JPS6031268B2 - Cable insulation defect detection method - Google Patents

Cable insulation defect detection method

Info

Publication number
JPS6031268B2
JPS6031268B2 JP15001377A JP15001377A JPS6031268B2 JP S6031268 B2 JPS6031268 B2 JP S6031268B2 JP 15001377 A JP15001377 A JP 15001377A JP 15001377 A JP15001377 A JP 15001377A JP S6031268 B2 JPS6031268 B2 JP S6031268B2
Authority
JP
Japan
Prior art keywords
metal shielding
galvanometer
insulation
slit
shielding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15001377A
Other languages
Japanese (ja)
Other versions
JPS5482689A (en
Inventor
忠晴 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP15001377A priority Critical patent/JPS6031268B2/en
Publication of JPS5482689A publication Critical patent/JPS5482689A/en
Publication of JPS6031268B2 publication Critical patent/JPS6031268B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は金属遮蔽層を有する電力ケーブルのその金属遮
蔽層にルート途中から電流を流して絶縁不良点の存在す
る方向を探知するケ−ブル絶縁不良点探知方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cable insulation defect detection method for detecting the direction in which an insulation defect exists by passing a current through the metal shielding layer of a power cable having a metal shielding layer from the middle of the route. It is.

従来、防食層絶縁不良点の存在する方向を探知する方法
として、例えば第1図に示すようにケーブル布設ルート
の途中で所定間隔だけ離れた2個所を定め、その2個所
でそれぞれ防食層1を除去して金属遮蔽層2を露出させ
、露出させた一方の金属遮蔽層2上のa点とb点とに必
要に応じて端子付けし、同じく他方の金属遮蔽層2上の
c点とd点とに端子付けした後、そのb,c端子間に関
閉器5を介して測定電源4を接続し、a端子及びd端子
のそれぞれと大地との間に微小電流測定手段としての検
流計6,6′を順次接続し、その検流計6,6′の指針
の振れの有無を観測して防食層絶縁不良点の存在する方
向を探知する方法が提案されており、例えば図示の如く
観測位置よりも左側にのみ絶縁不良点を示す防食層絶縁
不良抵抗7が存在している場合は、d端子と大地との間
に検流計6を接続しているときに測定電源4が接続され
たb,c端子間に防食層絶縁不良抵抗7と検流計6とを
含む閉回路が形成され、その閉回路に流れる微4・電流
により検流計6の指針が振れるので、c端子よりも左側
に防食層絶縁不良抵抗7が存在していると判断できるこ
とになる。
Conventionally, as a method for detecting the direction in which a corrosion protection layer insulation failure point exists, for example, as shown in Fig. 1, two locations are determined at a predetermined distance apart in the middle of the cable installation route, and a corrosion protection layer 1 is applied at each of these two locations. The metal shielding layer 2 is removed and the metal shielding layer 2 is exposed, terminals are attached as necessary to points a and b on one of the exposed metal shielding layers 2, and terminals are attached to points c and d on the other metal shielding layer 2. After connecting the terminals to the terminals B and C, a measuring power source 4 is connected between the terminals B and C via a switchgear 5, and a galvanometer is connected between each of the terminals A and D and the ground as a means for measuring minute currents. A method has been proposed in which galvanometers 6 and 6' are connected in sequence, and the direction in which the anti-corrosion layer insulation defect exists is detected by observing the presence or absence of deflection of the pointers of the galvanometers 6 and 6'. If there is a corrosion protection layer insulation failure resistor 7 that shows insulation failure points only on the left side of the observation position, the measurement power source 4 is connected when the galvanometer 6 is connected between the d terminal and the ground. A closed circuit including the anti-corrosion layer insulation failure resistor 7 and the galvanometer 6 is formed between the b and c terminals, and the pointer of the galvanometer 6 swings due to the minute current flowing in the closed circuit, so the c terminal It can be determined that the anti-corrosion layer insulation failure resistor 7 exists on the left side.

