JPH0326776B2 - - Google Patents

Info

Publication number
JPH0326776B2
JPH0326776B2 JP13966083A JP13966083A JPH0326776B2 JP H0326776 B2 JPH0326776 B2 JP H0326776B2 JP 13966083 A JP13966083 A JP 13966083A JP 13966083 A JP13966083 A JP 13966083A JP H0326776 B2 JPH0326776 B2 JP H0326776B2
Authority
JP
Japan
Prior art keywords
optical
polarized light
fiber
light
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13966083A
Other languages
Japanese (ja)
Other versions
JPS6031103A (en
Inventor
Yoshinori Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP13966083A priority Critical patent/JPS6031103A/en
Publication of JPS6031103A publication Critical patent/JPS6031103A/en
Publication of JPH0326776B2 publication Critical patent/JPH0326776B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】 本発明は、光方向性結合装置、特に偏光保存フ
アイバを用いて直線偏光の光を可能な限り円偏光
させ、被測定光フアイバに円偏光の光を入射する
ようにした光方向性結合装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses an optical directional coupling device, in particular a polarization preserving fiber, to circularly polarize linearly polarized light as much as possible, and to input the circularly polarized light into an optical fiber to be measured. This invention relates to an optical directional coupling device.

光測定器、例えば被測定光ケーブルに光パルス
を入射し光ケーブル内で反射して戻つてくる後方
散乱光を測定することによつて光ケーブルの異常
箇所を測定する光パルス試験器は、従来、第1図
に示すような光方向性結合器を用いていた。
Optical measuring instruments, such as optical pulse testers that measure abnormalities in optical cables by injecting optical pulses into the optical cable and measuring the backscattered light that is reflected and returned within the optical cable, have conventionally been used as An optical directional coupler as shown in the figure was used.

第1図において、レーザ1から直線偏光の光は
偏光素子、例えば偏光プリズム2を通り、セルフ
オツクレンズ3を介して偏光保存フアイバ4に入
射し、該直線偏光の光を被測定光フアイバ5へ入
射していた。同図において6は光方向性結合器で
あつて前記レーザ1、偏光プリズム2、セルフオ
ツクレンズ3、偏光保存フアイバ4及び受光器フ
アイバ7で当該光方向性結合器6は構成されてお
り、該偏光保存フアイバ4はセルフオツクレンズ
3から出射される光をそのまま直線偏光の光とし
て、被測定光フアイバ5へ伝達させるための単な
る組立・製造上の手段である。なお8は光コネク
タ8を表わしている。
In FIG. 1, linearly polarized light from a laser 1 passes through a polarizing element, such as a polarizing prism 2, enters a polarization preserving fiber 4 via a self-occurring lens 3, and the linearly polarized light is directed into an optical fiber 5 to be measured. It was incident. In the same figure, reference numeral 6 denotes an optical directional coupler, and the optical directional coupler 6 is composed of the laser 1, a polarizing prism 2, a self-occurring lens 3, a polarization preserving fiber 4, and a receiver fiber 7. The polarization preserving fiber 4 is simply an assembly and manufacturing means for transmitting the light emitted from the self-occurring lens 3 as linearly polarized light to the optical fiber 5 to be measured. Note that 8 represents the optical connector 8.

