JPS6031315A - Second order delta sigma modulator - Google Patents

Second order delta sigma modulator

Info

Publication number
JPS6031315A
JPS6031315A JP13902383A JP13902383A JPS6031315A JP S6031315 A JPS6031315 A JP S6031315A JP 13902383 A JP13902383 A JP 13902383A JP 13902383 A JP13902383 A JP 13902383A JP S6031315 A JPS6031315 A JP S6031315A
Authority
JP
Japan
Prior art keywords
circuit
signal
capacitor
switched capacitor
integrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13902383A
Other languages
Japanese (ja)
Inventor
Rikio Maruta
力男 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13902383A priority Critical patent/JPS6031315A/en
Publication of JPS6031315A publication Critical patent/JPS6031315A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/458Analogue/digital converters using delta-sigma modulation as an intermediate step
    • H03M3/494Sampling or signal conditioning arrangements specially adapted for delta-sigma type analogue/digital conversion systems
    • H03M3/496Details of sampling arrangements or methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M3/422Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • H03M3/43Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a single bit one
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/436Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type
    • H03M3/438Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path
    • H03M3/454Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path with distributed feedback, i.e. with feedback paths from the quantiser output to more than one filter stage

Abstract

PURPOSE:To attain low power consumption, low cost and miniaturization of a DELTASIGMA modulator itself by means of large circuit integration by constituting circuit components requiring highly accurate operation to an analog signal such as generation of an approximate signal, differential calculation between an input signal or a first stage integration signal and the approximate signal and integration calculation or the like with an operational amplifier, a capacitor and a switch. CONSTITUTION:An input analog signal is given to a terminal 501, a reference voltage is given to a terminal 502, the 1st clock pulse phi1 is given to a terminal 503 and the 2nd clock pulse phi2 is given to a terminal 504 and a DELTASIGMA code is outputted at a terminal 505. The 1st approximate signal is formed by the combination of the 2nd switched capacitor circuit and the 3rd switched capacitor circuit, and the 2nd approximate signal is formed by the combination of the 5th switched capacitor circuit and the 6th switched capacitor circuit. Since an inverting input of an operational amplifier 540 becomes an imaginary grounding point because of the negative feedback by a capacitor C4 and its potential is 0, a current to discharge an electric charge V(t1).C1 stored in a capacitor C1 to 0 flows through the conduction of S2 switches 513, 514.

Description

【発明の詳細な説明】 本発明はAD変換器、特にアナログ信号を1ビツト/サ
ンプルで符号化するデルタ・シグマ(ΔΣ)形の符号器
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an AD converter, and more particularly to a delta-sigma (ΔΣ) encoder for encoding an analog signal with one bit per sample.

アナログ信号をディジタル符号化する簡易な方法として
ΔΣ変調方式が知られている。第1図はΔΣ変調器の原
理的な構成を示すブロック図で、入力線101に与えら
れた入力アナログ信号を符号化し2値ディジタル信号で
あるΔΣ符号を信号線105に出力する。この回路は差
分回路110.i分回路120及び2値量子化回路13
0を含むフィードバックループによ多構成される。フィ
ードバックルーズの遅延は1サンプル分であシ、第1図
では遅延回路140によシ代表して示されているが、入
力信号が時間連続信号で2値量子化回路130がサンプ
リング機能を有する場合には、そのサンプリング操作に
より1サンプル分の遅延が生ずるので遅延回路140を
あらためて設ける必要はない。しかし以下の説明では第
1図にあられれる全ての信号はサンプル値系列、すなわ
ち時間離散的な信号として扱う。
A ΔΣ modulation method is known as a simple method of digitally encoding an analog signal. FIG. 1 is a block diagram showing the basic configuration of a ΔΣ modulator, which encodes an input analog signal applied to an input line 101 and outputs a ΔΣ code, which is a binary digital signal, to a signal line 105. This circuit is a differential circuit 110. i-minute circuit 120 and binary quantization circuit 13
It is composed of many feedback loops including 0. The feedback loose delay is one sample, and is typically shown by the delay circuit 140 in FIG. 1, but when the input signal is a time continuous signal and the binary quantization circuit 130 has a sampling function. Since the sampling operation causes a delay of one sample, there is no need to provide the delay circuit 140. However, in the following explanation, all the signals shown in FIG. 1 will be treated as sample value sequences, that is, time-discrete signals.

今、第1図の信号線101に第2図(1)に示すように
周期Tでサンプリングされたアナログ信号が入力される
ものとする。差分回路110では、信号線101に与え
られる入力信号から信号線102上にあられれる近似信
号が差引かれ、信号線103上に差信号を出力する。信
号線102上の近似信号は第2図(2)に示す如く正負
2値信号であシ、信号線103に生ずる差信号は第2図
(3)のようになる。この差信号は次に積分回路120
に於て積分され第2図(3)の如き積分値を信号線10
4に生ずる。2値量子化回路130では信号線104上
の積分値の極性を判定し、その判定結果のΔΣ符号を信
号線lO5上に出力する。このΔΣ符号は次のサンプル
点に於ける近似信号として用いられるため遅延回路14
0に与えられる。第2図(5)が第2図(4)に示す積
分値の極性を判定して得られるΔΣ符号であり、第2図
(2)の近似信号に対し1サンプル分だけ進んでいる。
Now, assume that an analog signal sampled at a period T is input to the signal line 101 in FIG. 1 as shown in FIG. 2 (1). In the difference circuit 110, the approximate signal appearing on the signal line 102 is subtracted from the input signal applied to the signal line 101, and a difference signal is outputted on the signal line 103. The approximate signal on the signal line 102 is a positive/negative binary signal as shown in FIG. 2(2), and the difference signal generated on the signal line 103 is as shown in FIG. 2(3). This difference signal is then passed to the integrator circuit 120.
The integrated value as shown in Fig. 2 (3) is sent to the signal line 10.
Occurs in 4. The binary quantization circuit 130 determines the polarity of the integral value on the signal line 104, and outputs the ΔΣ sign of the determination result onto the signal line IO5. This ΔΣ code is used as an approximate signal at the next sample point, so the delay circuit 14
given to 0. FIG. 2(5) is the ΔΣ code obtained by determining the polarity of the integral value shown in FIG. 2(4), and is ahead of the approximate signal in FIG. 2(2) by one sample.

信号線105上に得られるΔΣ符号列は入力信号振幅に
応じたパルス密度を有しておシ、この符号列を低域通過
フィルタ(LPF)に通せば元のアナログ波形の復号信
号が得られる。このLPFをディジタルフィルタで実現
すれば、ΔΣ符号をLPFに通した後の出力は元のアナ
ログ波形の復号波形に対応するPCM(パルス符号変調
)信号が得られることになる。
The ΔΣ code string obtained on the signal line 105 has a pulse density according to the input signal amplitude, and if this code string is passed through a low-pass filter (LPF), a decoded signal of the original analog waveform can be obtained. . If this LPF is realized by a digital filter, the output after passing the ΔΣ code through the LPF will be a PCM (pulse code modulation) signal corresponding to the decoded waveform of the original analog waveform.