又a端子と大地との間に検流計6′を接続したときは、
検流計6′と防食層絶縁不良抵抗7を含む閉回路は、測
定電源4を接続した一方のb端子にのみ接続された状態
となるから、その閉回路には電流が流れないことになる
。従って、検流計6′の指針が振れないので、b端子よ
りも右端には防食層絶縁不良点が存在していないと判断
できることになる。このような判断に基いて次に上記観
測位置よりも左側方向に観測位置を定め、上述したよう
に探知作業を行なったときに、検流計の指針の振れの有
無の関係が上記と同じ場合は、その観測位置よりも左側
に防食層絶縁不良点が存在していると判断できることに
なり、又検流計の指針の振れの有無の関係が上記と反対
の関係、即ち検流計6の指針が振れず、検流計6′の指
針が振れるという関係の場合は、その観測位置よりも右
側に防食層絶縁不良点が存在していると判断できること
になる。このようにして、防食層絶縁不良点の存在する
範囲を狭めていくことにより、防食層絶縁不良点が存在
する位置を探知することができるものである。なお、こ
のように防食層絶縁不良点の存在する方向を探知してい
る場合、導体端末3の接地は不要である。又、第2図に
示すように、導体端末3を接地することによって、絶縁
本体の絶縁不良点の存在する方向を探知することができ
るものであり、例えば図示の如く測定位置よりも左側に
のみ絶縁不良点を示す本体絶縁不良抵抗8が存在してい
る場合は、d端子と大地との間に検流計6を接続してい
るときに測定電源4が接続されたb,c端子間に本体絶
縁不抵抗8と検流計6とを含む閉回路が形成され、その
閉回路に測定電源4からの電流が流れる。
Also, when galvanometer 6' is connected between terminal a and earth,
Since the closed circuit including the galvanometer 6' and the anti-corrosion layer insulation failure resistor 7 is connected only to one terminal b to which the measurement power source 4 is connected, no current flows in that closed circuit. . Therefore, since the pointer of the galvanometer 6' does not swing, it can be determined that there is no defective point in the anticorrosive layer insulation at the right end of the b terminal. Based on this judgment, when we next set the observation position to the left of the above observation position and perform the detection work as described above, if the relationship between the presence and absence of deflection of the galvanometer pointer is the same as above. , it can be determined that there is a defective point in the corrosion protection layer insulation on the left side of the observation position, and the relationship between the presence or absence of deflection of the galvanometer pointer is the opposite of the above, that is, the galvanometer 6 If the pointer does not swing and the pointer of the galvanometer 6' swings, it can be determined that there is a defective point in the anticorrosive layer insulation to the right of the observation position. In this way, by narrowing the range in which the corrosion protection layer insulation failure point exists, it is possible to detect the position where the corrosion protection layer insulation failure point exists. Note that when the direction in which the corrosion protection layer insulation defect point exists is detected in this way, it is not necessary to ground the conductor terminal 3. Furthermore, as shown in Fig. 2, by grounding the conductor terminal 3, it is possible to detect the direction in which an insulation defect exists in the insulation body. If there is a main body insulation failure resistance 8 that indicates an insulation failure point, when the galvanometer 6 is connected between the d terminal and the ground, there is a resistance between the b and c terminals to which the measurement power source 4 is connected. A closed circuit including the main body insulating resistor 8 and the galvanometer 6 is formed, and a current from the measurement power source 4 flows through the closed circuit.

従って検流計6の指針が振れるのでc端子よりも左側に
本体絶縁不良抵抗8が存在していると判断できることに
なる。又a端子と大地との間に検流計6′を接続したと
きは、本体絶縁不良額抗8と検流計6′を含む閉回路に
は測定電源4からの電流が流れないので検流計6′の指
針が振れない。それによってb端子よりも右側に本体絶
縁不良点が存在していないと判断できることになる。以
下第1図で説明した場合に準じて所定間隔だけ離れた2
個所を順次定めて探知作業し、本体絶縁不良点を検出す
るものである。しかしながら、第1図及び第2図で説明
した従来のケーブル絶縁不良点探知方法は、測定電源4
の端子間にb,c端子間の金属遮蔽層2が並列に接続さ
れるので、b,c端子間の間隔が狭い場合、そのb,c
端子間の金属遮蔽層2に測定電源4からの電流がほとん
ど流れ、絶縁不良抵抗を介して検流計6に流れる電流が
ごく僅かとなり、特に絶縁劣化があまり進行していない
高絶縁抵抗が存在する場合には、微小電流を検出するの
が困難となり、従って、不良点の存在する方向を探知す
ることが極めて困難となる。
Therefore, since the pointer of the galvanometer 6 swings, it can be determined that the main body insulation failure resistance 8 exists on the left side of the c terminal. In addition, when the galvanometer 6' is connected between the a terminal and the ground, the galvanometer is A total of 6' pointers do not swing. Accordingly, it can be determined that there is no defective insulation point on the main body on the right side of the b terminal. Below, two parts are separated by a predetermined interval according to the case explained in Fig. 1.
This involves sequentially determining the locations and performing detection work to detect defects in the main body insulation. However, the conventional cable insulation defect detection method explained in FIGS.
Since the metal shielding layer 2 between terminals b and c is connected in parallel between the terminals of
Most of the current from the measurement power source 4 flows through the metal shielding layer 2 between the terminals, and only a small amount of current flows through the galvanometer 6 through the poorly insulated resistor, and there is particularly high insulation resistance where insulation deterioration has not progressed much. In this case, it becomes difficult to detect minute currents, and therefore it becomes extremely difficult to detect the direction in which a defective point exists.