レーザ1から出された直線偏光の光は光方向性
結合器6を介して被測定光フアイバ5へ入射され
るが、当該被測定光フアイバ5が多モード光フア
イバであるときは、当該被測定光フアイバ5に入
射された直線偏光がランダム方向に崩れ、後方散
乱光として戻つて来る反射光もランダム偏光をし
ており、光方向性結合器6で分岐され受光器フア
イバ7へ導入される後方散乱光の垂直偏波成分は
ほぼ一定となる。これに対し被測定光フアイバ5
が単一モード光フアイバであるときは、当該光フ
アイバの性質上、前記多モード光フアイバと異な
り直線偏光が崩れ難い特性を有しており、被測定
光フアイバ5内で反射して返つてくる後方散乱光
も直線偏光が崩れ難い。しかしながら実際には被
測定光フアイバ5の長さ、被測定光フアイバ5に
掛つている応力、コアの楕円変形、異方性、熱等
に基づいて直線偏光が楕円偏光に変化し、第2図
に示された楕円偏光の垂直偏波成分Xが光方向性
結合器6の偏光プリズム2で分岐され、受光器フ
アイバ7へ導入される。ところで被測定光フアイ
バ5に単一モード光フアイバを用いたとき、前記
説明の楕円偏光の楕円軸がどのような方向に傾い
て返つてくるか一定していないため、受光器で受
光した後方散乱光は第3図に示されたようにギザ
ギザのゆらぎ現象が生じ、測定上好ましからざる
問題点があつた。
The linearly polarized light emitted from the laser 1 is incident on the optical fiber 5 to be measured via the optical directional coupler 6. When the optical fiber 5 to be measured is a multimode optical fiber, The linearly polarized light incident on the optical fiber 5 is disrupted in random directions, and the reflected light that returns as backscattered light is also randomly polarized, and is branched by the optical directional coupler 6 and introduced into the receiver fiber 7. The vertically polarized component of the scattered light remains approximately constant. On the other hand, the optical fiber to be measured 5
When is a single mode optical fiber, unlike the multimode optical fiber, the optical fiber has a property that the linearly polarized light is not easily destroyed, and the light is reflected within the optical fiber 5 to be measured and returned. The linear polarization of backscattered light does not easily collapse. However, in reality, the linearly polarized light changes to elliptically polarized light based on the length of the optical fiber 5 to be measured, the stress applied to the optical fiber 5, the elliptical deformation of the core, anisotropy, heat, etc. The vertically polarized component X of the elliptically polarized light shown in is split by the polarizing prism 2 of the optical directional coupler 6 and introduced into the receiver fiber 7. By the way, when a single mode optical fiber is used as the optical fiber 5 to be measured, the direction in which the elliptical axis of the elliptically polarized light returns as described above is not constant, so the backscattered light received by the optical receiver is As shown in FIG. 3, a jagged fluctuation phenomenon occurred in the light, which caused an undesirable problem in measurement.

本発明は上記の問題点を解決することを目的と
しており、従来の光方向性結合器と被測定光フア
イバとの間に偏光保存光フアイバを接続して被測
定光フアイバに光の振動数で回転する円偏光或い
は円偏光に近い楕円偏光を入射させ、受光器に導
入される後方散乱光を電気的な立場から見ればラ
ンダム状態に偏光が崩れているとみなせる状態で
受光するようにして、楕円偏光の楕円軸の旋光
(不安定さ)によるゆらぎ現象を抑圧できる光方
向性結合装置を提供することを目的としている。
以下第4図以降の図面を参照しながら説明する。
The purpose of the present invention is to solve the above-mentioned problems by connecting a polarization-preserving optical fiber between the conventional optical directional coupler and the optical fiber to be measured. Rotating circularly polarized light or elliptically polarized light close to circularly polarized light is incident, and the backscattered light introduced into the light receiver is received in a state where the polarization can be considered to be randomly collapsed from an electrical standpoint, It is an object of the present invention to provide an optical directional coupling device that can suppress fluctuation phenomena caused by optical rotation (instability) of the elliptical axis of elliptically polarized light.
This will be explained below with reference to the drawings from FIG. 4 onwards.

第4図は本発明に係る光方向性結合装置の一実
施例構成、第5図は本発明に係る光方向性結合装
置を用いて単一モード光フアイバを測定したとき
の後方散乱光の測定曲線の一例を示している。
FIG. 4 shows the configuration of an embodiment of the optical directional coupling device according to the present invention, and FIG. 5 shows the measurement of backscattered light when a single mode optical fiber is measured using the optical directional coupling device according to the present invention. An example of a curve is shown.