上記の事を数式的に示すと次のようになる。すなわち、
信号線101上の入力サンプル値系列の2変換をX (
Z)、信号線」05上に得られる出力サンプル値系列の
Z変換をY (Z)、さらに2値量子化回路による量子
化誤差系列の2変換をQ(6)とし、積分回路120の
2伝達関数を(1−3−1)−1,1サンプル遅延回路
140の2伝達関数をZ−1とすれば、第1図について
の回路方程式は式(1)のようになる。
The above can be expressed mathematically as follows. That is,
The 2-transformation of the input sample value series on the signal line 101 is expressed as X (
Z), the Z transformation of the output sample value series obtained on the signal line 05 is designated as Y (Z), and the 2 transformation of the quantization error series by the binary quantization circuit is designated as Q(6), and the 2 of the integrating circuit 120 is If the transfer function is (1-3-1)-1 and the two-transfer function of the one-sample delay circuit 140 is Z-1, the circuit equation for FIG. 1 is as shown in equation (1).

(X(Z)−Z−’Y(z))(1−z−’)−’−Y
CZ)−Q(Z) (15式(1)をY(2)について
解けば y(z)−x(z)+(1−Z ’ ) Q(Z) (
2)となり、出力信号Y (Z)は入力信号X (Z)
に量子化誤差Q (Z)の(1−11)倍が加算された
ものであることがわかる。量子化誤差Q (z)の周波
数スペクトラムは平坦であるが(1−Z”)なる2伝達
関数によってスペクトラム整形を受ける。Z=ejωT
であるから1(1−Z ’ )lz= e jωTは低
域周波数成分を圧縮し高域(1/2T迄)周波数成分を
持ち、上げる特性をもつことがわかる。
(X(Z)-Z-'Y(z))(1-z-')-'-Y
CZ)-Q(Z) (15If you solve equation (1) for Y(2), you get y(z)-x(z)+(1-Z') Q(Z)(
2), the output signal Y (Z) is the input signal X (Z)
It can be seen that (1-11) times the quantization error Q (Z) is added to the quantization error Q (Z). Although the frequency spectrum of the quantization error Q (z) is flat, it undergoes spectrum shaping by the 2-transfer function (1-Z'').Z=ejωT
Therefore, it can be seen that 1(1-Z')lz=e jωT has the characteristic of compressing the low frequency component and having and increasing the high frequency component (up to 1/2T).

したがって、このようなΔΣ変調器はいわゆるオーバサ
ンプル形AD変換器の初段符号器として用いるのに適し
ている。オーバサンプル形人り変換器では、アナログ信
号をまず初段符号器によってそのアナログ信号のナイキ
スト・レートよシはるかに高いサンプリング周波数で符
号化し、その符号化出力をディジタルLPFに通して帯
域制限した後ナイキストレートで再サンプリングする。
Therefore, such a ΔΣ modulator is suitable for use as a first-stage encoder of a so-called oversampling type AD converter. In an oversampled puppet converter, an analog signal is first encoded by a first-stage encoder at a sampling frequency much higher than the Nyquist rate of the analog signal, and the encoded output is passed through a digital LPF to band limit the Nyquist rate. Resample straight.

ディジタルフィルタ内部では1サンプルを高精度、例え
ば16ビツトとか24ビツト、で表現しておムこれに2
値ΔΣ符号を入力すると式(2)のうちX(2)と(1
−Z−1’) Q(Z)の帯域内成分の和に相当するサ
ンプル値のディジタル表現が得られる。前述のとと< 
(1−Z−1)の周波数特性は低域を圧縮する形である
ので、ΔΣ符号器のサンプリング周波数に比ベディジタ
ルLPFの帯域が小さければ小さい程帯域内に落ち込む
量子化雑音電力は小さくなる。まだディジタ#LPFの
出力で帯域外の電力成分は十分減衰されているので、こ
の出力信号を再度サンプリングしてサンプリング周波数
を低滅することができる。以上の操作によって2値のΔ
Σ符号から高精度のAD変換符号出力が得られる。
Inside the digital filter, one sample is expressed with high precision, for example 16 bits or 24 bits.
When the value ΔΣ sign is input, X(2) and (1
-Z-1') A digital representation of the sample value corresponding to the sum of the in-band components of Q(Z) is obtained. The aforementioned Toto<
The frequency characteristic of (1-Z-1) compresses the low frequency range, so the smaller the band of the digital LPF compared to the sampling frequency of the ΔΣ encoder, the smaller the quantization noise power that falls within the band. . Since the power component outside the band is still sufficiently attenuated by the output of the digital #LPF, this output signal can be sampled again to lower the sampling frequency. By the above operations, the binary Δ
A highly accurate AD conversion code output can be obtained from the Σ code.

このようなオーバサンプル符号化では、構成の簡単なΔ
Σ変調器でアナログ信号をまずディジタル化しその後の
処理を全てディジタルに行なって高精度な符号化出力を
得ているため、高精度化が図シ易いこととLSI化に適
すること、LSI化による消費電力の低減とコストの減
少が可能になる等の特徴が得られる。
In such oversample encoding, a simple configuration Δ
The analog signal is first digitized using the Σ modulator, and all subsequent processing is done digitally to obtain a highly accurate encoded output, which makes it easy to increase precision, is suitable for LSI implementation, and reduces consumption due to LSI implementation. Features such as reduction in power consumption and cost can be obtained.

しかしその反面最終的な符号器として所望のサンプリン
グ速度で所望の符号化精度を得るためには、初段符号器
であるΔΣ変調器の動作速度は相当高くなる。この初段
符号器のサンプリング速度が低くできればそれだけLS
I等の実現が楽になる。
However, on the other hand, in order to obtain the desired encoding accuracy at the desired sampling rate as the final encoder, the operating speed of the ΔΣ modulator, which is the first-stage encoder, must be considerably high. The lower the sampling rate of this first-stage encoder, the lower the LS
It becomes easier to realize I, etc.

第3図はこのような初段符号器のサンプリング速度の低
減が可能な2次ΔΣ変調器の原理的な構成を示すブロッ
ク図である。第3図に於ける参照数字301 、3o2
.303 、304 、305 、310 、320 
FIG. 3 is a block diagram showing the basic structure of a second-order ΔΣ modulator that can reduce the sampling rate of the first-stage encoder. Reference numbers 301, 3o2 in Figure 3
.. 303 , 304 , 305 , 310 , 320
.

330 、340は第1図に於ける参照数字101 、
102 。
330 and 340 are reference numbers 101 in FIG.
102.

103 、104 、105 、110 、120 、
130 、140にそれぞれ対応している。すなわち、
第3図の2次ΔΣ変調器では第1図で説明したΔΣ変調
器に対し、差分回路350と積分回路360が追加され
ている。
103, 104, 105, 110, 120,
130 and 140, respectively. That is,
In the second-order ΔΣ modulator shown in FIG. 3, a difference circuit 350 and an integration circuit 360 are added to the ΔΣ modulator described in FIG.

