JPS6031523B2 - Mixed oil removal device - Google Patents

Mixed oil removal device

Info

Publication number
JPS6031523B2
JPS6031523B2 JP51129142A JP12914276A JPS6031523B2 JP S6031523 B2 JPS6031523 B2 JP S6031523B2 JP 51129142 A JP51129142 A JP 51129142A JP 12914276 A JP12914276 A JP 12914276A JP S6031523 B2 JPS6031523 B2 JP S6031523B2
Authority
JP
Japan
Prior art keywords
oil
aqueous solution
mixed oil
layer
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51129142A
Other languages
Japanese (ja)
Other versions
JPS5354177A (en
Inventor
清 二宮
泰介 吉本
浩 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP51129142A priority Critical patent/JPS6031523B2/en
Publication of JPS5354177A publication Critical patent/JPS5354177A/en
Publication of JPS6031523B2 publication Critical patent/JPS6031523B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、水溶液に混入している作動油、潤滑油等の混
入油を効率良く除去することができる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus that can efficiently remove mixed oils such as hydraulic oil and lubricating oil from an aqueous solution.

鋼等の各種材料の研削、切削に使用される水溶性切削油
剤の水溶液は、繰り返し使用される。
Aqueous solutions of water-soluble cutting fluids used for grinding and cutting various materials such as steel are used repeatedly.

そして、この繰返し使用の間に、上記水溶液中には研削
機、切削機に使用されている作動油や潤滑油等の油が混
入し、蓄積されてくる。これらの混入油はその量が多く
なると水中における切削油剤の安定した分散状態を、を
不安定ならしめて油剤自体を水と分離し易くさせたり、
或し、上記水溶液の腐敗を促進させたりし、切削、研削
性能の低下を起させる。そのため、そのうな混入油は出
来るだけ水溶液中から除去する必要がある。従来、油水
分雛技術の1つに、高分子繊維、ガラス繊維等の繊維を
充填した層に含油水溶液を送入し、微細油滴を合一粗大
化せしめて、油を除去するコアレツサーなる装置がある
During this repeated use, oil such as hydraulic oil or lubricating oil used in grinding machines and cutting machines gets mixed into the aqueous solution and accumulates therein. When the amount of these mixed oils increases, the stable dispersion state of the cutting fluid in water becomes unstable, making it easier for the fluid itself to separate from the water.
Alternatively, it may accelerate the decay of the aqueous solution, resulting in a decrease in cutting and grinding performance. Therefore, it is necessary to remove such mixed oil from the aqueous solution as much as possible. Conventionally, one of the oil/water chick technologies is a device called a coalescer, which pumps an oil-containing aqueous solution into a layer filled with fibers such as polymer fibers and glass fibers, coalesces fine oil droplets to coarsen them, and removes the oil. There is.

しかしながら、この装置の欠点は含油水溶液中に混在す
る微細粒子が繊維の間に橘持されてしまい目づまりを生
ずる。そのため、油水分離が不充分又は不可能になると
共に上記繊維層を逆洗するための高圧ポンプ等の付帯設
備を必要とする。本発明は、かかる従来装置の欠点を克
服し、効率良く混入油を除去することができる装置を提
供しようとするものである。
However, a drawback of this device is that fine particles mixed in the oil-containing aqueous solution are trapped between the fibers, causing clogging. Therefore, oil-water separation becomes insufficient or impossible, and additional equipment such as a high-pressure pump for backwashing the fiber layer is required. The present invention aims to overcome the drawbacks of such conventional devices and provide a device that can efficiently remove contaminated oil.

即ち、本発明は水中に不安定な状態で混在している作動
油、潤滑油等の混入油を除去する装置において、表面に
有機シリコン化合物被膜を施してなる直径0.5なし、
し6.7側の多数の球状体を充填してなる第1層と、表
面に有機シリコン化合物被膜を施してなる多数の柱状体
を東状に充填てなる第2層とを設け、上記混入油を含有
している水が上記第1層を通過した後に上記第2層をそ
の柱状体の軸方向に沿って通過するようになしたことを
特徴とする混入油の除去装置である。
That is, the present invention provides a device for removing mixed oil such as hydraulic oil and lubricating oil mixed in water in an unstable state, with a diameter of 0.5 mm, the surface of which is coated with an organic silicon compound.
A first layer filled with a large number of spherical bodies on the 6.7 side and a second layer filled with a large number of columnar bodies whose surface is coated with an organic silicon compound are provided, and the above-mentioned mixture is formed. A device for removing mixed oil, characterized in that water containing oil passes through the second layer along the axial direction of the columnar body after passing through the first layer.

しかして、本発明によれば水中の上記浸入油を効率良く
、容易に除去することができる。
Therefore, according to the present invention, the oil that has entered the water can be efficiently and easily removed.

