JPS6031103A - Optical directional coupling device - Google Patents

Optical directional coupling device

Info

Publication number
JPS6031103A
JPS6031103A JP13966083A JP13966083A JPS6031103A JP S6031103 A JPS6031103 A JP S6031103A JP 13966083 A JP13966083 A JP 13966083A JP 13966083 A JP13966083 A JP 13966083A JP S6031103 A JPS6031103 A JP S6031103A
Authority
JP
Japan
Prior art keywords
polarized light
light
optical
fiber
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13966083A
Other languages
Japanese (ja)
Other versions
JPH0326776B2 (en
Inventor
Yoshinori Yamazaki
芳則 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP13966083A priority Critical patent/JPS6031103A/en
Publication of JPS6031103A publication Critical patent/JPS6031103A/en
Publication of JPH0326776B2 publication Critical patent/JPH0326776B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Abstract

PURPOSE:To suppress a fluctuation phenomenon by a rotation of a linearly polarized light by constituting so that a circularly polarized light or an elliptically polarized light resembling the circularly polarized light, which is rotated by the number of vibration of a light is made incident to an optical fiber to be measured, and a backscatter led into a photodetector is photodetected in a state that it is rotated by the number of vibration of a light. CONSTITUTION:A polarized light maintaining fiber 10 is connected between an optical connector 11 to which an optical 5 to be measured is connected and an optical connector 8 installed to an optical directional coupler 6. A light of a linearly polarized light emitted from a laser 1 reaches a polarized light maintaining fiber 4 in its state. When it is made incident to the next polarized light maintaining fiber 10, a polarized light plane matching is executed between the polarized light maintaining fibers 4 and 10 so that an incident light of the polarized light maintaining fiber 10 becomes a circularly polarized light or an elliptically polarized light resembling the circularly polarized light from the linearly polarized light, and a light resembling the circularly polarized light is made incident to the optical fiver 5 to be measured. Accordingly, a backscattering light which returns by being reflected by the inside of the optical fiber 5 to be measured is also a circularly polarized light or an elliptically polarized light resembling the circularly polarized light, and rotated by the number of vibration of a light. Accordingly, a measured curve of the backscattering light becomes a smooth curve, and a fluctuation phenomenon is suppressed.

Description

【発明の詳細な説明】 本発明は、光方向性結合装置、特に偏光保存ファイバを
用いて直線偏光の光音可能な限り円偏光させ、被測定光
ファイバに円偏光の光を入射するようにした光方向性結
合装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses an optical directional coupling device, particularly a polarization-maintaining fiber, to make linearly polarized light as circularly polarized as possible, and to input the circularly polarized light into an optical fiber to be measured. This invention relates to an optical directional coupling device.

光測定器1例えば被測定光ケーブルに光パルスを入射し
光ケーブル内で反射して戻ってくる後方散乱光を測定す
ることによって光ケーブルの異常箇所を測定する光Aル
ス試験器は、従来、第1図に示すような光方向性結合器
を用いていた。
Optical measuring instrument 1 For example, an optical A-lus tester, which measures an abnormality in an optical cable by injecting a light pulse into the optical cable to be measured and measuring the backscattered light that is reflected and returned within the optical cable, is conventionally shown in Fig. 1. An optical directional coupler as shown in the figure was used.

第1図において、レーザ1から出た直線偏光の光は偏光
素子、例えば偏光ゾリズム2を通ル、セルフォックレン
ズ3t−介して偏光保存ファイバ4に入射し、それを被
測定光ファイA5へ入射していた。同図において6は光
方向性結合器であって前記レーザ1.偏光ゾリズム2、
セルフォックレンi3、偏光保存ファイバ4及び受光器
ファイバ7で当該光方向性結合器6は構成されている。
In FIG. 1, linearly polarized light emitted from a laser 1 passes through a polarizing element, for example, a polarization solism 2, enters a polarization maintaining fiber 4 via a SELFOC lens 3t, and enters the optical fiber under test A5. Was. In the same figure, reference numeral 6 denotes an optical directional coupler, and the laser 1. polarization solism 2,
The optical directional coupler 6 is composed of a Selfoclen i3, a polarization maintaining fiber 4, and a light receiver fiber 7.