第3図の2次ΔΣ変調器の動作は第4図に示す通シであ
る。すなわち、第4図(1)に示す如き入力信号が信号
線301に与えられると、差分回路310に於てこれと
第4図(2)のΔΣ符号の差分がとられ第4図(3)の
如き差信号が信号線303に得られる。第3図の積分回
路320ではこの差信号を積分し第4図(4)の如き積
分結果を信号線304に生じさせるから、次に差分回路
350に於てこれと第4図(2)のΔΣ符号の差分がと
られ第4図(5)の如き差信号が信号線306上に得ら
れ、これが積分回路360で積分され信号線307に第
4図(6)の如き波形を生じせしめる。2値量子化回路
330では信号線307上の信号の正負を判定して第4
図(力に示すΔΣ符号を信号線305上に出力する。こ
のΔΣ符号は次のサンプル点に於ける近似信号として用
いられるため遅延回路340に与えられる。
The operation of the second-order ΔΣ modulator shown in FIG. 3 is as shown in FIG. 4. That is, when an input signal as shown in FIG. 4(1) is applied to the signal line 301, the difference between this and the ΔΣ sign of FIG. 4(2) is calculated in the difference circuit 310, and the difference between this signal and the ΔΣ sign of FIG. 4(2) is obtained. A difference signal such as is obtained on signal line 303. The integration circuit 320 in FIG. 3 integrates this difference signal and produces the integration result as shown in FIG. The difference of the ΔΣ signs is taken, and a difference signal as shown in FIG. 4(5) is obtained on the signal line 306, which is integrated by the integrating circuit 360 to produce a waveform as shown in FIG. 4(6) on the signal line 307. The binary quantization circuit 330 determines whether the signal on the signal line 307 is positive or negative, and
A ΔΣ sign shown in FIG.

第1図の回路についての場合と同様に、信号線301上
の入力サンプル値系列のZ変換をX (Z)、信号線3
05上に得られる出力サンプル値系列のZ変換をY(Z
)、2値量子化回路330による量子化誤差系列のZ変
換をQ (Z)、積分回路320及び330のZ伝達関
数を(i−z−+)−1さらに遅延回路340の2伝達
関数を2−1とすると、第3図についての回路方程式と
して次式が得られる。
As in the case of the circuit of FIG. 1, the Z transformation of the input sample value series on signal line 301 is
The Z transformation of the output sample value series obtained on 05 is expressed as Y(Z
), the Z transformation of the quantization error series by the binary quantization circuit 330 is Q (Z), the Z transfer function of the integrating circuits 320 and 330 is (i-z-+)-1, and the 2-transfer function of the delay circuit 340 is 2-1, the following equation is obtained as the circuit equation for FIG.

((x(z)−Z−IY(Z))(1−2−1) −z
−+y(z))X(1−Z ”−” )−’ = Y(
Z) −Q(Z) (3)式(3)をy (z)につい
て解けば Y(Z)−X(Z)+ (1−Z −1)2Q(Z) 
(4)となる。式(4)を式(2)と比べるとQ (Z
)に乗じられる2伝達関数が(1−Z−1)(7)代り
に(1−Z−1)2になっている。(1−Z−1)と(
1−Z−1)”の振幅周波数特性はそれぞれl 1−e
’J”T1と1(1−εjωTi+であるから、低周波
領域の圧縮度は後者の方がはるかに大きく、シたがって
2次ΔΣ符号器を1次ΔΣ符号器と同一のオーバサンプ
ル周波数で動作させだ場合、2次ΔΣ符号器の信号帯雑
音比はよシ大きくできるし、逆に同一の信号帯雑音比を
得るためには2次ΔΣ符号器の方が低いオーバサンプル
周波数ですむことになる。したがって2次ΔΣ変調器を
用いると、1次ΔΣ変調器に比ベオーバサンプル形AD
変換器の実現、特にLSIによる実現が容易になるとと
がわかる。
((x(z)-Z-IY(Z))(1-2-1) -z
-+y(z))X(1-Z "-")-' = Y(
Z) -Q(Z) (3) Solving equation (3) for y (z) yields Y(Z)-X(Z)+ (1-Z -1)2Q(Z)
(4) becomes. Comparing equation (4) with equation (2), Q (Z
) is multiplied by (1-Z-1)2 instead of (1-Z-1)(7). (1-Z-1) and (
1-Z-1)" amplitude frequency characteristics are respectively l 1-e
'J''T1 and 1(1-εjωTi+), the degree of compression in the low frequency region is much greater in the latter, and therefore the second-order ΔΣ encoder is set at the same oversampling frequency as the first-order ΔΣ encoder. When operated, the signal band-to-noise ratio of the 2nd-order ΔΣ encoder can be made much larger, and conversely, to obtain the same signal-band-to-noise ratio, the 2nd-order ΔΣ encoder requires a lower oversampling frequency. Therefore, if a second-order ΔΣ modulator is used, the oversampled AD
It can be seen that the converter can be easily realized, especially by LSI.

しかしながら、このような2次ΔΣ変調器を用いだオー
バサンプル形AD変換器を実際にLSI化するためには
、初段符号器である2次ΔΣ変調器自体が高精度化し易
く、且つLSI化に適したものでなければならない。と
ころで従来技術で2次ΔΣ変調器を実現しようとする場
合には、第3図に於ける積分器320及び360の高精
度な実現や差分回路310及び350へ入力する近似信
号を正確且つ安定に生成する方法に問題があった。すな
わち、積分回路を抵抗とキャパシタの組合せで実現する
と積分回路の時定数が抵抗とキャパシタの絶対値に依存
するため、第3図の説明で用いたような理想積分器の実
現ができないこと、理想積分の近似である漏洩積分器を
実現するとしても所望の抵抗値やキャパシタの値がLS
I内での実現上困難外程大きくなること等の問題があっ
た。またLSI内で抵抗値とキャパシタの値を精密に制
御することが難しく、個々の符号器間の特性にバラツキ
を生ずる等の問題があった。さらに差分回路に入力する
近似信号に対してその2レベルが個々の符号器でバラツ
キを持たぬこと、温度等環境条件の変化によって変動し
ないこと等が要求される。
However, in order to actually implement an oversampled AD converter using such a second-order ΔΣ modulator into an LSI, the second-order ΔΣ modulator itself, which is the first-stage encoder, must be easily made highly accurate, and it is difficult to implement it into an LSI. It must be suitable. By the way, when trying to realize a second-order ΔΣ modulator using the conventional technology, it is necessary to realize highly accurate integrators 320 and 360 in FIG. There was a problem with the way it was generated. In other words, if an integrator circuit is realized by a combination of a resistor and a capacitor, the time constant of the integrator circuit depends on the absolute values of the resistor and capacitor. Even if a leaky integrator, which is an approximation of integral, is realized, the desired resistance value and capacitor value are LS
There were problems such as it being difficult to implement within I and becoming extremely large. Furthermore, it is difficult to precisely control the resistance value and capacitor value within the LSI, resulting in problems such as variations in characteristics between individual encoders. Furthermore, it is required that the two levels of the approximate signal input to the differential circuit do not vary between individual encoders, and do not fluctuate due to changes in environmental conditions such as temperature.