特に本発明を、前記水溶性切削油剤の水溶液中に混入し
てくる混入油の除去に使用する場合には、切削油剤水溶
液自体の切削、研削性能を変えることなく混入油を除去
することができると共に、水溶液中に混入してくる微細
な切削粉、研削粉をも同時に除去することができる。ま
た、このように混入油を効率良く除去することができる
ために、上記切削油剤自体は水中で安定した分散状態を
維持することができ、その腐敗も起らず、従って優れた
切削、研削性能を長期間に渡って維持することができる
。なお、本装置を使用した場合には、混入油が除去され
るのみで、水溶性切削油剤自体は除去されず、従って該
油剤の水溶液の性能が低下することはない。上記のごと
き効率の良い混入油の除去は、次のような理由にるもの
と考えられる。
In particular, when the present invention is used to remove mixed oil mixed into the aqueous solution of the water-soluble cutting fluid, the mixed oil can be removed without changing the cutting and grinding performance of the cutting fluid solution itself. At the same time, fine cutting powder and grinding powder mixed into the aqueous solution can be removed at the same time. In addition, since the mixed oil can be efficiently removed in this way, the cutting fluid itself can maintain a stable dispersion state in water and will not deteriorate, resulting in excellent cutting and grinding performance. can be maintained for a long period of time. Note that when this device is used, only the mixed oil is removed, but the water-soluble cutting fluid itself is not removed, and therefore the performance of the aqueous solution of the fluid is not degraded. The efficient removal of mixed oil as described above is thought to be due to the following reasons.

先ず、本発明における第一層の充填物は、その表面が球
状面でべあることに、その特徴があり、この球状面であ
ることによって下記のような第一層の効果が得られるの
である。もしも、上記充填物の表面が球状面でなく、角
張っていたり、多くの凹凸面である場合には、本発明の
ごとき効果を得ることができない。これは、表面が球状
でない場合には充填物の間の空間が上記の角部や凸部に
よって占められ、液体の流動が極端に悪すなると共に、
液体中の混入固形物による目づまりが生じ易くなるため
と考えられる。(比較実験例参照)また、上記第一層の
球状体は、その直径が0.5なし、し6.7肋であるの
で、第一層の目づまりが生じ難いと共に、水溶液と充填
物との接触が充分に行なわれ、油滴を効果的に粗大化さ
せ易い。
First, the first layer of the filling in the present invention is characterized by its surface being a spherical surface, and this spherical surface provides the following effects of the first layer. . If the surface of the filler is not spherical but angular or has many irregularities, the effects of the present invention cannot be obtained. This is because if the surface is not spherical, the spaces between the fillers will be occupied by the corners and protrusions mentioned above, and the flow of the liquid will be extremely poor.
This is thought to be because clogging is likely to occur due to solids mixed in the liquid. (See Comparative Experimental Example) In addition, since the diameter of the spherical bodies in the first layer is 0.5 mm and 6.7 ribs, clogging of the first layer is unlikely to occur, and the aqueous solution and filler are not easily clogged. Sufficient contact occurs, making it easy to effectively coarsen oil droplets.

即ち、本発明においては、第1層に充填したガラスビー
ズ等の球状体は、その表面に有機シリコン化合物被膜を
施し、球状体の表面を親油性たらしめ、油滴との濡れ性
を改善している。また、第1層は球状体を多数充填した
ものである故、球状体間の自由空間は比較的大きく、流
路の偏在がなく、またそのために微細粉による目づまり
がない。しかして、有機シリコン化合物被膜を形成した
球状体の表面の親油性の増大と、該球状体の間の迷路の
ごとき交錯する流路により、混入油の油滴の相互の衝突
回数が増大し、混入油の油滴の粗大化が促進される。し
かしながら、この粗大化した油滴も、いまだ水溶液中を
浮上出来る程には大きく成長しておらず、水溶液中に分
散移動する結果のみに終り勝ちの程度のものである。そ
こで、本発明では、更に上記の第1層を通過した水溶液
を、有機シリコン化合物被膜を施した多数の柱状体を充
填した第2層に送り込むようになし、上記水溶液を上記
柱状体の鞠方向に流して、これを層流化させるのである
、そして、この層流化と有機シリコン化合物被膜による
親油性効果とにより、第1層で或る程度粗大化した油滴
滴を更に合一化させてその油滴の増大化を促進するもの
である。
That is, in the present invention, the surface of the spherical bodies such as glass beads filled in the first layer is coated with an organic silicon compound to make the surface of the spherical body lipophilic and improve wettability with oil droplets. ing. Further, since the first layer is filled with a large number of spherical bodies, the free space between the spherical bodies is relatively large, there is no uneven distribution of channels, and there is no clogging caused by fine powder. Therefore, due to the increased lipophilicity of the surface of the spherical bodies coated with an organic silicon compound coating and the intersecting flow paths like a labyrinth between the spherical bodies, the number of mutual collisions of the oil droplets of the mixed oil increases. The coarsening of the oil droplets of the mixed oil is promoted. However, these coarse oil droplets have not yet grown large enough to float in the aqueous solution, and are only dispersed and moved in the aqueous solution. Therefore, in the present invention, the aqueous solution that has passed through the first layer is further fed into a second layer filled with a large number of columnar bodies coated with an organic silicon compound, and the aqueous solution is directed in the direction of the columnar bodies. This laminar flow and the lipophilic effect of the organic silicon compound coating further coalesce the oil droplets that have become coarse to some extent in the first layer. This promotes the enlargement of the oil droplets.

第2層を通過した水溶液中の混入油の油滴は、水溶液中
を浮上するに十分な粒径(約0.1肋以上)となり、水
溶液から容易に分散除去できる大きさとなる。しかして
、このようにして水溶液上に浮上した油滴は、スクレー
パ一等の周知手段により除去される。本発明において、
第1層に充填するための球状体とは、ガラスビーズ等の
球状体を言い、その直径は0.5ないし6.7側(32
なし、し3メッシュ)のものが好ましい。
The oil droplets of the mixed oil in the aqueous solution that have passed through the second layer have a particle size (approximately 0.1 rib or more) sufficient to float in the aqueous solution, and have a size that can be easily dispersed and removed from the aqueous solution. The oil droplets thus floated on top of the aqueous solution are removed by known means such as a scraper. In the present invention,
The spherical bodies to be filled in the first layer refer to spherical bodies such as glass beads, and the diameter is 0.5 to 6.7 (32
None, 3 mesh) are preferred.