なお8は光コネクタを表わしている。Note that 8 represents an optical connector.

レーf1から出され九直線偏光の光は光方向性結合器6
t−介して被測定光ファイバ5へ入射されるが%尚該被
測定光ファイノ?5が多モード光ファイバであるときは
、尚該被測定光ファイバ5に入射された直線偏光がラン
ダム方向に崩れ、後方散乱光として戻って来る反射光も
ランダム偏光管しておシ、光方向性結合器6で分岐され
受光器ファイバ7へ導入される後方散乱光の垂直偏波成
分はほぼ一定となる。これに対し被測定光ファイ/寄5
が単一モード光ファイバであるときは、当該光ファイバ
の性質上、前記多モード光ファイバと異な〕直線偏光が
崩れ難い特性含有しており、被測定光ファイバ5内で反
射して返ってくる後方散乱光も直線偏光が崩れ難い。し
かしながら実際には被測定光ファイバ5の長さ、被測定
光ファイバ5に掛っている応力、コアの楕円変形、異方
性、熱等に基づいて直線偏光が楕円偏光に変化し、第2
図に示され九楕円偏光の画直偏波成分Xが光方向性結合
器6の偏光プリズム2で分岐され、受光器ファイバ7へ
導入される。ところで被測定光ファイバ5に単一モード
光ファイバを用いたとき、前記説明の楕円偏光の楕円軸
がどのような方向に傾いて返ってくるか一定していない
ため、受光器で受光した後方散乱光は第3図に示された
ようにギザギザのゆうぎ現象が生じ、測定上好ましから
ざる問題点があった。
The nine linearly polarized light emitted from the laser beam f1 is sent to the optical directional coupler 6.
It is incident on the optical fiber 5 to be measured through the optical fiber 5. When 5 is a multimode optical fiber, the linearly polarized light incident on the optical fiber 5 to be measured is distorted in a random direction, and the reflected light that returns as backscattered light is also randomly polarized, and the light direction The vertically polarized component of the backscattered light that is split by the optical coupler 6 and introduced into the optical receiver fiber 7 is approximately constant. On the other hand, the optical fiber under test/
When is a single-mode optical fiber, the optical fiber has a property that the linearly polarized light does not easily collapse, which is different from the multi-mode optical fiber, and it is reflected back within the optical fiber 5 to be measured. The linear polarization of backscattered light does not easily collapse. However, in reality, the linearly polarized light changes to elliptically polarized light based on the length of the optical fiber 5 to be measured, the stress applied to the optical fiber 5, the elliptical deformation of the core, anisotropy, heat, etc.
As shown in the figure, a normal polarization component X of nine elliptically polarized light is split by the polarizing prism 2 of the optical directional coupler 6 and introduced into the optical receiver fiber 7. By the way, when a single mode optical fiber is used as the optical fiber 5 to be measured, the direction in which the elliptical axis of the elliptically polarized light returns is not constant, so the backscattered light received by the light receiver is As shown in FIG. 3, the light produced a jagged and oscillating phenomenon, which was an undesirable problem in measurement.

本発明は上記の問題点を解決することを目的としており
、従来の光方向性結合器と被測定光ファイバとの間に偏
光保存光ファイバを接続して被測定光ファイバに光の振
動数で回転する円偏光或いは円偏光に近い楕円偏光全入
射させ、受光器に導入される後方散乱光を光の振動数で
回転した状態で受光するようにして、直線偏光の旋光に
よるゆらぎ現象全抑圧できる光方向性結合装置を提供す
ることを目的としている。以下第4図以降の図面全参照
しながら説明する。
The present invention aims to solve the above-mentioned problems, and aims to connect a polarization-maintaining optical fiber between a conventional optical directional coupler and an optical fiber to be measured so that the frequency of light is transmitted to the optical fiber to be measured. By making all of the rotating circularly polarized light or elliptically polarized light close to circularly polarized light incident, and by receiving the backscattered light introduced into the receiver in a state rotated by the frequency of the light, it is possible to completely suppress the fluctuation phenomenon caused by optical rotation of the linearly polarized light. The present invention aims to provide an optical directional coupling device. The following description will be given with reference to all drawings from FIG. 4 onwards.