本発明はこのような要求を満足し得る新しい2次ΔΣ変
調器を提供することを目的とする。
An object of the present invention is to provide a new second-order ΔΣ modulator that can satisfy such requirements.

本発明によれば、キャパシタによる負帰還を施されたオ
ペアンプによる第1及び第2の積分回路と、第2の積分
回路の出力を受ける2値量子化回路と、入力端子と第1
の積分回路を結びアナログ入力振幅に比例しだ電荷を第
1の積分回路の帰還キャパシタに移す第1のスイッチ付
キャパシタ回路と、基準電圧源と第1の積分回路を結び
基準電圧に比例した第1の基準電荷を第1の積分回路の
帰還キャパシタに移す第2のスイッチ付キャパシタ回路
と、前記基準電圧源と第1の積分回路を結び前記基準電
圧に比例するも前記第1の基準電荷とは異なる大きさで
異なる極性の第2の基準電荷を第1の積分回路の帰還キ
ャパシタに移す第3のスイッチ付キャパシタ回路と、第
1の積分回路と第2の積分回路を結び第1の積分回路の
出力振幅に比例しだ電荷を第2の積分回路の帰還キャパ
シタに移す第4のスイッチ付キャパシタ回路と、前記基
準電圧源と第2の積分回路を結び前記基準電圧に比例し
た第3の基準電荷を第2の積分回路の帰還キャパシタに
移す第5のスイッチ付キャパシタ回路と、前記基準電圧
源と第2の積分回路を結び前記基準電圧に比例するも前
記第3の基準電荷とは異なる大きさで異なる極性の第4
の基準電荷を第2の積分回路の帰還キャパシタに移す第
6のスイッチ付キャパシタ回路と、前記2値量子化回路
の出力に応じて前記第1及び第3の基準電荷の前記第1
及び第2の積分回路の帰還キャパシタへの転送を制御す
る手段とによシ構成された2次デルタ・シグマ変調器が
得られる。
According to the present invention, first and second integrating circuits each include an operational amplifier subjected to negative feedback using a capacitor, a binary quantization circuit receiving the output of the second integrating circuit, and an input terminal and a first integrating circuit.
A first switched capacitor circuit connects the integrator circuit and transfers the charge proportional to the analog input amplitude to the feedback capacitor of the first integrator circuit; a second switched capacitor circuit that transfers the reference charge of 1 to the feedback capacitor of the first integrating circuit; is a third switched capacitor circuit that transfers second reference charges of different magnitudes and different polarities to the feedback capacitor of the first integrating circuit, and a first integrating circuit that connects the first integrating circuit and the second integrating circuit. a fourth switched capacitor circuit that transfers a charge proportional to the output amplitude of the circuit to a feedback capacitor of the second integrating circuit; and a third switched capacitor circuit that connects the reference voltage source and the second integrating circuit and is proportional to the reference voltage. a fifth switched capacitor circuit that transfers a reference charge to a feedback capacitor of a second integrating circuit; and a fifth switched capacitor circuit that connects the reference voltage source and the second integrating circuit and is proportional to the reference voltage but different from the third reference charge. The fourth polarity differs in size.
a sixth switched capacitor circuit that transfers the reference charge of the first and third reference charges to the feedback capacitor of the second integrating circuit;
and means for controlling the transfer to the feedback capacitor of the second integrating circuit.

第5図は本発明による2次ΔΣ変調器の一実施例を示す
図である。端子501に入力アナログ信号、端子502
に基準電圧、端子503に第1のクロックパルスφ1、
端子504に第2のクロックツくルスφ2が与えられ、
端子505にΔΣ符号が出力される。
FIG. 5 is a diagram showing an embodiment of a second-order ΔΣ modulator according to the present invention. Input analog signal to terminal 501, terminal 502
a reference voltage at terminal 503, a first clock pulse φ1 at terminal 503,
A second clock pulse φ2 is applied to the terminal 504,
A ΔΣ code is output to terminal 505.

本発明の2次ΔΣ変調器は、スイッチ511. 512
゜513、514とキャパシタC1からなる第1のスイ
ッチ付キャパシタ回路と、スイッチ515 、516 
、517 。
The second-order ΔΣ modulator of the present invention includes switches 511 . 512
513, 514, a first switched capacitor circuit consisting of capacitor C1, and switches 515, 516
, 517.

518とキャパシタC2からなる第2のスイッチ付キャ
パシタ回路と、スイッチ519 、520 、521 
、522とキャパシタC3からなる第3のスイッチ付キ
ャノくシタ回路と、オペアンプ540とキャパシタC2
からなる第1の積分回路と、スイッチ523 、524
 、525゜526とキャパシタC6からなる第4のス
イッチ付キャパシタ回路と、スイッチ527 、528
.529 、530とキャパシタC6からなる第5のス
イッチ付キャノくシタ回路と、スイッチ531 、53
2 、533 、534とキャパシタC7からなる第6
のスイッチ付キャノくシタ回路と、オペアンプ550と
キャパシタC8からなる第2の積分回路と、2値量子化
回路560と、AND回路570とにより構成されてい
る。
518 and a second switched capacitor circuit consisting of a capacitor C2, and switches 519 , 520 , 521
, 522 and a capacitor C3, and an operational amplifier 540 and a capacitor C2.
a first integrating circuit consisting of switches 523 and 524;
, 525° 526 and a fourth switched capacitor circuit consisting of a capacitor C6, and switches 527 and 528.
.. 529, 530 and a fifth switch-equipped canister circuit consisting of capacitor C6, and switches 531, 53
2, 533, 534 and a sixth capacitor C7.
, a second integration circuit consisting of an operational amplifier 550 and a capacitor C8, a binary quantization circuit 560, and an AND circuit 570.

S1スイツチ511 、512 、515 、516 
、519 。
S1 switches 511, 512, 515, 516
, 519.

520 、523 、524 、527 、528 、
531 、532は第6図〆に示す第1のクロックパル
スφ1によって開閉制御される伝達ゲートであシ、第6
図yに示すτ0の区間に於て導通し残シのT−τ。の区
間で非導通である。S2スイツチ513 、514 、
521.522゜525、526 、533 、534
は第6図、−に示す第2のクロックパルスφ2によって
開閉制御される伝達ゲ1スイッチと82スイツチが同時
に導通すること開閉制御される伝達ゲートであり、2値
量子化回路560の出力力−1″であるかぎシφ2のタ
イミングで動作(82スイツチと同様に動作)シ、2値
量子化回路560の出力が0″であると非導通のままで
ある。
520, 523, 524, 527, 528,
531 and 532 are transmission gates whose opening and closing are controlled by the first clock pulse φ1 shown in FIG.
T-τ remains conductive in the interval τ0 shown in Figure y. There is no conduction in the section. S2 switches 513, 514,
521.522゜525, 526, 533, 534
is a transmission gate whose opening and closing are controlled by the second clock pulse φ2 shown in FIG. It operates at the timing of key φ2 of 1'' (operates in the same manner as the 82 switch), and remains non-conductive when the output of the binary quantization circuit 560 is 0''.