これよりも4・さし、球状体では目づまりを起し易いし
、第1層を通過させる水溶液の流通抵抗が大きくなり、
実用的でない。また、これよりも大きい直径のものを用
いると水溶液と有機シリコン化合物被膜形成球状体との
接触が十分でなく、油滴が粗大化し難い。上記の「有機
シリコン化合物被膜」の形成とは、球状体の表面にシラ
ン、オルガノシラン、オルガノシロキサン等の有機シリ
コン化合物の被膜を形成させることを言う。かかる有機
シリコン化合物被膜の形成は、メチルハイドロジェンポ
リシロキサン等のシリコン化合物を溶解させた溶液中に
上記球状体を浸潰し、その後該球状体を取り出し、乾燥
させ、次いで高温に加熱して、上記シリコン化合物を球
状体上にキュアーさせること等により行なう。また、第
2層に充填するための柱状体は、ガラス、ステンレス鋼
などの棒状体又は管を用いる。
Compared to this, a spherical body is more likely to clog, and the flow resistance of the aqueous solution passing through the first layer is greater.
Not practical. Furthermore, if a diameter larger than this is used, the contact between the aqueous solution and the organosilicon compound film-forming spherical bodies will not be sufficient, making it difficult for oil droplets to become coarse. The above-mentioned "formation of an organic silicon compound film" refers to forming a film of an organic silicon compound such as silane, organosilane, organosiloxane, etc. on the surface of the spherical body. Formation of such an organic silicon compound film is carried out by immersing the above-mentioned spherical body in a solution in which a silicon compound such as methylhydrogenpolysiloxane is dissolved, and then taking out the spherical body, drying it, and then heating it to a high temperature to form the above-mentioned spherical body. This is done by, for example, curing a silicon compound on a spherical body. Further, as the columnar body for filling the second layer, a rod or a tube made of glass, stainless steel, etc. is used.

しかして、この柱状体の外蓬は2なし、し2仇肋とする
ことが好ましい。これよりも小径では、柱状体の間に形
成される直線状の通路が狭いため、流通抵抗が大きくな
り、また水溶液が乱流となり易く、油瓶の粗大化が困難
となる。また、これよりも大径では水溶液と有機シリコ
ン化合物被膜形成柱状体との接触が不十分となり油瓶の
粗大化が困難となる、柱状体として管状のものを用いる
場合には、その内径は1ないし2側とするのが好ましい
。この範囲外では、油滴の粗大化が困難である。柱状体
の長さは、長くなるほど油滴の粗大化が進む。柱状体へ
の有機シリコン化合物被膜の形成法は、前記した球状体
の場合と同様である。本発明の装置において、装置中を
通過させる水溶液の平均線速度は10なし、し50伽/
分とすることが好ましい。線速度が小さいほど油滴の粗
大化が促進されるが、水溶液の処理速度が小さくなるた
め、10弧/分以上とすることが好ましい。50狐/分
以上では油滴の粗大化が不十分である。
Therefore, it is preferable that the outer cover of this columnar body is two or two ribs. If the diameter is smaller than this, the linear passage formed between the columnar bodies will be narrow, so the flow resistance will be large, and the aqueous solution will tend to flow turbulently, making it difficult to make the oil bottle coarse. Furthermore, if the diameter is larger than this, the contact between the aqueous solution and the organosilicon compound film-forming columnar body will be insufficient, making it difficult to make the oil bottle coarse.When using a tubular columnar body, the inner diameter should be 1. It is preferable to use one to two sides. Outside this range, it is difficult to coarsen the oil droplets. As the length of the columnar body increases, the oil droplets become coarser. The method for forming the organic silicon compound coating on the columnar bodies is the same as that for the spherical bodies described above. In the apparatus of the present invention, the average linear velocity of the aqueous solution passing through the apparatus is between 10° and 50°/
It is preferable to set it as 1 minute. The smaller the linear velocity is, the more coarse the oil droplets will be, but the processing speed of the aqueous solution will be lower, so the linear velocity is preferably 10 arc/min or more. If the speed is 50 min/min or more, the oil droplets will not become coarse enough.

ここに、平均線速度とは、前記の柱状体又は球状体が充
填された層の中を「1分間当りに通過した液量」(地/
分)を、該充填層が充填されている「筒の内部断面積」
(地)で除した値を言う。なお、本装置は、前記のごと
き水溶性切削油剤と水とからなる水溶液或いはこの両者
のェマルジョンのみならず工場排水等の水溶液或いは一
般の水の中に、すなわち、そのような水中に不安定な状
態で混入している油の除去に対して、前記のごとき優れ
た効果を発揮するものである。要するに、本発明は水の
中に不安定な状態で混入している油の除去に適用するも
のである。以下に本発明に力幼)る実施例を示す。
Here, the average linear velocity refers to the "amount of liquid passing per minute" through the layer filled with the columnar or spherical bodies.
) is the internal cross-sectional area of the cylinder filled with the packed bed.
The value divided by (earth). This device can be used not only in an aqueous solution of a water-soluble cutting fluid and water as described above, or an emulsion of both, but also in an aqueous solution such as factory wastewater, or in general water. It exhibits the above-mentioned excellent effect in removing oil mixed in the state. In short, the present invention is applied to the removal of oil that is mixed in water in an unstable state. Examples of implementation of the present invention are shown below.