第4図は本発明に係る光方向性結合装置の一実施例構成
、第5図は本発明に係る光方向性結合装置を用いて単一
モード光ファイバを測定したときの後方散乱光の測定曲
線の一例を示している。
FIG. 4 shows the configuration of an embodiment of the optical directional coupling device according to the present invention, and FIG. 5 shows the measurement of backscattered light when measuring a single mode optical fiber using the optical directional coupling device according to the present invention. An example of a curve is shown.

第4図においてlないし8は第1図のものに対応してい
る。被測定光ファイバ5が接続されている光コネクタ1
1と従来の元方向性結合器6に取付けられている光コネ
クタ8との間には偏光保存ファイバ10が接続される。
In FIG. 4, 1 to 8 correspond to those in FIG. Optical connector 1 to which optical fiber 5 to be measured is connected
1 and an optical connector 8 attached to a conventional directional coupler 6, a polarization maintaining fiber 10 is connected.

従がって本発明に係る光方向性結合装置9は従来の光方
向性結合器6に偏光保存ファイバ10を介して被測定光
ファイバ5へ光を入射させるが、当該偏光保存ファイバ
10から出射の際円偏光させた上で被測定光ファイバ5
へ入射させる。すなわちレーザ1から出た直線偏光の光
はその直線偏光が保たれた状態で偏光保存ファイバ4t
でやってくる。次の偏光保存角ファイA10へ入射させ
る際、偏光保存光ファイバエ0の入射光が直線偏光から
円偏光または円偏光に近い楕円偏光になるような偏光面
会せt−偏光保存ファイバ4と10との間で行い、前述
の如く仮測定光ファイバ5へは円偏光に近い光を入射さ
せている。
Therefore, the optical directional coupler 9 according to the present invention allows light to enter the optical fiber 5 to be measured via the polarization maintaining fiber 10 into the conventional optical directional coupler 6, but does not allow light to be emitted from the polarization maintaining fiber 10. At this time, the optical fiber to be measured 5 is circularly polarized.
make it incident on the In other words, the linearly polarized light emitted from the laser 1 is transferred to the polarization preserving fiber 4t while maintaining its linear polarization.
It's coming. When entering the next polarization-preserving angle fiber A10, the polarization-maintaining fibers 4 and 10 are arranged so that the incident light on the polarization-maintaining optical fiber A10 changes from linearly polarized light to circularly polarized light or elliptically polarized light close to circularly polarized light. As described above, light close to circularly polarized light is input to the temporary measurement optical fiber 5.

今偏光保喜ファイバlOの光軸を偏光保存ファイバ40
元軸に対し0傾けて接続したものとする。
Now change the optical axis of polarized Hoki fiber IO to polarization preserving fiber 40
It is assumed that the connection is made at a zero inclination to the original axis.

偏光保存ファイバ4から出射する直線偏光の光は偏光保
存ファイバ100元軸とθ傾いているので。
The linearly polarized light emitted from the polarization preserving fiber 4 is tilted by θ with respect to the polarization preserving fiber 100 axis.

6を元の振幅としたとき偏光保存7アイ/々10の中で
は振幅1111(IJIθとaai−との直交する元が
保存しているものと考えられる。そして偏光保存ファイ
バ10から出射されるとき、これらが合成され。
When 6 is the original amplitude, the amplitude 1111 (it is considered that the orthogonal element of IJIθ and aai- is preserved in the polarization-preserving 7 eye/each 10. Then, when emitted from the polarization-maintaining fiber 10 , these are synthesized.