又b,c端子間の間隔を大きくとった場合、絶縁不良抵
抗を介して検流計6に流れる電流量が増大される反面、
防食層1を除去する2個所が離れて、防食層1の除去及
びその修復作業、検流計6,6′を観測する作業、及び
その他の作業が面倒となる。本発明は前述の如き従来の
欠点を改善した新規な発明であり、その目的は測定電源
からの電流が大部分絶縁不良点に流れるようにして、そ
の絶縁不良点の存在する方向の探知を容易にすることに
ある。
Furthermore, if the distance between terminals b and c is increased, the amount of current flowing through the galvanometer 6 through the poorly insulated resistor will increase, but on the other hand,
The two locations where the anti-corrosion layer 1 is removed are separated, making removal and repair work of the anti-corrosion layer 1, the work of observing the galvanometers 6 and 6', and other tasks cumbersome. The present invention is a novel invention that improves the conventional drawbacks as described above, and its purpose is to allow most of the current from the measurement power supply to flow to the defective insulation point, making it easy to detect the direction in which the defective insulation point exists. It is to make it.

以下実施例について詳細に説明する。第3図は本発明の
実施例の探知方法の説明図であり、同図に示すように、
ケーブル布設ルートの途中の1個所で防食層1を除去し
て金属遮蔽層2を露出させ、露出させた金属遮蔽層2を
その中央部分で切断してスリット9を形成し、その左右
の金属遮蔽層2を電気的に分離する。但し、金属遮蔽層
2下に存在する半導電性層は導体率が低いので必ずしも
切断する必要はない。そして、スリット9の左右の金属
遮蔽層2間即ちb,c端子間に開閉器5を介して測定電
源4を接続し、そのスリット9の左右の金属遮蔽層と大
地との間則ちa端子及びd端子のそれぞれと大地との間
に、微小電流測定手段としての検流計6,6′を順次接
続して防食層絶縁不良点の存在する方向を探知するもの
である。なお、導体織部3の接地は不要である。例えば
、図示の如くスリット9を形成した観測位置よりも左側
にのみ絶縁不良点の位置を示す防食層絶縁不良抵抗7が
存在している場合は、d端子と大地との間に検流計6を
接続したときに、測定電源4が接続されたb,c端子間
に防食層絶縁不良抵抗と検流計6とを含む閉回路が形成
され、その閉回路に測定電源4からの電流が流れて検流
計6の指針が振れるので、c端子よりも左側に防食層絶
縁不良抵抗7が存在していると判断できることになる。
Examples will be described in detail below. FIG. 3 is an explanatory diagram of the detection method according to the embodiment of the present invention, and as shown in the figure,
The corrosion protection layer 1 is removed at one point along the cable installation route to expose the metal shielding layer 2, and the exposed metal shielding layer 2 is cut at the center to form a slit 9, and the metal shielding on the left and right sides of the metal shielding layer 2 is cut at the center of the exposed metal shielding layer 2. Layer 2 is electrically isolated. However, since the semiconductive layer existing under the metal shielding layer 2 has a low conductivity, it is not necessarily necessary to cut it. Then, the measurement power source 4 is connected via the switch 5 between the metal shielding layers 2 on the left and right of the slit 9, that is, between terminals b and c, and between the metal shielding layers on the left and right of the slit 9 and the ground, that is, the terminal a. Galvanometers 6 and 6' serving as minute current measuring means are successively connected between each of the terminals 1 and d and the ground to detect the direction in which a defective point in the anticorrosive layer insulation exists. Note that grounding of the conductor woven portion 3 is not necessary. For example, if there is a corrosion protection layer insulation failure resistor 7 that indicates the position of the insulation failure point only on the left side of the observation position where the slit 9 is formed as shown in the figure, a galvanometer 6 is placed between the d terminal and the ground. When connected, a closed circuit including the anti-corrosion layer insulation failure resistor and the galvanometer 6 is formed between terminals b and c to which the measurement power source 4 is connected, and current from the measurement power source 4 flows through the closed circuit. Since the pointer of the galvanometer 6 swings, it can be determined that the anti-corrosion layer insulation failure resistor 7 exists on the left side of the c terminal.