実施例 1 第1図に示すごとき、本発明にかかる混入油除去装置1
を用い、水溶性切削油剤の水溶液中に混入している混入
油の除去を行った。
Example 1 A mixed oil removal device 1 according to the present invention as shown in FIG.
The mixed oil mixed in the aqueous solution of the water-soluble cutting fluid was removed using the following method.

上記の混入油除去装置1は、第1図に示すごとく、円筒
状の本体11の内部に、その下方に第1層としての多数
の有機シリコン化合物被膜形成球状体2を充填すると共
に、その上方に本体1 1の鞠方向に沿って第2層とし
ての多数の有機シリコン化合物被膜形成柱状体3を並行
に配置して成る。
As shown in FIG. 1, the above-mentioned mixed oil removal device 1 has a cylindrical main body 11 filled with a large number of organic silicon compound film-forming spheres 2 as a first layer below the main body 11, and above the main body 11. A large number of organic silicon compound coated columnar bodies 3 as a second layer are arranged in parallel along the ball direction of the main body 11.

また該本体11の第1層側には流入管12を、その第2
層側には流出管13をそれぞれ連結する。また、上記第
1層と第2層との間には、金網18,18により層硫化
促進のための空間室15を形成したなる。なお、14,
16は金網である。上記本体1 1は内径46側で、上
記球状体2の層の長さは5仇舷、上記柱状体3の長さは
30仇肋である。また、空間室15の長さは2仇岬であ
る。上記被覆形成球状体2は、9なし、し12メッシュ
(約2ないし1.4側)のガラスビーズを次のように処
理することによって得たものである。即ち、メチルハイ
ドロジェンポリシロキサンを溶媒としてnーヘキサンに
1%(容量比、以下特記しない限り同じ)溶解した溶液
を作成し、該溶液に上記ガラスビーズを浸潰し、その後
該ガラスビーズを取り出して乾燥し、次いでこれをアミ
ノシランアルコール溶液に浸潰し、更にこれを取り出し
て室温で乾燥し、その後これを約180qoに加熱し、
キュアーすることにより得た。また、上記の被覆形成柱
状体3は、内径3柳、外径5柳のガラス管に、上記球状
体2の場合と同様の条兼で、ガラス管の内外の表面に有
機シリコン化合物被膜を形成することによって得たもの
である。前記の水溶性切削油剤は、被乳化剤(鉱油)6
7%、界面活性剤25%、防腐剤、ィンヒビター等8%
とからなるェマルジョン型のもので、該油剤の3舷容量
倍の水希釈液とその中に分散している混入油との混合液
が被処理水溶液である。
Further, an inflow pipe 12 is provided on the first layer side of the main body 11, and the second
Outflow pipes 13 are connected to each layer side. Further, a space chamber 15 for promoting layer sulfurization is formed between the first layer and the second layer by wire meshes 18, 18. In addition, 14,
16 is a wire mesh. The main body 11 has an inner diameter 46 side, the length of the layer of the spherical body 2 is 5 mounds, and the length of the columnar body 3 is 30 m2. In addition, the length of the space chamber 15 is 2 mounds. The coated spherical bodies 2 were obtained by treating glass beads of 9 to 12 mesh (approximately 2 to 1.4 side) as follows. That is, a solution of 1% methylhydrogenpolysiloxane dissolved in n-hexane (volume ratio, the same unless otherwise specified) is prepared, the glass beads are immersed in the solution, and then the glass beads are taken out and dried. Then, this was soaked in an aminosilane alcohol solution, further taken out and dried at room temperature, and then heated to about 180 qo,
Obtained by curing. In addition, the above-mentioned coating-forming columnar body 3 forms an organic silicon compound coating on the inner and outer surfaces of the glass tube with the same striations as in the case of the above-mentioned spherical body 2 on a glass tube with an inner diameter of 3 willow and an outer diameter of 5 willow. It was obtained by doing. The above-mentioned water-soluble cutting fluid contains an emulsifying agent (mineral oil) 6
7%, surfactant 25%, preservatives, inhibitors, etc. 8%
The aqueous solution to be treated is an emulsion-type one consisting of a diluted water solution three times the shipboard capacity of the oil agent and mixed oil dispersed therein.

