JPS6031047B2 - Method for manufacturing strand insulated cable conductor - Google Patents

Method for manufacturing strand insulated cable conductor

Info

Publication number
JPS6031047B2
JPS6031047B2 JP9621181A JP9621181A JPS6031047B2 JP S6031047 B2 JPS6031047 B2 JP S6031047B2 JP 9621181 A JP9621181 A JP 9621181A JP 9621181 A JP9621181 A JP 9621181A JP S6031047 B2 JPS6031047 B2 JP S6031047B2
Authority
JP
Japan
Prior art keywords
conductor
insulated cable
ammonia
strands
cable conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9621181A
Other languages
Japanese (ja)
Other versions
JPS57210517A (en
Inventor
章二 志賀
晃 松田
雅雄 星野
忠之 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP9621181A priority Critical patent/JPS6031047B2/en
Publication of JPS57210517A publication Critical patent/JPS57210517A/en
Publication of JPS6031047B2 publication Critical patent/JPS6031047B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【発明の詳細な説明】 本発明は電力ケーブル導体特に大容量送電に使用される
表皮効果を低減した素線絶縁ケーブル導体の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a power cable conductor, particularly a bare wire insulated cable conductor with reduced skin effect used for large capacity power transmission.

亀力ケ−ブル導体には直径2〜3肋の銅線を撚り合せた
撚線が使用される。
A stranded wire made by twisting copper wires each having two to three ribs in diameter is used for the cable conductor.

撚り合せ後o‐ル等で圧縮成形して各素線間の空隙をな
くしコンパクトにすることも広く行われている。さらに
大容量導体では分割導体と称して素線を撚り合せた後断
面形状を扇形に圧縮成形したセグメントを所望数用いて
断面円形に組合せて使用されている。かかる分割導体に
おいては各セグメント間は紙やプラスチックのテープを
巻いて絶縁されている場合が多い。例えば導体断面積2
000嫌の6分割導体では各セグメントは直径2.3肋
の鋼索線を斑本撚り合せた後体積充顛率85〜90%に
圧縮されかつ扇形に成形される。交流送電の大容量化と
ともに導体サイズが巨大化されつつあるが導体サイズが
巨大化すると急に表皮効果及び近接効果に起因する送電
損失が顕著化してくる。
It is also widely practiced to compact the wires by compression molding them using an o-ru or the like after twisting to eliminate the gaps between the individual wires. Furthermore, in the case of a large capacity conductor, a desired number of segments, called split conductors, which are formed by twisting strands of wire and then compression molded into a fan-shaped cross-section, are used in combination to form a circular cross-section. In such divided conductors, each segment is often insulated by wrapping paper or plastic tape. For example, conductor cross-sectional area 2
In the case of a 6-segment conductor of 0.000 mm, each segment is made by twisting together steel cables with a diameter of 2.3 ribs, compressing the conductor to a volume filling rate of 85 to 90%, and forming it into a fan shape. As the capacity of AC power transmission increases, the size of the conductor is becoming larger, and as the size of the conductor becomes larger, power transmission losses due to skin effect and proximity effect suddenly become noticeable.

特に表皮効果は重大であり、導体を多分割化し各セグメ
ント間を絶縁するとともに各素線をも絶縁して導体外表
面への電流集中を防止することが本質的な対策とされて
いる。従来、素線を絶縁する方法としてエナメル被覆し
た鋼索線を使用する例がある。
The skin effect is particularly important, and the essential countermeasure is to divide the conductor into multiple segments and insulate each segment, as well as insulate each element wire to prevent current concentration on the outer surface of the conductor. Conventionally, there is an example of using an enamel-coated steel cable as a method of insulating strands.

秦線の撚り合せと圧縮成形の加工工程に耐え得るには2
0〜30A以上の膜厚のエナメル被覆を必要とし極めて
コスト高となってしまう。このためより安価な絶縁物と
して酸化節を表面に形成した銅線を利用する試みがある
。酸化鋼は銅線を大気中で高温(例えば30000以上
)で酸化させることによって容易にその表面に生成でき
るが脆弱で密着性に乏しく実用的でない。これに代って
アルカリ性水溶液中で亜塩素酸などの酸化剤の助けをか
りて化学的に酸化処理する方法が採用される。このよう
に溢式的に生成した酸化銅は微結晶体からなり、比較的
加工性及び密着性に富む特性を有する。撚り合せや圧縮
成形の加工に耐えるには2〜3山以上の膜厚が必要であ
るが、湿式的にこのような膜厚を形成するには多大の化
学薬品と長時間を要するのでやはりコスト高となること
は不可避である。これを改善するために撚り合せや圧縮
成形等の加工を行った後に湿式的に酸化鋼を形成する試
み、すなわち撚線又はセグメントを化成処理する試みが
ある。しかしこの方法では撚線やセグメントの内部の秦
線、特に撚り合せや圧縮成形による素線同志の線接触部
分を完全に絶縁するには超音波の作用などにより線間へ
の処理液の浸入を促進するなどの工夫をしてもlr以上
の平均膜厚を形成しなければならず、撚り合せ前の素線
を化成処理する場合に比べて若干処理コストが軽減され
るものの、それでもやはり1ム以上の膜厚が内部でも形
成されるように処理しなければならないので実用的では
なかつた。本発明はかかる実情に鑑みて鋭意研究した結
果なされたものであり、秦線絶縁効果の大きい高性能の
ケーブル導体を経済的であつ高生産性で製造する方法を
提供するものである。
To withstand the processing process of twisting and compression molding of Qin wire 2
This requires an enamel coating with a film thickness of 0 to 30 A or more, resulting in extremely high costs. For this reason, attempts have been made to use copper wire with oxidized nodes formed on its surface as a cheaper insulator. Oxidized steel can be easily formed on the surface of a copper wire by oxidizing it in the atmosphere at high temperatures (for example, 30,000 or higher), but it is brittle and has poor adhesion, making it impractical. Instead, a method of chemical oxidation treatment using an oxidizing agent such as chlorous acid in an alkaline aqueous solution is adopted. The copper oxide thus produced in an overflowing manner consists of microcrystals and has relatively good workability and adhesion. A film thickness of 2 to 3 ridges or more is required to withstand the processing of twisting and compression molding, but forming a film with such thickness using a wet method requires a large amount of chemicals and a long time, which is costly. It is inevitable that the price will rise. In order to improve this problem, there have been attempts to wet-form oxidized steel after processing such as twisting and compression molding, that is, to chemically treat the strands or segments. However, with this method, in order to completely insulate the stranded wires and the wires inside the segments, especially the contact parts of the wires that are formed by twisting or compression molding, it is necessary to prevent the treatment liquid from entering between the wires by the action of ultrasonic waves. Even if measures such as acceleration are taken, it is necessary to form an average film thickness of lr or more, and although the processing cost is slightly lower than when chemical conversion treatment is applied to the strands before twisting, it is still necessary to form an average film thickness of 1 m This is not practical because processing must be carried out so that a film with a thickness greater than 100% is formed internally as well. The present invention was made as a result of intensive research in view of the above circumstances, and provides an economical and highly productive method for manufacturing a high-performance cable conductor with a large Qin wire insulation effect.