第2のスイッチ付キャパシタ回路と第3のスイッチ付キ
ャパシタ回路の組合せによシ第1の近似信号が作られ、
第5のスイッチ付キャパシタ回路と第6のスイッチ付キ
ャパシタ回路の組合せによシ第2の近似信号が作られる
。第2の近似信号は第1の近似信号の符号(極性)を反
転したものに等しい。第1の近似信号は、第2のスイッ
チ付キャパシタ回路に於て作られる2単位振幅の単極性
の2値信号に第3のスイッチ付キャパシタ回路で作られ
る1単位振幅の固定バイアス分を差引くことによって、
±11単振幅の両極性2値信号となっている。第2の近
似信号の発生も極性が異なるだけで基本的には同一で、
2単位振幅の単極性2値信号から1単位振幅の固定バイ
アスを差引いて±11単振幅の両極性2値信号が得られ
る。
A first approximate signal is created by the combination of the second switched capacitor circuit and the third switched capacitor circuit,
A second approximate signal is created by the combination of the fifth switched capacitor circuit and the sixth switched capacitor circuit. The second approximation signal is equal to the first approximation signal with its sign (polarity) inverted. The first approximation signal is obtained by subtracting a fixed bias of 1 unit amplitude created by the third switched capacitor circuit from a unipolar binary signal of 2 units amplitude created by the second switched capacitor circuit. By this,
It is a bipolar binary signal with a single amplitude of ±11. The generation of the second approximation signal is also basically the same except for the polarity,
By subtracting the fixed bias of 1 unit amplitude from the unipolar binary signal of 2 unit amplitude, a bipolar binary signal of ±11 single amplitudes is obtained.

まずφ1が”1”の状態における第5図の回路の動作を
考える。このとき第1のスイッチ付キャパシタ回路に於
てはS1スー(ツチ511 、512は導通しS2スイ
ツチ513 、514は非導通であるから、キャパシタ
C1には端子501に与えられるアナログ入力電圧V 
(t)によってV(t)・C1なる電荷が流入する。キ
ャパシタC1に蓄えられる電荷はV (t)の変化に伴
なって変動するが、パルスφ1が1″から“0”に変化
するとその変化する直前の入力電圧V(tl)が蓄えら
れることになる。すなわち、この回路はパルスφ1が1
”から”0”に変化する時点の入力信号をサンプルしホ
ールドするだめのものである。
First, consider the operation of the circuit shown in FIG. 5 when φ1 is "1". At this time, in the first switched capacitor circuit, the S1 switches 511 and 512 are conductive and the S2 switches 513 and 514 are non-conductive, so that the analog input voltage V applied to the terminal 501 is applied to the capacitor C1.
(t) causes a charge of V(t)·C1 to flow in. The charge stored in capacitor C1 fluctuates as V (t) changes, but when pulse φ1 changes from 1" to "0", the input voltage V (tl) immediately before the change is stored. In other words, in this circuit, pulse φ1 is 1
The purpose of this is to sample and hold the input signal at the time when it changes from "0" to "0".

このとき第2のスイッチ付キャパシタ回路ではS1スイ
ツチ515 、516が導通しS 2’スイツチ517
 、518は非導通であるから、キャパシタC2の両端
は短絡され電荷は0になっている。−力筒3のスイッチ
付キャパシタ回路では、S1スイツチ519 、520
が導通し、S2スイツチ521 、522が保持する。
At this time, in the second switched capacitor circuit, the S1 switches 515 and 516 are conductive, and the S2' switch 517 is turned on.
, 518 are non-conductive, both ends of the capacitor C2 are short-circuited and the charge is zero. - In the capacitor circuit with switch of power tube 3, S1 switch 519, 520
conducts, and S2 switches 521 and 522 hold it.

以下同様にして、第4のスイッチ付キャパシタ回路では
キャパシタC3の電荷は0に放電され、第5のスイッチ
付キャパシタ回路ではキャパシタC6が基準電圧Eに充
電されEC6なる電荷を保持し、第6のスイッチ付キャ
パシタ回路ではキャパシタC7の電荷は放電されOにな
る。
Similarly, in the fourth switched capacitor circuit, the charge of the capacitor C3 is discharged to 0, and in the fifth switched capacitor circuit, the capacitor C6 is charged to the reference voltage E and holds the charge EC6. In the switched capacitor circuit, the charge of the capacitor C7 is discharged and becomes O.

次にφ2が1″になった状態を考える。このとき全ての
82スイツチが導通し、全ての81スイツチは非導通と
なる。S 2’スイツチはΔΣ符号出力が1nであれば
導通し”0”のときには非導通となる。
Next, consider the state in which φ2 becomes 1". At this time, all 82 switches are conductive and all 81 switches are non-conductive. If the ΔΣ sign output is 1n, the S2' switch is conductive and "0". ”, it becomes non-conducting.

オペアンプ540の負側入力はキャパシタC4による負
帰還によシ仮想接地点となシミ位はOであるので、S2
スイツチ513 、514の導通によシキャパシタC1
に蓄えられた電荷V(tl)・C1を0に放電するだめ
の電流が流れる。この電流はキャパシタC2を通って流
れるので、結局C1に蓄えられた電荷はキャパシタC4
に移動することになる。したがってキャパシタC1の放
電が完了した時点ではオペアンプ540の出力にV(t
l)・c、、’c 、なる電圧変化が生じる。このとき
更にキャパシタc2及びC8から近似信号としての電流
がオペアンプ540の負側入力に流入する。今もしΔΣ
符号出力が”1”で82’スイツチ517 、518が
導通しだとすると、キセノくシタC9の雷益は冊ネ刀の
0の欣盲F3≠為らE・C7に向けて急速に充電され、
そのときの充電電流がキャパシタC4に流れ、充電完了
時点に於てオペアンプ540に−B C2/ C4iる
電圧を化を生じる。もご; ちるんΔΣ符号出力が”0”Wあればこの電圧変化は0
である。一方キャパシタc3からはΔΣ符号の状態に無
関係に電荷EC3を放電するための電流がキャパシタC
6に流れ、放電完了時点に於てオペアンプ540の出力
にE C,/C,なる蹴圧袈化を生じせしめる。ここで
C2=2×C3と仮定した上で以上をまとめると、オペ
アンプ540出力に於ける電圧変化は次のようになる。
The negative input of the operational amplifier 540 receives negative feedback from the capacitor C4, and since the potential of the virtual ground point is O, S2
Due to the conduction of the switches 513 and 514, the capacitor C1
A current flows to discharge the charge V(tl)·C1 stored in the current to 0. Since this current flows through capacitor C2, the charge stored in C1 is transferred to capacitor C4.
will be moved to. Therefore, when the discharge of the capacitor C1 is completed, the output of the operational amplifier 540 is V(t
A voltage change of l)·c, ,'c occurs. At this time, current as an approximate signal further flows into the negative input of the operational amplifier 540 from the capacitors c2 and C8. Now if ΔΣ
If the sign output is "1" and the 82' switches 517 and 518 are conductive, the thunder gain of Kise no Kushita C9 is rapidly charged towards E・C7 from the 0 of the book sword F3≠,
The charging current at that time flows into the capacitor C4, and a voltage of -B C2/C4i is generated at the operational amplifier 540 at the time of completion of charging. Mogo; If the Chirun ΔΣ sign output is “0” W, this voltage change is 0.
It is. On the other hand, a current flows from the capacitor c3 to discharge the charge EC3 regardless of the state of the ΔΣ sign.
6, causing the output of the operational amplifier 540 to become overloaded by E C, /C at the time of completion of discharge. Here, assuming C2=2×C3 and summarizing the above, the voltage change at the output of the operational amplifier 540 is as follows.

