエ変換された像を検出する手段とから構成され
ている。
(Description of Configuration) In order to achieve the above object, the apparatus for optically calculating correlation according to the present invention inputs object images to be correlated at appropriate time intervals and stores them in different locations. 1 spatial light modulation tube, a laser light source that generates collimated light for reading out the stored image, a lens that Fourier transforms the read out image, and a lens into which the Fourier transformed image is written. a second spatial light modulation tube, a collimated laser light source for reading out an image of the second spatial light modulation tube, and a lens for inverse Fourier transforming the read out image;
and means for detecting an image that has been subjected to inverse Fourier transform.

(実施例の説明) 以下、図面等を参照して本発明をさらに詳しく説明する
(Description of Examples) Hereinafter, the present invention will be described in more detail with reference to the drawings and the like.

ます第2図を参照して、本発明による装置で使用する空
間光変調管の基本的構成と動作原理を簡単に説明する。
Referring first to FIG. 2, the basic configuration and operating principle of the spatial light modulation tube used in the apparatus according to the present invention will be briefly explained.

光電面22.aに入射した入力インコヒーレント像4は
光電変換され、光電子はマイクロチャンネルプレート2
2bによって数千倍に増倍される。前記増倍された電子
は電気光学結晶22Cの表面に付着または二次電子を放
出することにより電気光学結晶22Cの表面に電荷パタ
ーンを形成する。
Photocathode 22. The input incoherent image 4 incident on a is photoelectrically converted, and the photoelectrons are transferred to the microchannel plate 2.
2b, it is multiplied several thousand times. The multiplied electrons adhere to the surface of the electro-optic crystal 22C or emit secondary electrons, thereby forming a charge pattern on the surface of the electro-optic crystal 22C.

そのため、結晶を横切る電界は、電荷の存在する部分で
は大きく、他の部分ではほとんど零であるため、電気光
学効果により、結晶に部分的な屈折率の差が生ずる。
Therefore, the electric field across the crystal is large in areas where charges exist and is almost zero in other areas, resulting in local differences in refractive index in the crystal due to the electro-optic effect.

そこで読め出し用のレーザ光をレーザ光源30からハー
フミラ−23を介して、前記結晶22cに照射すると結
晶22c内の屈折率の違いにより、レーザ光が変調され
る。
Therefore, when the crystal 22c is irradiated with a reading laser beam from the laser light source 30 via the half mirror 23, the laser beam is modulated due to the difference in refractive index within the crystal 22c.

その結果入力インコヒーレント像情報をもったコヒーレ
ント像5が得られる。
As a result, a coherent image 5 having input incoherent image information is obtained.

第3図は、本発明による光学的に相関を演算する装置の
実施例を示すブロック図である。
FIG. 3 is a block diagram showing an embodiment of an apparatus for optically calculating correlation according to the present invention.

第4図は前記装置の動作を説明するための波形図である
FIG. 4 is a waveform diagram for explaining the operation of the device.

バクテリヤの集合体のパターンの相関をめる場合を例に
して、説明する。
This will be explained using an example of determining the correlation between patterns of bacterial aggregation.

時刻toでのバクテリヤの集合体のパターン21をレン
ズ1で拡大して空間光変調管22の電気光学結晶22C
にパターンgを書込み・記憶させる。この時、コントロ
ーラ31からは、書込みパルス■が出力し、空間光変調
管22を動作させる。
The pattern 21 of the bacterial aggregation at time t is magnified by the lens 1 and the electro-optic crystal 22C of the spatial light modulation tube 22 is
Write and store pattern g. At this time, the controller 31 outputs a write pulse (2) to operate the spatial light modulation tube 22.

そして、5’0m5ec経過した時の状態りを同じく空
間光変調管22にgと距離2bを隔てて書込み記憶する
。前記書込み記憶のためにコントローラ31から書込み
パルス■と共に偏向信号■が偏向コイル22dに与えら
れ(第4図参照)、第3図のように2b隔てた位置に書
き込まれる。
Then, the state after 5'0 m5 ec has elapsed is similarly written and stored in the spatial light modulation tube 22 at a distance g and 2b. For the above-mentioned write storage, a deflection signal (2) is applied from the controller 31 together with a write pulse (2) to the deflection coil 22d (see FIG. 4), and is written at a position separated by 2b as shown in FIG. 3.

レーザ光源30からの平行化されたレーザ光はハーフミ
ラ−24、ハーフミラ−23を介して電気光学結晶22
Cに入射され、前記g、hの情報を含む反射光が取り出
される。
The collimated laser beam from the laser light source 30 passes through the half mirror 24 and the half mirror 23 to the electro-optic crystal 22.
The reflected light is incident on C, and the reflected light containing the information on g and h is taken out.