(ただしδは偏光保存ファイバ10の長さにょって起る
2成分の位相差) なる楕円偏光になり出射される。これt円偏光となる条
件 、1 z3+1/s−/2 ・・・・・・(2)とするには式
(1)において、θ== f/4.δ=’/g’に必要
とする。ところでδ、すなわち偏光保存ファイバlOの
長さによって起る2成分の位相差1−になるように偏光
保存ファイバ1(1−カットすることは製造上不可能に
近い。光の波長のオーダで偏光保存ファイバlO會カッ
トしてδ=1/2になるようにせねばならないからであ
る。
(where δ is the phase difference between the two components that occurs depending on the length of the polarization-maintaining fiber 10) It becomes elliptically polarized light and is emitted. To set the condition for this to be t circularly polarized light, 1 z3+1/s-/2 (2), in equation (1), θ== f/4. Required for δ='/g'. By the way, it is nearly impossible to cut the polarization preserving fiber 1 (1-) so that the phase difference between the two components caused by δ, that is, the length of the polarization-maintaining fiber 10, is 1-. This is because the storage fiber must be cut so that δ=1/2.

本発明は偏光保存ファイバlOの長さに関係なく、偏光
保存ファイバl(l偏光保存ファイバ4に対して相対的
に回転式せ、双方の元軸全適当な角度に回転させること
により円偏光または円偏光に最も近い楕円偏光全得るも
のである。
In the present invention, regardless of the length of the polarization maintaining fiber 10, circularly polarized or The closest thing to circularly polarized light is elliptically polarized light.

このようにして円偏光または円偏光に近い楕円偏光の光
が元コネクタllk介して被測定光ファイバ5に出射す
る。被測定光ファイバ5内で反射して戻ってくる後方散
乱光も円偏光或いは円偏光に近い楕円偏光であ夛、光の
振動数で回転している。この円偏光或いは円偏光に近い
楕円偏光の後方散乱光は元コネクタ11.偏光保存ファ
イバlo、光コネクタ8.偏光保存ファイバ4.セルフ
ォックレンズ3を通9.偏光プリズム2に入射する。
In this way, circularly polarized light or elliptically polarized light close to circularly polarized light is emitted to the optical fiber 5 to be measured via the original connector llk. The backscattered light reflected within the optical fiber 5 to be measured and returned is also circularly polarized light or elliptically polarized light close to circularly polarized light, and is rotated at the frequency of the light. This backscattered light of circularly polarized light or elliptically polarized light close to circularly polarized light is transmitted to the original connector 11. Polarization maintaining fiber lo, optical connector8. Polarization maintaining fiber 4. 9. Pass through SELFOC lens 3. The light enters the polarizing prism 2.

偏光プリズム2に入射した後方散乱光はレーザlの水平
偏波に対し垂直偏波成分が偏光プリズム2で分岐され、
受光器ファイ/−77t−通って図示されていない受光
器で受光される。受光器は、例えばアバランシェフォト
ダイオード等が使用されるが。
The backscattered light incident on the polarizing prism 2 is split into a vertically polarized component by the polarizing prism 2 with respect to the horizontally polarized wave of the laser l.
The light passes through the optical receiver phi/-77t- and is received by an optical receiver (not shown). For example, an avalanche photodiode or the like is used as the light receiver.

この受光器の電気的な応等速度は元の振動数に比べはる
かに遅い。偏光プリズム2Vc入射する後方散乱光は受
光器の電気的応答速度よりはるかに速い周期で円或いは
楕円状に回転しているので、電気的な立場から見れば、
ランダムの状態に偏光が崩れているものと見なすことが
できる。従がって偏光プリズム2で受光器側へ分岐され
る垂直偏波成分とレーザ1側へ直進する水平偏波成分と
は、はぼl対lに分布しているものと考えられる。そし
て例え被測定光ファイバ5で旋光しても第2図に示され
た垂直偏波成分Xは一定となる。従がって第5図に示さ
れているように、後方散乱光の測定曲線は滑らかな曲線
とな夛、第3図に示されているギザギザのゆうぎ現象が
抑圧される。
The electrical constant velocity of this receiver is much slower than the original frequency. The backscattered light incident on the polarizing prism 2Vc rotates in a circle or an ellipse at a period much faster than the electrical response speed of the light receiver, so from an electrical standpoint,
It can be considered that the polarization is broken into a random state. Therefore, it is considered that the vertically polarized wave component that is branched to the light receiver side by the polarizing prism 2 and the horizontally polarized wave component that goes straight to the laser 1 side are distributed approximately in a ratio of 1 to 1. Even if the optical fiber 5 to be measured rotates the light, the vertically polarized component X shown in FIG. 2 remains constant. Therefore, as shown in FIG. 5, the measurement curve of the backscattered light becomes a smooth curve, and the jagged wave phenomenon shown in FIG. 3 is suppressed.