ΔΣ符号−“O”のとき V(L+)Ct/C4+ PC8/C4(5)ΔΣ符号
−”1”のとき v(tl)c+/c4EC3/C4(6)すなわち、第
3図の差分回路310に於ける入力信号と近似信号の差
信号計算が行なわれている。なお式(5)、(6)はオ
ペアンプの出力電圧変化分のみを示しておシ、オペアン
プ出力はこの変化分の累積、すなわち第3図の積分回路
320の動作を行なっている。
When ΔΣ code is “O”, V(L+)Ct/C4+ PC8/C4(5) When ΔΣ code is “1”, v(tl)c+/c4EC3/C4(6) In other words, the differential circuit 310 in FIG. The difference signal calculation between the input signal and the approximate signal is performed. Note that equations (5) and (6) show only the changes in the output voltage of the operational amplifier, and the output of the operational amplifier performs the accumulation of this change, that is, the operation of the integrating circuit 320 in FIG. 3.

このとき同時に第4.第5及び第6のスイッチ付キャパ
シタ回路とオペアンプ550では第3′図の差分回路3
50と積分回路360の動作を行なう。すなわち、オペ
アンプ540の出力電圧をW(t)とすると、キャパシ
タC4lはW(t)に充電されこの充電電流がキャパシ
タC8を通って流れることによシオベアンプ550の出
力に−W(t)・C5/CMなる電圧変化を生じせしめ
る。このとき第5のスイッチ付キャパシタ回路からはΔ
Σ符号が”0”のときはo1ΔΣ符号が”1”のときは
キャパシタC0の電荷EC。
At this time, the fourth In the fifth and sixth switched capacitor circuits and the operational amplifier 550, the differential circuit 3 of FIG.
50 and the integration circuit 360 are operated. That is, when the output voltage of the operational amplifier 540 is W(t), the capacitor C4l is charged to W(t), and this charging current flows through the capacitor C8, so that the output voltage of the operational amplifier 550 becomes -W(t)・C5. A voltage change of /CM is caused. At this time, from the fifth switched capacitor circuit, Δ
When the Σ sign is "0", it is o1.When the Σ sign is "1", it is the charge EC of the capacitor C0.

を放電する電流がキャパシタC8を通じて流れる。A current discharging the current flows through capacitor C8.

また第6のスイッチ付キャパシタ回路からはキャパシタ
C9を電圧Eに充電する電流がキャパシタc7を通じて
流れる。この結果オペアンプ550の出力に於ける電圧
変化はφ2が1”から”0”に変化する時点(z=t、
)で次のようになる。但しC,=2XC,とする。
Further, a current for charging the capacitor C9 to the voltage E flows from the sixth switched capacitor circuit through the capacitor c7. As a result, the voltage change at the output of the operational amplifier 550 occurs at the time when φ2 changes from 1'' to 0 (z=t,
) becomes the following. However, C,=2XC.

ΔΣ符号芒“0″のとき W(tz )Cs/Ca ECt/Co (力ΔΣ符号
=”1”のとき −W(t2)C5/C8+EC?/C1l (s)この
両式とも(−1)倍してみると明らかなように、第4、
第5、第6のスイッチ付キャ゛バシタ回路とオペアンプ
550が第3図の差分回路350と積分回路360の動
作を行なっている。
When the ΔΣ sign is “0”, W(tz) Cs/Ca ECt/Co (When the force ΔΣ sign is “1”, −W(t2) C5/C8+EC?/C1l (s) Both equations are (-1) As you can see by multiplying it, the fourth
The fifth and sixth switched capacitor circuits and the operational amplifier 550 perform the operations of the differential circuit 350 and the integrating circuit 360 in FIG.

次にφ2が“0”に変化すると、キャパシタCI。Next, when φ2 changes to "0", capacitor CI.

C2,C3はオペアンプ540から、またキャパシタc
、。
C2 and C3 are from the operational amplifier 540, and the capacitor c
,.

C6yC7はオペアンプ550から、それぞれ分離され
るので、オペアンプ540と550はそれぞれφ2が“
0”になる直前の出力電圧を次に再びφ2が”1”にな
る迄保持することになる。2値量子化回路560ではφ
1が1”になる時点でオペアンプ550の出力の正負を
判定し、負であればΔΣ符号として1”、正であればΔ
Σ符号として“0″を出力する。このΔΣ符号がA、 
N D回路570に加えられ、次のサンプル時点におけ
るφ2′の値、したがって近似信号の極性を決定するこ
とになる。すなわち第3図における1サンプル遅延回路
の役割は2値量子化回路560に於けるクロックφ1に
よるサンプリング動作によって等測的に果たされている
C6yC7 are each separated from the operational amplifier 550, so the operational amplifiers 540 and 550 each have a φ2 of “
The output voltage immediately before becoming 0" is held until φ2 becomes "1" again. In the binary quantization circuit 560, φ
When 1 becomes 1", determine whether the output of the operational amplifier 550 is positive or negative. If it is negative, the ΔΣ sign is 1", and if it is positive, Δ
Outputs “0” as the Σ code. This ΔΣ sign is A,
is applied to ND circuit 570 to determine the value of φ2' at the next sample instant, and thus the polarity of the approximation signal. That is, the role of the 1-sample delay circuit in FIG. 3 is isometrically fulfilled by the sampling operation using the clock φ1 in the binary quantization circuit 560.

またオペラアンプ540と550を結ぶ第4のスイッチ
付キャパシタ回路は無遅延となるように構成されておシ
、ループ遅延時間を1サンプルとすることを可能にして
いる。
Further, the fourth switched capacitor circuit connecting the opera amplifiers 540 and 550 is configured to have no delay, making it possible to set the loop delay time to one sample.