又a端子と大地との間に検流計6′を後続したときは、
検流計6′と防食層絶縁不良抵抗7とを含む閉回路は測
定電源を接続した一方のb端子にのみ接続された状態と
なるから、その閉回路には測定電源4からの電流が流れ
ず、従って検流計6′の指針が振れない。それによって
b端子よりも右側に防食層絶縁不良点が存在していない
と判断できることになる。このようなことから、次に金
属遮蔽層2を切断してスリットを形成し、探知作業を行
なう観測位置は、スリット9を形成した初めの観測位置
よりも左側とし、上述したように探知作業を行なえばよ
いことになる。そして、次のスリットを形成した観測位
置で、検流計の振れが上述した関係の場合は、更にその
位置よりも左側に防食層絶縁不良抵抗7が存在している
と判断できることになり、又検流計の振れが上述した関
係の反対の関係、即ち、検流計6の指針が振れず、検流
計6′の指針が振れるという関係の場合は、その位置よ
りも右側に防食層絶縁不良点が存在していると判断でき
ることになる。このようにして、防食層絶縁不良点の存
在する範囲を狭めていくことにより、防食層絶縁不良点
の存在する位置を探知することができるものである。又
、第4図に示すように導体端3を接地することにより、
絶縁不良点の存在する方向を探知することができる。例
えば図示の如く測定位置よりも左側にのみ絶縁不良点の
位置を示す本体絶縁不良抵抗8が存在している場合は、
d端子と大地との間に検流計6を接続しているときに、
測定電源4が接続されたb,c端子間に本体絶縁不良抵
抗8と検流計6とを含む閉回路が形成され、その閉回路
に測定電源4による電流が流れて検流計6の指針が振れ
るので、c端子よりも左側に本体絶縁不良抵抗8が存在
していると判断できることになる。又a端子と大地との
間に検流計6′を接続しているときは、本体絶縁不良抵
抗8と検流計6′とを含む開回路は、測定電源4を接続
した一方のb端子にのみ接続された状態となるから、そ
の閉回路には測定電源4からの電流が流れず、従って検
流計6′の指針が振れない。それによってb端子よりも
右側に本体絶縁不良点が存在していないと判断できるこ
とになる。以下第3図で説明した場合に準じて金属遮蔽
層2を切断して探知作業を順次行なうことにより、本体
絶縁不良点の存在する位置を探知することができるもの
である。前述の如く、スリット9により左右が電気的に
分離された金属遮蔽層2間に対応するb,c端子間に測
定電源4を接続することにより、その測定電源4が接続
されたb,c端子間に絶縁不良抵抗と検流計とを含む閉
回路が形成された際、そのb,c端子間の金属遮蔽層2
が並列に接続されることがないものである。その為、絶
縁不良抵抗を介して検流計に流れる電流は、ほぼ測定電
源4の電圧Vを絶縁不良抵抗Rで除したV/Rの大きさ
となる。従って、検流計に流れる電流量が飛躍的に増大
することになる。第5図は本発明の他の実施例の探知方
法の説明図であり、活線下で防食層絶縁不良点の存在す
る方向を探知する場合の説明図である。
Also, when a galvanometer 6' is connected between the a terminal and the ground,
Since the closed circuit including the galvanometer 6' and the anti-corrosion layer insulation failure resistor 7 is connected only to one terminal b to which the measurement power source is connected, the current from the measurement power source 4 flows through the closed circuit. Therefore, the pointer of the galvanometer 6' does not swing. As a result, it can be determined that there is no corrosion-protective layer insulation defect on the right side of the b terminal. For this reason, the observation position where the metal shielding layer 2 is next cut to form a slit and the detection work is performed is to the left of the initial observation position where the slit 9 is formed, and the detection work is performed as described above. It will be a good thing if you do it. If the deflection of the galvanometer has the above-mentioned relationship at the observation position where the next slit is formed, it can be determined that the anticorrosive layer insulation failure resistance 7 exists further to the left of that position, and If the deflection of the galvanometer is in the opposite relationship to the above-mentioned relationship, that is, the pointer of galvanometer 6 does not swing, but the pointer of galvanometer 6' swings, an anti-corrosion layer insulation is placed on the right side of that position. This means that it can be determined that a defective point exists. In this way, by narrowing the range in which the corrosion protection layer insulation failure points exist, it is possible to detect the position where the corrosion protection layer insulation failure points exist. Also, by grounding the conductor end 3 as shown in Figure 4,
It is possible to detect the direction in which an insulation defect exists. For example, if there is a main body insulation failure resistor 8 that indicates the position of the insulation failure point only on the left side of the measurement position as shown in the figure,
When galvanometer 6 is connected between the d terminal and the ground,
A closed circuit including the main body insulation failure resistor 8 and the galvanometer 6 is formed between terminals b and c to which the measurement power source 4 is connected, and the current from the measurement power source 4 flows through the closed circuit, causing the pointer of the galvanometer 6 to flow. Since the voltage swings, it can be determined that the main body insulation failure resistance 8 exists on the left side of the c terminal. In addition, when the galvanometer 6' is connected between the a terminal and the ground, an open circuit including the main body insulation failure resistance 8 and the galvanometer 6' is connected to the one b terminal to which the measurement power source 4 is connected. Since the current from the measuring power source 4 does not flow through the closed circuit, the pointer of the galvanometer 6' does not swing. Accordingly, it can be determined that there is no defective insulation point on the main body on the right side of the b terminal. By sequentially performing detection operations by cutting the metal shielding layer 2 in accordance with the case explained in FIG. 3, the position where the main body insulation defect exists can be detected. As mentioned above, by connecting the measurement power source 4 between the b and c terminals corresponding to the metal shielding layer 2 whose left and right sides are electrically separated by the slit 9, the b and c terminals to which the measurement power source 4 is connected are connected. When a closed circuit including a poorly insulated resistor and a galvanometer is formed between them, the metal shielding layer 2 between terminals b and c is
are never connected in parallel. Therefore, the current flowing through the galvanometer through the poorly insulated resistor has a magnitude of approximately V/R, which is the voltage V of the measurement power source 4 divided by the poorly insulated resistor R. Therefore, the amount of current flowing through the galvanometer increases dramatically. FIG. 5 is an explanatory diagram of a detection method according to another embodiment of the present invention, and is an explanatory diagram for detecting the direction in which a corrosion protection layer insulation defect point exists under a live wire.