しかして、該被処理水溶液中の混入油は機械用の潤滑油
(パクトラNo.2;商標名、モービル石油株式会社製
)と作動油(ダフター140:商標名、出光興産株式会
社製)との等量混入油であり、該混入油は上記被処理水
溶液中に6%混入しており、かつ不安定なェマルジョン
状態で該水溶液中に均一に分散している。上記漉入油の
除去は、上記被処理水溶液を上記混入油除去装置1の内
部へ、第1層の上記被膜形成球状体2によって形成され
る空間部、空間室15および第2層の上記被膜形成柱状
体3の間に形成される直線状の空隙部と該柱状体3であ
るガラス管3の内孔とへ順次送り込むことにより行なっ
た。
Therefore, the mixed oil in the aqueous solution to be treated is mixed with mechanical lubricating oil (Pactra No. 2; trade name, manufactured by Mobil Oil Co., Ltd.) and hydraulic oil (Dafter 140: trade name, manufactured by Idemitsu Kosan Co., Ltd.). The mixed oil is mixed in an equal amount, and the mixed oil is mixed in the aqueous solution to be treated at 6%, and is uniformly dispersed in the aqueous solution in an unstable emulsion state. The removal of the strained oil is carried out by introducing the aqueous solution to be treated into the inside of the mixed oil removal device 1, the space formed by the film-forming spherical bodies 2 of the first layer, the space chamber 15, and the film of the second layer. This was carried out by sequentially feeding into the linear void formed between the formed columnar bodies 3 and the inner hole of the glass tube 3 which is the columnar body 3.

本例では、該水溶液の流量を種々に変させ、各流量にお
ける混入油の除去率を測定した。なお、上記除去装置1
は第2層が上方になるように、約30度の傾斜を持たせ
て固定した。その結果を、第2図に、機軸に流量(そ/
分)および線速度(m/分)を、縦軸に混入油除去率(
%)をとって曲線aにより示した。
In this example, the flow rate of the aqueous solution was varied, and the removal rate of mixed oil at each flow rate was measured. In addition, the above-mentioned removal device 1
was fixed at an angle of about 30 degrees so that the second layer was on top. The results are shown in Figure 2.
min) and linear velocity (m/min), and the vertical axis shows the mixed oil removal rate (
%) and is shown by curve a.

第2図の曲線aより知られるごとく、線速度が小さくな
るに従い除去率が増加することが分る。
As can be seen from curve a in FIG. 2, it can be seen that the removal rate increases as the linear velocity decreases.

また、同図には比較のために、上記装置1において第1
層としての上記被膜形成球状体2のみからなる層を用い
た場合の結果を一点鎖線bで、第2層としての上記被膜
形成柱状体3のみからなる層を用いた場合の結果を点線
cで示す。上記より知られるごとく、本発明にかかる装
置は、それに使用する第1層のみ又は第2層のみを用い
る場合に比して優れた除去率を示すことが分る。
Also, for comparison, the figure also shows the first
The dashed line b shows the result when a layer consisting only of the film-forming spherical bodies 2 is used as a layer, and the dotted line c shows the result when a layer consisting only of the film-forming columnar bodies 3 as a second layer is used. show. As can be seen from the above, the apparatus according to the present invention exhibits a superior removal rate compared to the case where only the first layer or only the second layer is used.

また、上例では第1層のみ線bよりも第2層のみ線cの
方が除去効果が大きいことが分る。なお、上記除去装置
1による処理においては、混入油が除去されたのみで、
水溶性切削油剤自体の減少はなく、該処理後の水溶液の
切削性能には何らの変化も見られなかった。実施例 2 混入油の混入量が異なる他は実施例1と同様である水溶
性切削油剤水溶液につき、実施例1と同様にして線速度
と混入油除去率の関係を測定した。
Further, in the above example, it can be seen that the removal effect of the second layer only line c is greater than that of the first layer only line b. In addition, in the treatment by the removal device 1, only the mixed oil was removed;
There was no decrease in the water-soluble cutting fluid itself, and no change was observed in the cutting performance of the aqueous solution after the treatment. Example 2 The relationship between the linear velocity and the removal rate of mixed oil was measured in the same manner as in Example 1 using the same water-soluble cutting fluid aqueous solution as in Example 1 except that the amount of mixed oil was different.

その結果を、第3図に前記第2図と同機にして示した。The results are shown in Figure 3 for the same aircraft as in Figure 2 above.

同図における各曲線は、第1表に示す混入油量を含有し
ている水溶液についての値である。第1表 第3図より知られるごとく、混入油の量が少なくなるに
つれて除去率も上昇することが分る。
Each curve in the figure is a value for an aqueous solution containing the amount of mixed oil shown in Table 1. As can be seen from Table 1 and Figure 3, it can be seen that the removal rate increases as the amount of mixed oil decreases.

実施例 3水道水の中に油を混入させて作った含油水に
ついての混入油除去率について測定した。
Example 3 The removal rate of mixed oil was measured for oil-containing water made by mixing oil into tap water.

ここに水道水に混入油が分散していること、混入量が2
.5%である他は、実施例1と同じである。上記の結果
を、第4図に、曲線hで、第2図と同様にして示した。
This shows that the mixed oil is dispersed in the tap water, and the amount of mixed oil is 2.
.. It is the same as Example 1 except that it is 5%. The above results are shown in FIG. 4 by curve h in the same manner as in FIG. 2.

実施例 4 有機シリコン化合物被膜形成球状体に用いるガラスビー
ズの大きさを種々に変え、他は実施例1と同様の条件に
おいて、混入油の除去率を測定した。
Example 4 Organosilicon Compound Film Formation The removal rate of mixed oil was measured under the same conditions as in Example 1 except that the size of the glass beads used for the spherical bodies was varied.

その結果を第5図に、第2図と同様にして示した。同図
において、各曲線は、第2表に示す上記ガラスビーズ大
きさについての値である。
The results are shown in FIG. 5 in the same manner as in FIG. In the figure, each curve is a value for the glass bead size shown in Table 2.