以上説明したように第5図の回路は、第3図で示した2
次ΔΣ変調器の原理図と等しい動作を実現する。近似信
号の発生、入力信号あるいは初段積分信号と近似信号の
差分計算、積分計算等アナログ信号に対し高精度な演算
を要求される部分が、オペアンプ、キャパシタ及びスイ
ッチにより構成され、キャパシタもその絶対値でなくそ
れらの比に注目して用いられているため、MO8枝術等
によるLSI化が容易である。また外部から与える基準
電圧源も1種類でよく、近似信号の精度はこの基準電圧
とキ゛ヤパシクC2とC3及びC6とC7の比だけで決
定され、ΔΣ符号出力パルス波形等の影響を受けない。
As explained above, the circuit shown in FIG.
This realizes the same operation as the principle diagram of the next-order ΔΣ modulator. The parts that require high-precision calculations on analog signals, such as generation of approximate signals, calculation of differences between input signals or first-stage integral signals and approximate signals, and integral calculations, are composed of operational amplifiers, capacitors, and switches, and the capacitors also calculate their absolute values. Since it is used with attention paid to their ratio rather than their ratio, it is easy to convert it into an LSI using MO8 branch technique or the like. Furthermore, only one type of reference voltage source is required from the outside, and the accuracy of the approximate signal is determined only by the ratios of this reference voltage and the capacities C2 and C3 and C6 and C7, and is not affected by the ΔΣ code output pulse waveform or the like.

またC1/ C4あるいはC2/C4等のキャパシタ比
によって入力信号と近似信号に対するゲイン・ファクタ
ーが任意に定まるので、符号化ダイナミックレンジ(符
号化可能な最大の入力信号範囲)とは独立に基準電圧を
定めることができる特長もある。
Also, since the gain factor for the input signal and approximate signal is arbitrarily determined by the capacitor ratio such as C1/C4 or C2/C4, the reference voltage can be set independently of the encoding dynamic range (maximum input signal range that can be encoded). There are also features that can be defined.

さらに抵抗を用い常時抵抗に電流を流す方法に比べ本発
明ではキャパシタの充放電を利用しているため本質的に
低消費電力化に向いている。このような特長を総合する
と本発明による2次ΔΣ変調器はLSI化に適しLSI
化によるΔΣ変調器自体の低消費電力化、低コスト化、
小形化を可能にすると共に、比較的低いサンプル周波数
で高精度化のできるオーバサンプル形AD変換器の実現
を容易にする。
Furthermore, compared to the method of using a resistor and constantly passing current through the resistor, the present invention utilizes charging and discharging of a capacitor, so it is essentially suitable for lower power consumption. Taking all these features together, the second-order ΔΣ modulator according to the present invention is suitable for LSI integration.
By reducing the power consumption and cost of the ΔΣ modulator itself,
It is possible to easily realize an oversampling type AD converter that can be made compact and highly accurate at a relatively low sampling frequency.

なお以上の説明では入力アナログ信号をあらかじめキャ
パシタC1内にサンプル値として保持した後積分器に電
荷を移す方法を用いたが、スイッチ511を82にスイ
ッチ513を81に変える等して入力アナログ信号を直
接積分器に入力して近似信号との差をとるようにしても
よい。この場合にはクロックφ2の1”が終る時点の入
力信号がサンプルされることになる。、また第2及び第
3.あるいは第5及び第6のスイッチ付キャパシタ回路
の役割を交代させ同一の効果を得ることも可能である。
In the above explanation, a method was used in which the input analog signal was held as a sample value in the capacitor C1 and then the charge was transferred to the integrator. It is also possible to directly input the signal to the integrator and calculate the difference from the approximate signal. In this case, the input signal at the end of 1'' of clock φ2 will be sampled.Also, the same effect can be achieved by switching the roles of the second and third or fifth and sixth switched capacitor circuits. It is also possible to obtain

さらに説明に於てC2−2×03.C6=2×07とし
たが、C2−2×C3すε、Ca ”” 2 X C?
±εと若干の偏差εを持たせた方が特性上良いこともあ
る。これらも本発明の範囲を外れるものではない。
Furthermore, in the explanation, C2-2×03. C6=2×07, but C2−2×C3suε, Ca “” 2×C?
In terms of characteristics, it may be better to have a slight deviation ε from ±ε. These also do not go outside the scope of the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第3図に示す2次ΔΣ変調器の各部における動作波形を
示す図、第5図は本発明による2次ΔΣ変調器の一実施
例を示す図、第6図は第5図の動作を説明するだめの補
助タイミング図である。図において参照数字110 、
310 、350は差分回路、120 、320 、3
60は積分回路、130 、330は2値量子化回路、
140 、340は遅延回路、511 、512 。 ・・・、533,534はパルスφ1.φ2.φ2′に
よって開閉制御されるスイッチ、540 、550はオ
ペアンプ、560は2値量子化回路、570はAND回
路をそれぞれ示す。
FIG. 3 is a diagram showing operating waveforms in each part of the second-order ΔΣ modulator, FIG. 5 is a diagram showing an embodiment of the second-order ΔΣ modulator according to the present invention, and FIG. 6 is an explanation of the operation of FIG. 5. It is an auxiliary timing diagram of Sudame. In the figure reference numeral 110,
310, 350 are differential circuits, 120, 320, 3
60 is an integration circuit, 130 and 330 are binary quantization circuits,
140 and 340 are delay circuits; 511 and 512; ..., 533, 534 are pulses φ1. φ2. 540 and 550 are operational amplifiers, 560 is a binary quantization circuit, and 570 is an AND circuit.

Claims (1)

【特許請求の範囲】[Claims] キャパシタによる負帰還を施されたオペアンプによる第
1及び第2の積分回路と、第2の積分回路の出力を受け
る2値量子化回路と、入力端子と第1の積分回路を結び
アナログ入力振幅に比例しだ電荷を第1の積分回路の帰
還キャパシタに移す第1のスイッチ付キャパシタ回路と
、基準電圧源と第1の積分回路を結び基準電圧に比例し
た第1の基準電荷を第1の積分回路の帰還キャパシタに
移す第2のスイッチ付キャパシタ回路と、前記基準電圧
源と第1の積分回路を結び前記基準電圧に比例するも前
記第1の基準電荷とは異なる大きさで異なる極性の第2
の基準電荷を第1の積分回路の帰還キャパシタに移す第
3のスイッチ付キャパシタ回路と、第1の積分回路と第
2の積分回路を結び第1の積分回路の出力振幅に比例し
た電荷を第2の積分回路の帰還キャパシタに移す第4の
スイッチ付キャパシタ回路と、前記基準電圧源と第2の
積分回路を結び前記基準電圧に比例した第3の基準電荷
を第2の積分回路の帰還キャパシタに移す第5のスイッ
チ付キャパシタ回路と、前記基準電圧源と第2の積分回
路を結び前記基準電圧に比例するも前記第3の基準電荷
とは異なる大きさで異なる極性の第4の基準電荷を第2
の積分回路の帰還キャパシタに移す第6のスイッチ付キ
ャパシタ回路と、前記2値量子化回路の出力に応じて前
記第1及び第3の基準電荷の前記第1及び第2の積分回
路の帰還キャパシタへの転送を制御する手段とによシ構
成されたことを特徴とする2次デルタ・シグマ変調器。
The first and second integrating circuits each include an operational amplifier that is given negative feedback by a capacitor, the binary quantization circuit receives the output of the second integrating circuit, and the input terminal is connected to the first integrating circuit to obtain an analog input amplitude. A first switched capacitor circuit that transfers a proportional charge to a feedback capacitor of a first integrating circuit, and a first integrated circuit that connects a reference voltage source and the first integrating circuit to transfer a first reference charge proportional to the reference voltage to a first integrating circuit. a second switched capacitor circuit that connects the reference voltage source and the first integrating circuit to transfer the voltage to the feedback capacitor of the circuit; and a second switched capacitor circuit that connects the reference voltage source and the first integrating circuit; 2
a third switched capacitor circuit that transfers the reference charge of the reference charge to the feedback capacitor of the first integrating circuit; a fourth switched capacitor circuit that transfers a third reference charge proportional to the reference voltage to the feedback capacitor of the second integrating circuit, which connects the reference voltage source and the second integrating circuit; a fifth switched capacitor circuit connected to the reference voltage source and the second integrating circuit, and a fourth reference charge which is proportional to the reference voltage but has a different magnitude and polarity than the third reference charge; the second
a sixth switched capacitor circuit for transferring the first and third reference charges to the feedback capacitors of the first and second integrating circuits according to the output of the binary quantization circuit; 1. A second-order delta-sigma modulator, comprising: means for controlling transfer to a second-order delta-sigma modulator;
JP13902383A 1983-07-29 1983-07-29 Second order delta sigma modulator Pending JPS6031315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13902383A JPS6031315A (en) 1983-07-29 1983-07-29 Second order delta sigma modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13902383A JPS6031315A (en) 1983-07-29 1983-07-29 Second order delta sigma modulator