同図に示すように遮断器11が閉じられていて高電圧母
線等に導体端末3が接続された活線下にある場合、図示
の如く、予めケーブル両端で金属遮蔽層2と大地との間
に大容量の蓄電器10,10′を接続してから、金属遮
蔽層2の本来の接地を取除く。次いでケーブル布設ルー
トに沿って任意に測定位置を選定し、この測定位置では
1個所のみ防食層1を除去して金属遮蔽層2を露出させ
る。蓄電器10,10′はこの時点で予定されるスリッ
ト9の位置の左右の金属遮蔽層2と大地との間にそれぞ
れ接続してもよいものであり、又金属遮蔽層2の本来の
接地を取除くことも、スリット9を形成した後とするこ
とができる。要するに、蓄電器10,10′の接続位置
は、スリット9の形成が予定される部分を挟んだ左右の
金属遮蔽層2と大地をろ間にそれぞれ接続する関係であ
れば、どの位置であってもよいということである。この
ように蓄電器10,10′を接続することによって、金
属遮蔽層2を交流的に大地に近い電位とすることができ
る。従って、スリット9の形成、及び金属遮蔽層2の本
来の接地の取除き、その他の作業を安全に行なうことが
できる。スリット9の形成後は第3図で説明した場合と
同様であるが、ケーブル活線下の測定であるため、検流
計6,6′に交流分が侵入し、その指針に振動等が生じ
、観測が困難となる場合も考えられる。
As shown in the figure, when the circuit breaker 11 is closed and the conductor terminal 3 is under a live wire connected to a high voltage bus bar, etc., as shown in the figure, the connection between the metal shielding layer 2 and the ground at both ends of the cable is made in advance. After connecting a large capacity capacitor 10, 10' to the metal shielding layer 2, the original grounding of the metal shielding layer 2 is removed. Next, a measurement position is arbitrarily selected along the cable installation route, and at this measurement position, the corrosion protection layer 1 is removed at only one location to expose the metal shielding layer 2. The capacitors 10 and 10' may be connected between the metal shielding layer 2 on the left and right of the planned slit 9 position and the ground, respectively, and the original grounding of the metal shielding layer 2 may be connected. The removal can also be done after the slits 9 are formed. In short, the connection positions of the capacitors 10 and 10' can be any position as long as the left and right metal shielding layers 2 sandwiching the portion where the slit 9 is planned to be formed are connected to the ground, respectively. That means it's good. By connecting the capacitors 10 and 10' in this way, the metal shielding layer 2 can be brought to a potential close to ground in terms of alternating current. Therefore, the formation of the slit 9, the removal of the original grounding of the metal shielding layer 2, and other operations can be performed safely. After forming the slit 9, the procedure is the same as that described in Fig. 3, but since the measurement is carried out under live cables, the alternating current enters the galvanometers 6 and 6', causing vibrations in the pointers. , there may be cases where observation becomes difficult.