第4図において1ないし8は第1図のものに対
応している。被測定光フアイバ5が接続されてい
る光コネクタ11と従来の光方向性結合器6に取
付けられている光コネクタ8との間には偏光保存
フアイバ10が接続される。従がつて本発明に係
る光方向性結合装置9は従来の光方向性結合器6
に偏光保存フアイバ10を介して被測定光フアイ
バ5へ光を入射させるが、当該偏光保存フアイバ
10から出射の際円偏光或いは円偏光に近い楕円
偏光させた上で被測定光フアイバ5へ入射させ
る。すなわちレーザ1から出た直線偏光の光はそ
の直線偏光が保たれた状態で偏光保存フアイバ4
までやつてくる。該偏光保存フアイバ4でその直
線性が保存された光を次の偏光保存フアイバ10
へ入射させる際、偏光保存フアイバ10の出射光
が直線偏光から円偏光または円偏光に近い楕円偏
光になるような偏光面合せを偏光保存フアイバ4
と10との間で行い、前述の如く被測定光フアイ
バ5へは円偏光に近い光を入射させている。
In FIG. 4, numerals 1 to 8 correspond to those in FIG. A polarization maintaining fiber 10 is connected between an optical connector 11 to which the optical fiber 5 to be measured is connected and an optical connector 8 attached to a conventional optical directional coupler 6. Therefore, the optical directional coupler 9 according to the present invention is different from the conventional optical directional coupler 6.
The light is made to enter the optical fiber 5 to be measured via the polarization preserving fiber 10, but upon exiting from the polarization preserving fiber 10, the light is made into circularly polarized light or elliptically polarized light close to circular polarization, and then enters the optical fiber 5 to be measured. . In other words, the linearly polarized light emitted from the laser 1 is passed through the polarization preserving fiber 4 while maintaining its linear polarization.
I'll come up to it. The light whose linearity is preserved in the polarization preserving fiber 4 is transferred to the next polarization preserving fiber 10.
When entering the polarization preserving fiber 4, the polarization plane is adjusted so that the output light from the polarization preserving fiber 10 changes from linearly polarized light to circularly polarized light or elliptically polarized light close to circularly polarized light.
and 10, and as described above, nearly circularly polarized light is incident on the optical fiber 5 to be measured.

今偏光保存フアイバ10の光軸(偏光保存フア
イバの屈析率分布が画く楕円の主軸をいう)を偏
光保存フアイバ4の光軸に対しθ傾けて接続した
ものとする。すなわち、偏光保存フアイバ4から
出射する直線偏光の偏光方向は偏光保存フアイバ
10の光軸とθ傾いているので、aを光の振幅と
したとき偏光保存フアイバ10の中では振幅
acosθとasinθとの直交する光が保存しているもの
と考えられる。そして偏光保存フアイバ10から
出射されるとき、これらが合成され、 x2/(acosθ)2+y2/(asinθ)2−2xycosδ/a2sin
θcosθ =sin2δ ……(1) (ただしδは偏光保存フアイバ10の長さによつ
て起る2成分の位相差) なる楕円偏光になり出射される。これを円偏光と
なる条件 x2+y2=a2/2 ……(2) とするには式(1)において、θ=π/4、δ=π/
2を必要とする。ところでδ、すなわち偏光保存
フアイバ10の長さにつて起る2成分の位相差を
π/2になるように偏光保存フアイバ10をカツ
トすることは製造上不可能に近い。光の波長のオ
ーダで偏光保存フアイバ10をカツトしてδ=
π/2になるようにせねばならないからである。
Now assume that the optical axis of the polarization preserving fiber 10 (referring to the principal axis of the ellipse in which the refractive index distribution of the polarization preserving fiber is drawn) is connected to the optical axis of the polarization preserving fiber 4 at an angle of θ. That is, since the polarization direction of the linearly polarized light emitted from the polarization preserving fiber 4 is inclined by θ with respect to the optical axis of the polarization preserving fiber 10, the amplitude within the polarization preserving fiber 10 is
It is thought that the light that is perpendicular to acosθ and asinθ is conserved. Then, when the light is emitted from the polarization preserving fiber 10, these are combined, x 2 / (acos θ) 2 + y 2 / (asin θ) 2 −2xycos δ/a 2 sin
θcosθ = sin 2 δ (1) (where δ is the phase difference between the two components caused by the length of the polarization preserving fiber 10) The light becomes elliptically polarized light and is emitted. To make this circularly polarized light x 2 + y 2 = a 2 /2 ...(2), in equation (1), θ = π/4, δ = π/
2 is required. However, it is nearly impossible to cut the polarization preserving fiber 10 so that δ, that is, the phase difference between the two components occurring over the length of the polarization preserving fiber 10, becomes π/2. By cutting the polarization preserving fiber 10 on the order of the wavelength of light, δ=
This is because it must be set to π/2.