第2表 第5図より知られるごとく、第2表に示したいずれの大
きさの球状体も、ほぼ同程度の混入油除去率を示すこと
が分る。
As is known from Table 2 and FIG. 5, it can be seen that the spherical bodies of any size shown in Table 2 exhibit approximately the same level of mixed oil removal rate.

実施例 5 有機シリコン化合物被膜形成柱状体に用いるガラス管の
長さを種々に変え、線速度を30肌/分とし、他は実施
例1と同様にして、混入油の除去率を測定した。
Example 5 The removal rate of mixed oil was measured in the same manner as in Example 1 except that the length of the glass tube used for the organosilicon compound coating columnar body was varied and the linear velocity was 30 skin/min.

その結果を第6図に、横軸に有機シリコン化合物被膜形
成ガラス管の長さ(柵)をとって、縦軸に混入油の除去
率をとって直線1で示した。同図より知られるごとく、
上記ガラス管が長くなるにつれて、浸入油除去率が上昇
することが分る。
The results are shown in FIG. 6 as a straight line 1, with the horizontal axis representing the length (fence) of the glass tube on which the organic silicon compound coating was formed, and the vertical axis representing the removal rate of mixed oil. As can be seen from the same figure,
It can be seen that as the length of the glass tube increases, the infiltrated oil removal rate increases.

実施例 6 本例は、第7図のフローシートに示すごとく、鋼材の切
削に使用する水溶液切削油剤水溶液の循環ラインに本発
明を適用したもので、該水溶液中に鋼材切削機から漏洩
してきた混入油を連続的に除去し、上記油剤を連続的に
使用する例を示すものである。
Example 6 In this example, as shown in the flow sheet of Fig. 7, the present invention is applied to a circulation line for an aqueous cutting fluid solution used for cutting steel materials. This shows an example in which mixed oil is continuously removed and the above oil agent is used continuously.

即ち、第7図に示す油水分雛遭層は、鋼材切削機41,
42,……45を有する切削機群4と、該切削機群4で
使用され混入油を含有している水溶液切削油剤の水溶液
51を貯蔵するためのIJザーバタンク5と、該水溶液
51中の混入油を除去するための本発明にかかる四基の
混入油除去装置1と、該除去装置1により処理した処理
済水溶液61を貯蔵するための分離用タンク6と、該分
離用タンク6によって分離された水溶性切削油剤水溶液
63を貯蔵するための油剤タンク7と、同じく分離用タ
ンク6で分離された浸入油62を貯蔵するための混入油
タンク8とからなる。
That is, the oily and moisture-covered layer shown in FIG.
42, . Four mixed oil removal devices 1 according to the present invention for removing oil, a separation tank 6 for storing the treated aqueous solution 61 treated by the removal device 1, and a separation tank 6 for separating the mixed oil by the separation tank 6. It consists of an oil tank 7 for storing an aqueous water-soluble cutting oil solution 63, and a mixed oil tank 8 for storing the permeated oil 62 separated in the separation tank 6.

しかして、本油水分離装置により上記混入油62を除去
するに当っては、上記切削機群4から排出され混入油6
2を含有している上記水溶液51をパイプ46によりリ
ザーバタンク5に一旦貯蔵し、次いで該水溶液51をポ
ンプ52により、送液の脈動を除去するためのバッファ
ータンク53、バルブ54、流量計55を介して四基の
混入油除去装置1にそれぞれ送入する。
Therefore, when the mixed oil 62 is removed by this oil/water separator, the mixed oil 62 is discharged from the cutting machine group 4 and removed.
The aqueous solution 51 containing 2 is temporarily stored in the reservoir tank 5 through the pipe 46, and then the aqueous solution 51 is transferred to the buffer tank 53, valve 54, and flow meter 55 for removing pulsation of liquid supply by the pump 52. The mixed oil is sent to four mixed oil removal devices 1 through the oil filter.

該除去装置1においては、混入油62が粗粒化して水溶
液63と分離され、その両者からなる処理済液61は分
離タン、ク6に放出される。該分離タンク6においては
、該処理済液61中の粗粒化した混入油62がタンクの
上方に浮上し、該混入油62は油排出口66よりパイプ
67を経て混入油タンク8に流下する。一方、分離タン
ク6中の混入油が除去された水溶液63は仕切り板60
の下方を経て、水溶液排出口64に流出し、更にパイプ
65、バルブ68、パイプ651を介して油剤タンク7
に送入されるなお、この場合談水溶液63は、再び除去
装置1により処理するなどの必要性に応じて、その全部
又は一部をバルブ69、パイプ652を介してリザーバ
タンク5に返戻できる。上記のごとくして、切削機群4
により使用され、かっ混入濁を除去された水落・性切削
油剤の水溶液63は、ポンプ71、パイプ72により再
び切削機群4に送られ、各切削機41,43,・・・・
・・45に分配され、使用される。
In the removal device 1, the mixed oil 62 is coarsened and separated from the aqueous solution 63, and the treated liquid 61 consisting of both is discharged into the separation tank 6. In the separation tank 6, the coarse-grained mixed oil 62 in the treated liquid 61 floats above the tank, and the mixed oil 62 flows down from the oil outlet 66 through the pipe 67 into the mixed oil tank 8. . On the other hand, the aqueous solution 63 from which the mixed oil in the separation tank 6 has been removed is removed by the partition plate 60.
The solution flows out to the aqueous solution outlet 64 through the pipe 65, valve 68, and pipe 651 to the oil tank 7.
In this case, the aqueous solution 63 sent to the tank can be returned in whole or in part to the reservoir tank 5 via the valve 69 and pipe 652, depending on the need for processing by the removal device 1 again. As described above, cutting machine group 4
The aqueous solution 63 of water-repellent cutting fluid used by and from which turbidity has been removed is sent to the cutting machine group 4 again by a pump 71 and a pipe 72, and is sent to each cutting machine 41, 43, . . .
...Distributed to 45 people and used.