このような場合、蓄電器10,10′はケーブル両端よ
りもむしろスリット9の両側近傍にそれぞれ取付ける方
が、検流計にかかる交流分電圧を減少させる意味で好適
であり、又検流計6,6′には直列に交流分阻止用炉波
器を接続しておくのも良策である。以上、ケーブル布設
ルートに沿って任意に選定した測定位置で、新たに金属
遮蔽層2を切断してスリット9を形成する場合を例示し
たが、本発明はそれに限定されるものではなく、ケーブ
ル布設ルートの途中に適宜設けてある既設の絶縁接続部
等の如くケーブル長手方向の左右の金属遮蔽層を電気的
に分離した構成を有する個所を測定位置として探知作業
を行なうこともできる。
In such a case, it is preferable to install the capacitors 10, 10' near both sides of the slit 9, rather than at both ends of the cable, in order to reduce the AC voltage applied to the galvanometer. It is also a good idea to connect an AC blocker in series to 6'. Although the case where the metal shielding layer 2 is newly cut to form the slit 9 at an arbitrarily selected measurement position along the cable installation route has been exemplified, the present invention is not limited thereto, and the cable installation route is not limited to this. Detection work can also be performed using a location where the left and right metal shielding layers in the longitudinal direction of the cable are electrically separated, such as an existing insulated connection part that is appropriately provided along the route, as a measurement position.