本発明は偏光保存フアイバ10の長さに関係な
く、偏光保存フアイバ10を偏光保存フアイバ4
に対して相対的に回転させ、双方の光軸を適当な
角度に回転させることにより円偏光または円偏光
に最も近い楕円偏光を得るものである。
Regardless of the length of the polarization preserving fiber 10, the present invention can convert the polarization preserving fiber 10 into a polarization preserving fiber 4.
By rotating both optical axes at appropriate angles, circularly polarized light or elliptically polarized light closest to circularly polarized light is obtained.

このようにして円偏光または円偏光に近い楕円
偏光の光が光コネクタ11を介して被測定光フア
イバ5に出射する。被測定光フアイバ5内で反射
して戻つてくる後方散乱光も円偏光或いは円偏光
に近い楕円偏光であり、光の振動数で回転してい
る。この円偏光或いは円偏光に近い楕円偏光の後
方散乱光は光コネクタ11、偏光保存フアイバ1
0、光コネクタ8、偏光保存フアイバ4、セルフ
オツクレンズ3を通り、偏光プリズム2に入射す
る。偏光プリズム2に入射した後方散乱光はレー
ザ1の水平偏波に対し垂直偏波成分が偏光プリズ
ム2で分岐され、受光器フアイバ7を通つて図示
されていない受光器で受光される。受光器は、例
えばアバランシエフオトダイオード等が使用され
るが、この受光器の電気的な応答速度は光の振動
数に比べはるかに遅い。偏光プリズム2に入射す
る後方散乱光は受光器の電気的応答速度よりはる
かに速い周期で円或いは楕円状に回転しているの
で、電気的な立場から見れば、ランダムの状態に
偏光が崩れているものと見なすことができる。従
がつて偏光プリズム2で受光器側へ分岐される垂
直偏波成分とレーザ1側へ直進する水平偏波成分
とは、ほぼ1対に分布しているものと考えられ
る。そして例え被測定光フアイバ5で旋光して
(不安定で)も第2図に示された垂直偏波成分X
は一定となる。従がつて第5図に示されているよ
うに、後方散乱光の測定曲線は滑らかな曲線とな
り、第3図に示されているギザギザのゆらぎ現象
が抑圧される。
In this way, circularly polarized light or elliptically polarized light close to circularly polarized light is emitted to the optical fiber 5 to be measured via the optical connector 11. The backscattered light reflected within the optical fiber 5 to be measured and returned is also circularly polarized light or elliptically polarized light close to circularly polarized light, and rotates at the frequency of the light. This backscattered light of circularly polarized light or elliptically polarized light close to circularly polarized light is transmitted to the optical connector 11 and the polarization preserving fiber 1.
0, passes through the optical connector 8, the polarization preserving fiber 4, and the self-occurring lens 3, and enters the polarizing prism 2. In the backscattered light incident on the polarizing prism 2, a vertically polarized component of the horizontally polarized wave of the laser 1 is split by the polarizing prism 2, passes through a photoreceiver fiber 7, and is received by a photoreceiver (not shown). For example, an avalanche photodiode is used as the light receiver, but the electrical response speed of this light receiver is much slower than the frequency of light. The backscattered light incident on the polarizing prism 2 rotates in a circle or an ellipse at a period much faster than the electrical response speed of the photoreceiver, so from an electrical standpoint, the polarization is disrupted to a random state. It can be considered that there is. Therefore, it is considered that the vertically polarized wave component branched to the light receiver side by the polarizing prism 2 and the horizontally polarized wave component that goes straight to the laser 1 side are distributed as approximately one pair. Even if the light is rotated (unstable) in the optical fiber 5 to be measured, the vertical polarization component X shown in FIG.
becomes constant. Therefore, as shown in FIG. 5, the measurement curve of the backscattered light becomes a smooth curve, and the jagged fluctuation phenomenon shown in FIG. 3 is suppressed.