ハーフミラ−23で反射された光は、レンズ2でフーリ
エ変換され、そのフーリエ変換ツマターンしよ空間光変
調管25の電気光学結晶25Cに書込み・記憶される。
The light reflected by the half mirror 23 is Fourier transformed by the lens 2, and the Fourier transform is written and stored in the electro-optic crystal 25C of the spatial light modulation tube 25.

第4図に示すパルス■はこの書込みのために、コントロ
ーラ31がら空間光変調管25に供給されるパルスであ
る。
Pulse 2 shown in FIG. 4 is a pulse supplied from the controller 31 to the spatial light modulation tube 25 for this writing.

ついでコントローラ31から第4図■に示す信号が与え
られ、空間光変調管22の情報は消去され次の書込みの
準備がなされる。
Next, the signal shown in FIG. 4 is given from the controller 31, and the information in the spatial light modulation tube 22 is erased to prepare for the next writing.

空間光変調管25の電気光学結晶25Cに書込み・記1
.つされた情報は前記レーザ光源30から、/SSラフ
ラー24、全反射鏡27、ノ\−フミラー26を介して
供給される平行化されたレーザ光で読み出される。読み
出された前記情報を含む光は、レンズ3でフーリエ変換
されて、イメージセンサからなる検出器28上に結像さ
れる。
Write and record 1 on the electro-optic crystal 25C of the spatial light modulation tube 25
.. The collected information is read out by a collimated laser beam supplied from the laser light source 30 via the /SS rougher 24, the total reflection mirror 27, and the nof mirror 26. The read light containing the information is Fourier-transformed by the lens 3 and is imaged onto a detector 28 consisting of an image sensor.

検出器28上に形成された自己相関値h*h、g*gと
相互相関値h*g、g*hに原因する出力は比較器29
で比較され、表示器40により、表示される。
The outputs caused by the autocorrelation values h*h, g*g and cross-correlation values h*g, g*h formed on the detector 28 are sent to the comparator 29.
are compared and displayed on the display 40.

表示器40はコントローラ31からのパルス■を受けて
前記のgとhの相関の程度を表示する。
The display 40 receives the pulse (2) from the controller 31 and displays the degree of correlation between g and h.

この後コントローラ31からの信号■と■によって空間
光変調管25の前記情報が消去される。
Thereafter, the information in the spatial light modulation tube 25 is erased by the signals (1) and (2) from the controller 31.

(効果の説明) 以上のような簡単な操作により、多数のバクテリア・精
子などの集合体の運動の様子が検査可能となるから、医
学・生物学の分野で多大な効果を発揮する。
(Explanation of effects) With the simple operation described above, it is possible to examine the movement of a large number of aggregates of bacteria, sperm, etc., and this has great effects in the fields of medicine and biology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は合同変換型相関法の原理を説明するための略図
である。 第2図は本発明による装置で使用する空間光変調管の構
成と動作を説明するための略図である。 第3図は、本発明による光学的に相関を演算する装置の
実施例を示すブロック図である。 第4図は前記装置の動作を説明するための波形図である
。 112+ 3・・・レンズ 4・・・入力像 5・・・コヒーレント出力像 21・・・入力像 22・・・空間光変調管 22a・・・光電面 22b・・・マイクロチャンネルプレート22c・・・
電気光学結晶 22d・・・偏向コイル 23、?、26・・・ハーフミラ− 25・・・空間光変調管 25c・・・電気光学結晶 27・・・全反射鏡 28・・・検出器 29・・・比較器 30・・・レーザ光源 31・・・コントローラ 特許出願人 浜松ホトニクス株式会社 代理人 弁理士 井 ノ ロ 壽 牙1図 (B) (C)
FIG. 1 is a schematic diagram for explaining the principle of the joint transformation type correlation method. FIG. 2 is a schematic diagram for explaining the configuration and operation of a spatial light modulation tube used in the apparatus according to the present invention. FIG. 3 is a block diagram showing an embodiment of an apparatus for optically calculating correlation according to the present invention. FIG. 4 is a waveform diagram for explaining the operation of the device. 112+ 3... Lens 4... Input image 5... Coherent output image 21... Input image 22... Spatial light modulation tube 22a... Photocathode 22b... Microchannel plate 22c...
Electro-optic crystal 22d...deflection coil 23,? , 26... Half mirror 25... Spatial light modulation tube 25c... Electro-optic crystal 27... Total reflection mirror 28... Detector 29... Comparator 30... Laser light source 31...・Controller patent applicant Hamamatsu Photonics Co., Ltd. Agent Patent attorney Inoro Juga Figure 1 (B) (C)