例えば第6図に示すように、絶縁部13によって左右の
金属遮蔽層2を電気的に分離した構成の絶縁接続箱12
に於いては、その絶縁接続箱12の左右の端子を測定電
源4及び検流計6,6′の接続用端子として利用できる
ものである。即ち、絶縁部13は第3図〜第5図のスリ
ットに相当するので、その絶縁部13を挟んだ両側に設
けてある端子の一方は、a端子及びb端子に相当し、そ
の他方はc端子及びd端子に相当する。その為、絶縁部
13を挟んだ両側端子間、開閉器5を通じて測定電源4
を後続し、その両側端子のそれぞれと大地との間に検流
計6,6′を順次接続して防食層絶縁不良抵抗7の存在
する方向を探知することができるものである。又、図示
していないが、絶縁接続箱12を用いて本体絶縁不良点
の存在する方向を探知し得るものであり、この場合は、
ケーブルの何れか一方の導体端末を接地しておけば、第
4図で説明した場合と同様となる。又そのように絶縁接
続箱を用いるのであれば、金属遮蔽層を新たに切開する
必要がないことから内圧型のアルミシースOFケーブル
の場合等でも実施容易である。なお、測定電源4、及び
検流計6を接続するに際してのりード線は、クロスボン
ディング結線に使われていたもの、対大地結線に使われ
ていたもの、或は左右の短絡に使われていたもの等を適
宜切離して第6図に示す如く結線することできる。以上
説明したように、本発明は、金属遮蔽層がケーブル長手
方向の左右の電気的に分離された位置のその左右の金属
遮蔽層間に測定電源を接続し、その左右の金属遮蔽層と
大地との間に微小電流測定手段を順次接続するので、測
定電源が接続された金属遮蔽層の端子間に、絶縁不良点
と微小電流測定手段を含む閉回路が形成された際、その
測定電源が接続された金属遮蔽層の端子間にはその間の
金属遮蔽層が並列に接続されることがない。その為、測
定電源からの電流が大部分絶縁不良点に流れることにな
る。従って、絶縁劣化があまり進行していない高絶縁抵
抗が存在する場合であっても、不良点の存在する方向を
容易に探知することができるものである。しかも、微小
電流測定電源に流れる電流量を増大する為に、測定電源
の両端子を接続する範囲を大きくとる必要がないので、
防食層の除去及びその修復作業、微小電流測定手段の観
測作業、及びその他の作業が容易となるものである。
For example, as shown in FIG. 6, an insulating junction box 12 has a structure in which the left and right metal shielding layers 2 are electrically separated by an insulating part 13.
In this case, the left and right terminals of the insulated junction box 12 can be used as connection terminals for the measurement power source 4 and the galvanometers 6, 6'. That is, since the insulating part 13 corresponds to the slits shown in FIGS. 3 to 5, one of the terminals provided on both sides of the insulating part 13 corresponds to the a terminal and the b terminal, and the other one corresponds to the c terminal. Corresponds to the terminal and d terminal. Therefore, the measuring power source 4 is connected through the switch 5 between the terminals on both sides with the insulating part 13 in between.
Subsequently, galvanometers 6 and 6' are successively connected between each of the terminals on both sides thereof and the ground, thereby making it possible to detect the direction in which the anti-corrosion layer insulation failure resistor 7 exists. Although not shown, the direction in which the main body insulation defect point exists can be detected using the insulation junction box 12. In this case,
If either one of the conductor terminals of the cable is grounded, the same as the case explained in FIG. 4 will be obtained. Furthermore, if an insulated junction box is used in this way, there is no need to newly cut out the metal shielding layer, so it is easy to implement even in the case of an internal pressure type aluminum sheathed OF cable. In addition, when connecting the measurement power source 4 and the galvanometer 6, the lead wires should be those that were used for cross bonding connection, those that were used for connection to ground, or those that were used for left and right short circuits. It is possible to disconnect the parts as appropriate and connect them as shown in FIG. As explained above, the present invention connects a measurement power source between the left and right metal shielding layers at electrically separated positions on the left and right sides in the longitudinal direction of the cable, and connects the left and right metal shielding layers to the ground. Since the microcurrent measuring means is connected in sequence between The metal shielding layers between the terminals of the metal shielding layers are not connected in parallel. Therefore, most of the current from the measurement power source will flow to the insulation defect point. Therefore, even if there is a high insulation resistance where insulation deterioration has not progressed much, the direction in which the defective point exists can be easily detected. Moreover, in order to increase the amount of current flowing through the microcurrent measurement power supply, there is no need to increase the range in which both terminals of the measurement power supply are connected.
This facilitates the removal of the anti-corrosion layer and its repair work, the observation work of the microcurrent measuring means, and other works.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の探知方法の説明図、第3図乃
至第6図は本発明の実施例の探知方法の説明図であって
、第3図は防食層絶縁不良点の存在する方向を探知する
場合の説明図、第4図は本体絶縁不良点の存在する方向
を探知する場合の説明図、第5図は活線下で防食層絶縁
不良点の存在する方向を探知する場合の説明図、第6図
は既設の絶縁接続部を用いて絶縁不良点の存在する方向
を探知する場合の説明図である。 1は防食層、2は金属遮蔽層、3は導体端末、4は測定
電源、5は開閉器、6,6′は微小電流測定手段として
の検流計、7は防食層絶縁不良抵抗、8は本体絶縁不良
抵抗、9はスリット、10,10′は蓄電器、11は遮
断器、12は絶縁接続箱、13は絶縁部である。 第6図 第1図 第2図 第3図 第4図 第5図
1 and 2 are explanatory diagrams of a conventional detection method, and FIGS. 3 to 6 are explanatory diagrams of a detection method according to an embodiment of the present invention. Fig. 4 is an explanatory diagram for detecting the direction in which the main body insulation defect exists, and Fig. 5 is an explanatory diagram for detecting the direction in which the corrosion protection layer insulation defect exists under live wires. FIG. 6 is an explanatory diagram of a case where the direction in which an insulation defect exists is detected using an existing insulated connection part. 1 is a corrosion protection layer, 2 is a metal shielding layer, 3 is a conductor terminal, 4 is a measurement power source, 5 is a switch, 6 and 6' are galvanometers as means for measuring minute currents, 7 is a resistance with poor insulation in the corrosion protection layer, 8 9 is a main body insulation failure resistance, 9 is a slit, 10 and 10' are capacitors, 11 is a circuit breaker, 12 is an insulated junction box, and 13 is an insulating part. Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1 金属遮蔽層を有する電力ケーブルの絶縁不良点探知
方法に於いて、前記電力ケーブルの布設ルートの途中の
1個所で防食層を除去して金属遮蔽層を露出させ該露出
させた金属遮蔽層の中央部分を切断してスリツトを1個
所形成し、該スリツトの左右の金属遮蔽層間に測定電源
を接続し、該1個のスリツトの左右の金属遮蔽層と大地
との間に微小電流測定手段を順次接続し、該電力ケーブ
ルの導体端部はフロートさせ、または大地に接続し、該
微小電流測定手段による微小電流の検出の有無により、
前記スリツト位置から絶縁不良点の存在する方向を探知
することを特徴とするケーブル絶縁不良点探知方法。
1. In a method for detecting insulation defects in a power cable having a metal shielding layer, the corrosion protection layer is removed at one point along the power cable installation route to expose the metal shielding layer, and the exposed metal shielding layer is One slit is formed by cutting the center part, a measurement power source is connected between the metal shielding layers on the left and right of the slit, and a minute current measuring means is connected between the metal shielding layers on the left and right of the one slit and the ground. The conductor ends of the power cables are connected in sequence, and the conductor ends of the power cables are floated or connected to the ground, and depending on whether or not the microcurrent is detected by the microcurrent measuring means,
A cable insulation defect detection method comprising detecting a direction in which an insulation defect exists from the slit position.
JP15001377A 1977-12-14 1977-12-14 Cable insulation defect detection method Expired JPS6031268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15001377A JPS6031268B2 (en) 1977-12-14 1977-12-14 Cable insulation defect detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15001377A JPS6031268B2 (en) 1977-12-14 1977-12-14 Cable insulation defect detection method