なお、偏光保存フアイバ4と10との偏光面合
せは、被測定光フアイバ5へ光パルスを送り、受
光器で受光される後方散乱光の測定曲線を見なが
ら偏光保存フアイバ10の光軸を回転させ、後方
散乱光の測定曲線が最も滑らかな状態になつた位
置で偏光保存フアイバ10を固定する。このとき
偏光保存フアイバ4から10へ出射された直線偏
光は、被測定光フアイバ5へ出射の際円偏光或い
は円偏光に近い楕円偏光となつている。
In order to align the polarization planes of the polarization preserving fibers 4 and 10, a light pulse is sent to the optical fiber 5 to be measured, and the optical axis of the polarization preserving fiber 10 is rotated while observing the measurement curve of the backscattered light received by the optical receiver. Then, the polarization preserving fiber 10 is fixed at a position where the measurement curve of backscattered light is the smoothest. At this time, the linearly polarized light emitted from the polarization preserving fiber 4 to the optical fiber 10 becomes circularly polarized light or elliptically polarized light close to circularly polarized light when emitted to the optical fiber 5 to be measured.

以上説明した如く、本発明によれば、従来の光
方向性結合器と被測定光フアイバとの間に偏光保
存フアイバを接続し、かつ後方散乱光の測定曲線
を見ながら偏光面合せを行うという簡単な作業
で、単一モード光フアイバの旋光による影響、す
なわち楕円偏光の楕円軸の方向が不安定な為に起
こる後方散乱光のゆらぎ現象の影響を抑圧するこ
との可能な光方向性結合装置が実現される。
As explained above, according to the present invention, a polarization preserving fiber is connected between a conventional optical directional coupler and an optical fiber to be measured, and the polarization plane is aligned while observing the measurement curve of backscattered light. An optical directional coupling device that can suppress the effects of optical rotation of a single mode optical fiber, that is, the effects of fluctuations in backscattered light caused by the unstable direction of the ellipse axis of elliptically polarized light, with simple operations. is realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光方向性結合器の構成例、第2
図は後方散乱光の測定曲線にギザギザのゆらぎ現
象が生じることを説明するための説明図、第3図
は従来の光方向性結合器を用いて単一モード光フ
アイバを測定したときの後方散乱光の測定曲線の
一例、第4図は本発明に係る光方向性結合装置の
一実施例構成、第5図は本発明に係る光方向性結
合装置を用いて単一モード光フアイバを測定した
ときの後方散乱光の測定曲線の一例を示してい
る。 図中、1はレーザ、2は偏光プリズム、3はセ
ルフオツクレンズ、4は偏光保存フアイバ、6は
光方向性結合器、7は受光器フアイバ、8は光コ
ネクタ、9は光方向性結合装置、10は偏光保存
フアイバ、11は光コネクタを表わしている。
Figure 1 shows an example of the configuration of a conventional optical directional coupler.
The figure is an explanatory diagram to explain that a jagged fluctuation phenomenon occurs in the measurement curve of backscattered light. Figure 3 shows backscatter when measuring a single mode optical fiber using a conventional optical directional coupler. An example of a light measurement curve, FIG. 4 shows the configuration of an embodiment of the optical directional coupling device according to the present invention, and FIG. 5 shows a measurement of a single mode optical fiber using the optical directional coupling device according to the present invention. An example of a measurement curve of backscattered light is shown in FIG. In the figure, 1 is a laser, 2 is a polarizing prism, 3 is a self-occurring lens, 4 is a polarization preserving fiber, 6 is an optical directional coupler, 7 is a receiver fiber, 8 is an optical connector, and 9 is an optical directional coupler , 10 represents a polarization preserving fiber, and 11 represents an optical connector.