なお、偏光保存7アイノ94と8との偏光面合せは、被
測定光ファイバ5へ光パルス金送り、受光器で受光され
る後方散乱光の測定曲a+見ながら偏光保存ファイバ1
0の光軸を回転させ、後方散乱光の測定曲線が最も滑ら
かな状態になった位置で偏光保存ファイバlOを固定す
る。このとき偏光保存ファイバ4から10へ出射された
直線偏光は、被測定光ファイバ5へ出射の際円偏光或い
は円偏光に近い楕円偏光となっている。
The polarization planes of the polarization preserving 7 Aino 94 and 8 are aligned by sending a light pulse to the optical fiber 5 to be measured, measuring curve a of the backscattered light received by the light receiver + looking at the polarization preserving fiber 1.
The polarization maintaining fiber 10 is fixed at a position where the optical axis of 0 is rotated and the measurement curve of backscattered light is the smoothest. At this time, the linearly polarized light emitted from the polarization maintaining fiber 4 to the optical fiber 10 becomes circularly polarized light or elliptically polarized light close to circularly polarized light when emitted to the optical fiber 5 to be measured.

以上説明した如く、本発明によれば、従来の光方向性結
合器と被測定光ファイバとの間に偏光保存ファイバを接
続し、かつ後方散乱光の測定曲線を見ながら偏光面合せ
を行うという簡単な作業で。
As explained above, according to the present invention, a polarization maintaining fiber is connected between a conventional optical directional coupler and an optical fiber to be measured, and the polarization plane is aligned while observing the measurement curve of backscattered light. With easy work.

単一モード光ファイバの旋光による影*’を抑圧するこ
との可能な光方向性結合装置が実現される。
An optical directional coupling device capable of suppressing shadow *' caused by optical rotation of a single mode optical fiber is realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光方向性結合器の構成例、第2図は後方
散乱光の測定曲線にギザギザのゆらぎ現象が生じること
を説明するための説明図、第3図は従来の光方向性結合
器を用いて単一モード光ファイバを測定したときの後方
散乱光の測定曲線の一例、第4図は本発明に係る光方向
性結合装置の一実施例構成、第5図は本発uAに係る光
方向性結合装置を用いて単一モード光ファイバを測定し
たときの後方散乱光の測定曲線の一例を示している。 図中、1はレーザ、2は偏光プリズム、3は七ルフオツ
クレンズ、4は偏光保存ファイバ、6は光方向性結合器
、7は受光器ファイバ、8は元コネクタ、9は光方向性
結合装置、1Gは偏光保存ファイバ、11は光コネクタ
t−表わしている。 特許出願人 安立電気株式会社 第1図 第2図 第3図 第4図 第5図 距勇証 19−
Figure 1 is an example of the configuration of a conventional optical directional coupler, Figure 2 is an explanatory diagram to explain that a jagged fluctuation phenomenon occurs in the measurement curve of backscattered light, and Figure 3 is an example of a conventional optical directional coupler. An example of a measurement curve of backscattered light when a single mode optical fiber is measured using a coupler, FIG. 4 shows the configuration of an embodiment of the optical directional coupling device according to the present invention, and FIG. 5 shows the uA of the present invention. 3 shows an example of a measurement curve of backscattered light when a single mode optical fiber is measured using the optical directional coupling device according to the invention. In the figure, 1 is the laser, 2 is the polarizing prism, 3 is the optical lens, 4 is the polarization preserving fiber, 6 is the optical directional coupler, 7 is the receiver fiber, 8 is the original connector, 9 is the optical directional coupler, 1G represents a polarization maintaining fiber, and 11 represents an optical connector T-. Patent applicant: Anritsu Electric Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Distance certificate 19-

Claims (1)