Publications (1)

Publication Number Publication Date
JPS6031315A true JPS6031315A (en) 1985-02-18

Family

ID=15235664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13902383A Pending JPS6031315A (en) 1983-07-29 1983-07-29 Second order delta sigma modulator

Country Status (1)

Country Link
JP (1) JPS6031315A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225028A (en) * 1986-02-27 1987-10-03 アルカテル・エヌ・ブイ Converter circuit
FR2625346A1 (en) * 1987-12-23 1989-06-30 Rca Licensing Corp SWITCHABLE CAPACITIVE ARRANGEMENT
JPH01204528A (en) * 1988-02-10 1989-08-17 Fujitsu Ltd A/d converter
JPH02266718A (en) * 1989-04-07 1990-10-31 Fujitsu Ten Ltd Delta/sigma conversion circuit
US4999634A (en) * 1989-05-08 1991-03-12 Siemens Aktiengesellschaft Integratable switched-capacitor sigma-delta modulator
US5057839A (en) * 1989-05-08 1991-10-15 Siemens Aktiengesellschaft Integratable switched-capacitor sigma-delta modulator
JPH04229723A (en) * 1990-04-26 1992-08-19 Hughes Aircraft Co Sigma-delta analog/digital converter of high order
WO1996025800A1 (en) * 1995-02-13 1996-08-22 Hitachi, Ltd. Over-sampling type a/d converter
JPH09205369A (en) * 1996-01-26 1997-08-05 Nec Corp Secondary delta sigma modulator
US7386142B2 (en) 2004-05-27 2008-06-10 Starkey Laboratories, Inc. Method and apparatus for a hearing assistance system with adaptive bulk delay
US9654885B2 (en) 2010-04-13 2017-05-16 Starkey Laboratories, Inc. Methods and apparatus for allocating feedback cancellation resources for hearing assistance devices

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225028A (en) * 1986-02-27 1987-10-03 アルカテル・エヌ・ブイ Converter circuit
FR2625346A1 (en) * 1987-12-23 1989-06-30 Rca Licensing Corp SWITCHABLE CAPACITIVE ARRANGEMENT
JPH01204528A (en) * 1988-02-10 1989-08-17 Fujitsu Ltd A/d converter
JPH02266718A (en) * 1989-04-07 1990-10-31 Fujitsu Ten Ltd Delta/sigma conversion circuit
US4999634A (en) * 1989-05-08 1991-03-12 Siemens Aktiengesellschaft Integratable switched-capacitor sigma-delta modulator
US5057839A (en) * 1989-05-08 1991-10-15 Siemens Aktiengesellschaft Integratable switched-capacitor sigma-delta modulator
JPH04229723A (en) * 1990-04-26 1992-08-19 Hughes Aircraft Co Sigma-delta analog/digital converter of high order
WO1996025800A1 (en) * 1995-02-13 1996-08-22 Hitachi, Ltd. Over-sampling type a/d converter
JPH09205369A (en) * 1996-01-26 1997-08-05 Nec Corp Secondary delta sigma modulator
US7386142B2 (en) 2004-05-27 2008-06-10 Starkey Laboratories, Inc. Method and apparatus for a hearing assistance system with adaptive bulk delay
US7945066B2 (en) 2004-05-27 2011-05-17 Starkey Laboratories, Inc. Method and apparatus for a hearing assistance system with adaptive bulk delay
US9654885B2 (en) 2010-04-13 2017-05-16 Starkey Laboratories, Inc. Methods and apparatus for allocating feedback cancellation resources for hearing assistance devices

Similar Documents

Publication Publication Date Title
EP0513241B1 (en) Sigma delta modulator
US4588981A (en) Double integration, delta-sigma, analog-digital coder
US5870048A (en) Oversampling sigma-delta modulator
US4439756A (en) Delta-Sigma modulator with switch capacitor implementation
US5061928A (en) System and method of scaling error signals of caseload second order modulators
US7375666B2 (en) Feedback topology delta-sigma modulator having an AC-coupled feedback path
US5150120A (en) Multiplexed sigma-delta A/D converter
US7167119B1 (en) Delta-sigma modulators with double sampling input networks and systems using the same
US5563597A (en) Switched-capacitor one-bit digital-to-analog converter with low sensitivity to op-amp offset voltage
CN102983865B (en) A/d converter
US6570519B1 (en) Switched-capacitor summer circuits and methods and systems using the same
EP0796525B1 (en) Sigma-delta modulator with reduced delay from input to output
US6255974B1 (en) Programmable dynamic range sigma delta A/D converter
JPH04225624A (en) Sigma-delta analog-digital converter
JPH04229723A (en) Sigma-delta analog/digital converter of high order
JP2787445B2 (en) Analog-to-digital converter using delta-sigma modulation
JPS6031315A (en) Second order delta sigma modulator
EP0495687B1 (en) Oversampling DA converter with operational amplifier driven by a single reference voltage
JPS61239723A (en) Oversample type d/a converter
JPH07283736A (en) Extention and device of resolution of sigma-delta type analog-digital converter
US5621407A (en) Digital/analog converter
JPS6226928A (en) Delta modulation circuit of delta type analog-digital converter
JPS6033739A (en) Delta sigma modulator
KR100330976B1 (en) A sigma-delta DAC with fully-differential semidigital postfilter
JPH0322626A (en) Fourth order delta/sigma modulator