Claims (1)

【特許請求の範囲】[Claims] 1 直線偏光の光を出射する光方向性結合器と、
入射され該直線偏光の光を円偏光又は円偏光に近
い楕円偏光の光に変換して出射するために該光方
向性結合器の出力端に接続されその光軸が該入射
された直線偏光の偏光方向と所要の角度に位置さ
れた偏光保存フアイバと、該偏光保存フアイバを
該所要角度に保持する保持手段とを備えた光方向
性結合装置。
1. An optical directional coupler that emits linearly polarized light;
The optical directional coupler is connected to the output end of the optical directional coupler in order to convert the incident linearly polarized light into circularly polarized light or elliptically polarized light close to circularly polarized light and output it. An optical directional coupling device comprising a polarization preserving fiber positioned at a predetermined angle with respect to a polarization direction, and a holding means for holding the polarization preserving fiber at the predetermined angle.
JP13966083A 1983-07-31 1983-07-31 Optical directional coupling device Granted JPS6031103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13966083A JPS6031103A (en) 1983-07-31 1983-07-31 Optical directional coupling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13966083A JPS6031103A (en) 1983-07-31 1983-07-31 Optical directional coupling device

Publications (2)

Publication Number Publication Date
JPS6031103A JPS6031103A (en) 1985-02-16
JPH0326776B2 true JPH0326776B2 (en) 1991-04-11

Family

ID=15250439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13966083A Granted JPS6031103A (en) 1983-07-31 1983-07-31 Optical directional coupling device

Country Status (1)

Country Link
JP (1) JPS6031103A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159236A (en) * 1984-08-30 1986-03-26 Fujikura Ltd Optical pulse tester for single mode optical fiber
JPS61153617A (en) * 1984-12-27 1986-07-12 Nippon Telegr & Teleph Corp <Ntt> Polarization noise reducing element
EP0208011B1 (en) * 1985-07-10 1988-11-17 Hewlett-Packard GmbH Light coupling device for the optical reflectometry

Also Published As

Publication number Publication date
JPS6031103A (en) 1985-02-16

Similar Documents

Publication Publication Date Title
US4529313A (en) Ring interferometer
Van Deventer Polarization properties of Rayleigh backscattering in single-mode fibers
Knuhtsen et al. Fibre-optic laser Doppler anemometer with Bragg frequency shift utilising polarisation-preserving single-mode fibre
JP2016004048A (en) Compact and low-costed resonator fiber optic gyroscope having optical error reduced
US4138196A (en) Fiber interferometer rotary motion sensor
US4773753A (en) Fiber sensor
JP2782557B2 (en) Rotation sensor
JP2839369B2 (en) Optical carrier generator using stimulated Brillouin scattering
US4461574A (en) Environmentally independent fiber optic rotation sensor
JPH0326776B2 (en)
GB2178554A (en) Optical expanded beam termination
KR900010396A (en) Fiber optic rotation sensor
US9651380B2 (en) Integrated optical coupler and fibre-optic system having such an integrated optical coupler
JP5858629B2 (en) Photovoltage measuring device
JPS60107603A (en) Connecting method of polarization maintaining optical fiber
JPH038499B2 (en)
JPS6071936A (en) Method and device for measuring circular double refraction
EP0283227A2 (en) Optical isolator
US4740049A (en) Technique for measuring a single mode optical fiber
JPS60104271A (en) Magnetic field sensor using polarization plane maintaining optical fiber
JP2751599B2 (en) Hikaribaiyairo
JPH07111456B2 (en) Polarization-maintaining optical fiber type magnetic field sensor
JP2571871B2 (en) Hikaribaiyairo
JP2591852B2 (en) Hikaribaiyairo
US20040197042A1 (en) Method and apparatus for alignment of a polarization maintaining optical fiber