Publications (2)

Publication Number Publication Date
JPS5482689A JPS5482689A (en) 1979-07-02
JPS6031268B2 true JPS6031268B2 (en) 1985-07-20

Family

ID=15487560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15001377A Expired JPS6031268B2 (en) 1977-12-14 1977-12-14 Cable insulation defect detection method

Country Status (1)

Country Link
JP (1) JPS6031268B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129696U (en) * 1990-04-11 1991-12-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129696U (en) * 1990-04-11 1991-12-26

Also Published As

Publication number Publication date
JPS5482689A (en) 1979-07-02

Similar Documents

Publication Publication Date Title
JPS6031268B2 (en) Cable insulation defect detection method
George et al. Traveling wave based autoreclosure scheme for multi-terminal lines
JPS6215473A (en) Locating method for fault point of transmission line
JPH07122651B2 (en) Ground fault fault location method for high resistance 3-terminal parallel 2-circuit transmission line
US2086737A (en) Electrical measuring method and means
JPS629277A (en) Diagnostic method for cable insulation under hotline
JP2003057288A (en) Fault-point specifying method for branch cable line
JP2568097B2 (en) Power cable accident section detection method
JPH063390A (en) Diagnostic method for deterioration of cable
JPH0575980B2 (en)
Fujita et al. Experimental study on electrical characteristics of grounding method for Shinkansen lines
JPS5866071A (en) Detection of defective point for cable insulation under hot line
JP2750888B2 (en) Power cable insulation resistance measurement method
JPH034940Y2 (en)
JPS6045374B2 (en) Cable insulation defect detection method
JPS5925469B2 (en) Method for detecting the location of electrical insulation layer defects within a limited area
JPH0679046B2 (en) Method for measuring DC component of power cable
JPH077028B2 (en) Method for measuring DC component of power cable
JPS60225072A (en) Diagnosis of deterioration in insulation for power cable
JPH02262072A (en) Fault section locating system of underground transmission line
JPS5837771B2 (en) Cable track accident section determination method
JPH11326436A (en) Diagnostic device for insulation deterioration of closed bus bar
JPH01267469A (en) Method for diagnosing insulation of power cable
JPH07104377B2 (en) Method of measuring insulation resistance of cable or electric equipment
Simpson et al. Tests on Wiring Installations and Fault Location in Cables