【特許請求の範囲】[Claims] 直線偏光の光を出射する光方向性結合器6と;入射され
該直線偏光の光管円偏光又は円偏光に近い楕円偏光の元
に変換して出射するために該光方向性結合器の出力端に
接続されその光軸が該入射された直線偏光の光軸と所要
の角度に位置された偏光保存ファイバ10と;該偏光保
存ファイAt−該所要角度に保持する保持手段8とを備
えた光方向性結合装置。
an optical directional coupler 6 that outputs linearly polarized light; an output of the optical directional coupler for converting the incident linearly polarized light into circularly polarized light or elliptically polarized light close to circularly polarized light and outputting the light; A polarization preserving fiber 10 connected to the end and having its optical axis positioned at a required angle with respect to the optical axis of the incident linearly polarized light; and a holding means 8 for holding the polarization preserving fiber At at the required angle. Optical directional coupling device.
JP13966083A 1983-07-31 1983-07-31 Optical directional coupling device Granted JPS6031103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13966083A JPS6031103A (en) 1983-07-31 1983-07-31 Optical directional coupling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13966083A JPS6031103A (en) 1983-07-31 1983-07-31 Optical directional coupling device

Publications (2)

Publication Number Publication Date
JPS6031103A true JPS6031103A (en) 1985-02-16
JPH0326776B2 JPH0326776B2 (en) 1991-04-11

Family

ID=15250439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13966083A Granted JPS6031103A (en) 1983-07-31 1983-07-31 Optical directional coupling device

Country Status (1)

Country Link
JP (1) JPS6031103A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159236A (en) * 1984-08-30 1986-03-26 Fujikura Ltd Optical pulse tester for single mode optical fiber
JPS61153617A (en) * 1984-12-27 1986-07-12 Nippon Telegr & Teleph Corp <Ntt> Polarization noise reducing element
JPS6212830A (en) * 1985-07-10 1987-01-21 Yokogawa Hewlett Packard Ltd Photocoupler

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159236A (en) * 1984-08-30 1986-03-26 Fujikura Ltd Optical pulse tester for single mode optical fiber
JPH0544976B2 (en) * 1984-08-30 1993-07-07 Fujikura Kk
JPS61153617A (en) * 1984-12-27 1986-07-12 Nippon Telegr & Teleph Corp <Ntt> Polarization noise reducing element
JPS628736B2 (en) * 1984-12-27 1987-02-24 Nippon Telegraph & Telephone
JPS6212830A (en) * 1985-07-10 1987-01-21 Yokogawa Hewlett Packard Ltd Photocoupler

Also Published As

Publication number Publication date
JPH0326776B2 (en) 1991-04-11

Similar Documents

Publication Publication Date Title
US4529313A (en) Ring interferometer
CN108287056B (en) System and method for evaluating coupling characteristics of optical fiber sensitive ring polarization mode
Knuhtsen et al. Fibre-optic laser Doppler anemometer with Bragg frequency shift utilising polarisation-preserving single-mode fibre
EP0214907A2 (en) Fiber sensor
US5136667A (en) Fiber optic gyro
JPS6031103A (en) Optical directional coupling device
JP2739609B2 (en) Interferometer for determining the position of a movable measuring mirror or moving or traveling
US7147388B2 (en) Method for fabrication of an all fiber polarization retardation device
CN110554464A (en) Miniaturized single polarization fiber resonant cavity
GB2178554A (en) Optical expanded beam termination
CN106383380B (en) Faraday rotation reflector and fibre optic interferometer
JPS6221016A (en) Optical fiber gyroscope
KR0154619B1 (en) All optical fiber polarization mode distribution tester
JPS60107603A (en) Connecting method of polarization maintaining optical fiber
US4740049A (en) Technique for measuring a single mode optical fiber
JP2005283466A (en) Vibration measuring apparatus
JPH0611415A (en) Method and device for measuring polarization dependency
JPH038499B2 (en)
JP2514491B2 (en) Fiber optic gyro
JPS5960212A (en) Optical fiber gyro system
JPS6159236A (en) Optical pulse tester for single mode optical fiber
JPS5831589A (en) Optical fiber gyro
JPS62246017A (en) Acoustooptic switch
JPS58120146A (en) Measuring method for polarization characteristic of optical fiber
JPH07111456B2 (en) Polarization-maintaining optical fiber type magnetic field sensor