Claims (2)

【特許請求の範囲】[Claims] (1)相関をとるべき物体像を適当な時間間隔をおいて
入力し、各々異なる場所に記憶する第1の空間光変調管
と、前記記憶された像を読み出すための平行化された光
を発生するレーザ光源と、読み出された像をフーリエ変
換するレンズと、前記フーリエ変換された像が書き込ま
れる第2の空間光変調管と、第2の空間光変調管の像を
読み出す平行化されたレーザ光源と、前記読み出された
像を逆フーリエ変換するためのレンズと、逆フーリエ変
換された像を検出する手段とから構成した光学的に相関
を演算する装置。
(1) A first spatial light modulation tube into which object images to be correlated are input at appropriate time intervals and stored in different locations, and a collimated light for reading out the stored images. A laser light source that generates a laser beam, a lens that Fourier transforms the readout image, a second spatial light modulation tube into which the Fourier transformed image is written, and a collimated lens that reads out the image of the second spatial light modulation tube. A device for optically calculating a correlation, comprising a laser light source, a lens for inverse Fourier transform of the read image, and means for detecting the inverse Fourier transform image.
(2)前記第1および第2の空間光変調管により記憶さ
れた像を読め出す光を発生するレーザ光源は共通のレー
ザ光源である特許請求の範囲第1項記載の光学的に相関
を演算する装置。
(2) Optically calculating the correlation according to claim 1, wherein the laser light sources that generate the light for reading the images stored by the first and second spatial light modulation tubes are a common laser light source. device to do.
JP14142583A 1983-08-02 1983-08-02 Device for optically calculating correlation Granted JPS6031677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14142583A JPS6031677A (en) 1983-08-02 1983-08-02 Device for optically calculating correlation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14142583A JPS6031677A (en) 1983-08-02 1983-08-02 Device for optically calculating correlation

Publications (2)

Publication Number Publication Date
JPS6031677A true JPS6031677A (en) 1985-02-18
JPH0366686B2 JPH0366686B2 (en) 1991-10-18

Family

ID=15291687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14142583A Granted JPS6031677A (en) 1983-08-02 1983-08-02 Device for optically calculating correlation

Country Status (1)

Country Link
JP (1) JPS6031677A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04172318A (en) * 1990-11-05 1992-06-19 Hamamatsu Photonics Kk Space light modulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138616A (en) * 1981-02-20 1982-08-27 Mitsubishi Electric Corp Optical correlation processing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138616A (en) * 1981-02-20 1982-08-27 Mitsubishi Electric Corp Optical correlation processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04172318A (en) * 1990-11-05 1992-06-19 Hamamatsu Photonics Kk Space light modulator

Also Published As

Publication number Publication date
JPH0366686B2 (en) 1991-10-18

Similar Documents

Publication Publication Date Title
JP2527807B2 (en) Optical associative identification device
Wilson Confocal microscopy
JP3023694B2 (en) Light pattern recognition method for multi-reference images
US5166742A (en) Optical deformation measuring apparatus by double-writing speckle images into a spatial light modulator
KR0140533B1 (en) Optical Correlator and Cross-Correlation Information Generation Method
JPH03505634A (en) Optical correlation method and apparatus for particle image velocimetry processing
CN103149827A (en) Method for eliminating single-beam coaxial digital holography direct current terms and conjugate images
JP2703380B2 (en) Calibration system for output correlation plane of optical correlator
JPS6031677A (en) Device for optically calculating correlation
JP2744494B2 (en) Speckle utilization measuring device
KR101995122B1 (en) Method and apparatus for recording and projecting 3 dimensional holographic image using scattering layer
JP3062664B2 (en) Optical pattern recognition device having coordinate conversion function
JP4324507B2 (en) Vibration measuring device
JP3233723B2 (en) Phase pattern difference discriminator
JPS60253945A (en) Shape measuring instrument
JPS60207003A (en) Graphic correlation detector
JP3170894B2 (en) Spatial light modulator evaluation system
JP2986487B2 (en) Optical associative identification device
JP2986491B2 (en) Optical automatic tracking device
JPH09204235A (en) Optical correlator
JPH0651361A (en) Optical correlation arithmetic processor
JP2771665B2 (en) Optical correlation processing method
RU1836698C (en) Optical data retrieval system
JPH08129149A (en) Optical information processor
JP3486215B2 (en) Pattern recognition device