上記水溶液63は、上記のごとくして循環使用に供され
る。
The aqueous solution 63 is recycled as described above.

上記油水分雛装置において、発明者らは上記混入油除去
装置1として前記実施例1で示したものと同じものを用
い、該除去装置1の一基当りの線速度を30肌/分(通
液量0.5〆/分)とし、上記の混入油を含有している
水溶性切削油剤水溶液51を処理した。
In the above-mentioned oil/water chick device, the inventors used the same device as shown in Example 1 as the mixed oil removal device 1, and set the linear speed of each removal device 1 to 30 skins/min (generally). The water-soluble cutting fluid aqueous solution 51 containing the above-mentioned mixed oil was treated.

ここに、水落性切削油剤は実施例1と同様のものであり
、また混入油は実施例1と同じもので上記水溶液51中
に約5%含有されていた。その結果、混入油の除去を行
なった後の上記水溶液63の中には、混入油は約0.7
%しか存在していなかった。
Here, the water-dropping cutting fluid was the same as in Example 1, and the mixed oil was the same as in Example 1, and was contained in the aqueous solution 51 at about 5%. As a result, the amount of mixed oil in the aqueous solution 63 after removing the mixed oil is approximately 0.7.
Only % existed.

これは、混入油除去率86%に相当する。また、処理前
の水溶液51の中には少量の微細な切削粉(粒蓬約50
0〜10仏)も混入していたが、これらの存在は除去装
置に目づまり等の何らの支障も生じさせなかった。また
、上記の混入油除去後の水溶液63は繰り返し、切削に
使用したが、その良好な性能は維持されていた。比較実
験例 実施例1と同様にして、表面に有機シリコン化合物被膜
を施してなるガラスの球状体と、ガラスの破砕粒とを用
い、これらをそれぞれ筒の中に長・ご5仇肌こ充填し、
この充填層に油と固形物とが混入した液体を通し、各充
填層内での目づまりの状況を測定した。
This corresponds to a mixed oil removal rate of 86%. In addition, a small amount of fine cutting powder (approximately 50 grains) is contained in the aqueous solution 51 before treatment.
However, their presence did not cause any problems such as clogging of the removing device. Further, the aqueous solution 63 after removing the mixed oil was repeatedly used for cutting, and its good performance was maintained. Comparative Experimental Example In the same manner as in Example 1, a glass sphere whose surface was coated with an organic silicon compound and crushed glass particles were used, and each of them was filled into a cylinder with a length of about 5 square meters. death,
A liquid containing oil and solid matter was passed through the packed bed, and the clogging status in each packed bed was measured.

上記の球状体、破砕粒は共に24なし、し32メッシュ
(直径0.7〜0.5肋)であった。
Both the above-mentioned spherical bodies and crushed particles had a mesh size of 24 mm and 32 mm (0.7 to 0.5 ribs in diameter).

破砕粒は、ガラスを破砕して節分けしたものである。。
上記液体は、油2%(容量比)、固形分としてのカオリ
ン粉末(粒径約1仏)100雌郡、残部水から成るもの
であった。また、充填層中の液体の見かけ流速は、30
弧/分でつた。上記目づまり状況は、上記充填の前後に
おける圧力差(△pkg/地)の時間的変化により測定
した。
The crushed grains are obtained by crushing glass and dividing it into segments. .
The liquid contained 2% oil (by volume), 100 particles of kaolin powder (particle size approximately 1 French) as a solid content, and the remainder water. In addition, the apparent flow velocity of the liquid in the packed bed is 30
It was measured in arc/minute. The clogging condition was measured by the temporal change in the pressure difference (△pkg/ground) before and after the filling.

その結果を、第3表に示す。The results are shown in Table 3.

第3表 上表より知られるごとく、本発明にかかる球状体に比し
て、破砕粒を用いた場合には、目づまりが相当に早く生
ずることが分る。
As can be seen from the upper table of Table 3, clogging occurs considerably faster when crushed particles are used compared to the spherical bodies according to the present invention.

このような差異が生じるのは、破砕粒は、その表面が球
状体ではなく、角張っており、凹凸も多いために、充填
層中の空隙部分も小さく複雑となり、上記のごとく目づ
まりが生じ易くなるためと考えられる。
This difference occurs because the surface of crushed grains is not spherical, but angular, and has many irregularities, so the voids in the packed bed are also small and complex, making them more likely to become clogged as described above. It is thought that this is because of this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は混入油除去装置の一部断面側面図、第2図ない
し第6図は実施例1ないし5における混入油除去率の結
果を示す線図、第7図は切削機からの混入油を除去する
ための油水分離装置のフローシートである。 1・・・…混入油除去装置、2・・・・・・有機シリコ
ン化合物被膜形成球状体、3・・・・・・有機シリコン
化合物被膜形成柱状体、4・・・・・・切削機群、5・
・・・・・リザーバタンク、6・・・・・・分離タンク
、62・・・・・・混入油、63…・・・混入油を除去
した水落性切削油剤水落液、7・・・・・・油剤タンク
、8・・・・・・混入油タンク。 第7図第2図 第3図 鱗6図 穿く滋 第5図 図 い 鳩
Fig. 1 is a partial cross-sectional side view of the mixed oil removal device, Figs. 2 to 6 are graphs showing the results of mixed oil removal rates in Examples 1 to 5, and Fig. 7 is a partial cross-sectional side view of the mixed oil removal device. This is a flow sheet of an oil/water separator for removing . 1... Mixed oil removal device, 2... Organosilicon compound film forming spherical body, 3... Organosilicon compound film forming columnar body, 4... Cutting machine group. , 5・
... Reservoir tank, 6 ... Separation tank, 62 ... Mixed oil, 63 ... Drop-off cutting fluid from which mixed oil has been removed, 7 ... ... Oil tank, 8... Mixed oil tank. Figure 7 Figure 2 Figure 3 Scales Figure 6 Pigeon Figure 5 Pigeon

Claims (1)

【特許請求の範囲】[Claims] 1 水中に不安定な状態で混在している作動油、潤滑油
等の混入油を除去する装置において、表面に有機シリコ
ン化合物被膜を施してなる直径0.5ないし6.7mm
の多数の球状体を充填してなる第1層と、表面に有機シ
リコン化合物被膜を施してなる多数の柱状体を束状に充
填してなる第2層とを設け、上記混入油を含有している
水が上記第1層を通過した後に上記第2層とその柱状体
の軸方向に沿つて通過するようになしたことを特徴とす
る混入油の除去装置。
1. In a device for removing mixed oil such as hydraulic oil and lubricating oil mixed in water in an unstable state, a device with a diameter of 0.5 to 6.7 mm whose surface is coated with an organic silicon compound.
A first layer is formed by filling a large number of spherical bodies, and a second layer is formed by filling a bundle of a large number of columnar bodies whose surfaces are coated with an organic silicon compound, and contains the mixed oil. A device for removing mixed oil, characterized in that the water passing through the first layer passes along the axial direction of the second layer and its columnar body.
JP51129142A 1976-10-27 1976-10-27 Mixed oil removal device Expired JPS6031523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51129142A JPS6031523B2 (en) 1976-10-27 1976-10-27 Mixed oil removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51129142A JPS6031523B2 (en) 1976-10-27 1976-10-27 Mixed oil removal device

Publications (2)

Publication Number Publication Date
JPS5354177A JPS5354177A (en) 1978-05-17
JPS6031523B2 true JPS6031523B2 (en) 1985-07-23

Family

ID=15002149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51129142A Expired JPS6031523B2 (en) 1976-10-27 1976-10-27 Mixed oil removal device

Country Status (1)

Country Link
JP (1) JPS6031523B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294954U (en) * 1989-01-18 1990-07-27
JPH0454324U (en) * 1990-09-18 1992-05-11

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2135207B (en) * 1983-02-17 1986-02-05 Shell Int Research Process and apparatus for the removal of oil from an oil-in-water dispersion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1110380A (en) * 1965-12-10 1968-04-18 Degussa A process for the production of hydrophobic fine-grained powders and/or granulates from waterglass
JPS4924024A (en) * 1972-05-05 1974-03-04

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108170U (en) * 1975-02-27 1976-08-30

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1110380A (en) * 1965-12-10 1968-04-18 Degussa A process for the production of hydrophobic fine-grained powders and/or granulates from waterglass
JPS4924024A (en) * 1972-05-05 1974-03-04

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294954U (en) * 1989-01-18 1990-07-27
JPH0454324U (en) * 1990-09-18 1992-05-11

Also Published As

Publication number Publication date
JPS5354177A (en) 1978-05-17

Similar Documents

Publication Publication Date Title
Sakthivadivel et al. Clogging of porous column of spheres by sediment
US3844944A (en) Apparatus and method for effecting separations
JP2000061205A (en) Liquid separation method and device therefor
JPH025128B2 (en)
US3558482A (en) Water purification
CN109652117A (en) A kind of oil-water separation system and isolated process
US5006260A (en) Coalescer device and method using movable filling
RU78436U1 (en) CAPILLARY SEPARATOR EMULSIONS
US3617548A (en) Method and apparatus for the continuous separation and removal of oil from water
RU2661228C1 (en) Granule of filtering material for separation of emulsions
US3553940A (en) Precipitator
RU2240854C1 (en) Installation for separation of oil-water emulsions and a filtering material
US1887774A (en) Method of treating emulsions
US3870635A (en) Apparatus for clarifying an influent water
JPS6031523B2 (en) Mixed oil removal device
CN206502636U (en) A kind of high-efficiency cyclone coalesces oily-water seperating equipment
RU2652695C1 (en) Granule of the filtering material for demulsification
DE60107960T2 (en) DEVICE FOR CLEANING WATER POLLUTED WITH LIQUID HYDROCARBON DROPS
US3426904A (en) Separating apparatus for dispersed matter
US5645649A (en) Method for proportioning the flow of foaming and defoaming agents and controlling foam formation
US1984003A (en) Purification of liquid
US3527701A (en) Method and apparatus for treating liquids contaminated with hydrocarbons compounds
DE1517923C3 (en) Method and device for separating liquid petroleum products and water
US3869408A (en) Method and apparatus for continuously separating emulsions
JP2006281123A (en) Oil/water separator