すなわち、本発明は鋼索線を撚り合せた導体をアンモニ
ア又は炭素数5以下の脂肪族アミンを含有する加湿酸化
性雰囲気中に保持し鋼索線表面に平均0.1一以上の腐
食反応生成物を形成することを特徴とする素緑絶縁ケー
ブル導体の製造方法である。
That is, in the present invention, a conductor made of twisted steel cables is maintained in a humidified oxidizing atmosphere containing ammonia or an aliphatic amine having a carbon number of 5 or less, and corrosion reaction products with an average concentration of 0.1 or more are formed on the surface of the steel cables. This is a method of manufacturing a plain green insulated cable conductor, characterized by forming a green insulated cable conductor.

本発明は、軟質金属である鋼線が撚り合せやさらに圧縮
成形加工で互に軽く食込んだ素線相互の接触部の微細な
深い間隙にまで迅速に素線表面に主として銅の酸化物か
らなる腐食生成物の被膜を形成する方法である。
The present invention is designed to rapidly remove mainly copper oxide from the surface of the wires, even in the minute deep gaps in the contact areas of the wires, which have been lightly bitten into each other by twisting or compression molding the soft metal steel wires. This method forms a film of corrosion products.

つまり本発明では、液体よりも一段と拡散性のよい気体
状態でアンモニア又は脂肪族アミンと水蒸気と酸素(空
気)とを素線間に侵入させ、そこで細隙間に働く表面張
力によりアンモニア又は脂肪族アミンを含む水蒸気を液
体の水に凝縮することによって酸素などによる椀の腐食
反応が急速に行なわれるものである。要するに擬緑黍線
の細部への腐食反応物質の供給は拡散性のよい気体状態
で行い、そこで反応は反応性が極度に高い液体状態で行
うようにしたものである。したがって本発明では鋼索線
を撚り合せた導体を、アンモニア又は炭素数5以下の脂
肪族アミンを含有する加湿酸化性雰囲気中に保持するだ
けで、素線間細部に、アンモニア又はァミン、空気中の
酸素及び水分が共に気体状態で容易に侵入し、そこで水
分は液体状態となり、アンモニア又はアミンと酸素は液
体の水に熔解し、アンモニア又はアミンの触媒的作用で
溶存酸素は銅と急速に反応して主として銅の酸化物から
なる腐食生成物の被膜を形成する。
In other words, in the present invention, ammonia or aliphatic amine, water vapor, and oxygen (air) are allowed to enter between the strands in a gaseous state that has better diffusivity than liquid, and the surface tension that acts in the narrow gap causes ammonia or aliphatic amine to enter between the wires. By condensing water vapor containing water into liquid water, the corrosion reaction of the bowl caused by oxygen etc. takes place rapidly. In short, the corrosion reactant is supplied to the details of the pseudogreen line in a gaseous state with good diffusivity, and the reaction is carried out in a liquid state with extremely high reactivity. Therefore, in the present invention, by simply holding a conductor made of twisted steel cables in a humidified oxidizing atmosphere containing ammonia or an aliphatic amine having a carbon number of 5 or less, ammonia or amines in the air can be removed between the strands. Oxygen and moisture both easily enter in the gaseous state, where the moisture becomes a liquid state, ammonia or amine and oxygen are dissolved in liquid water, and the dissolved oxygen rapidly reacts with copper due to the catalytic action of ammonia or amine. This forms a film of corrosion products consisting mainly of copper oxides.

かくして形成される被膜の厚さは平均0.1ム以上あれ
ば素線絶縁ケーブル導体としての機能を果すことができ
る。本発明において加湿酸化性雰囲気の湿度は相対湿度
で約80%以上、好ましくは90%以上あればよい。
If the thickness of the coating thus formed is 0.1 mm or more on average, it can function as a stranded insulated cable conductor. In the present invention, the humidity of the humidified oxidizing atmosphere may be about 80% or more in terms of relative humidity, preferably 90% or more.

このときの温度は室温でもよいが、加溢した方がより急
速に反応が進むので約4び0以上が好ましい。またここ
で酸化性雰囲気というのは酸素を含むということであり
、一般に空気でよく、また酸素の‘を加えて酸素濃度を
高めることもできる。アンモニア又は脂肪族アミンは酸
化反応において触媒的に作用するものと考えられ、その
量は微量あるいは少量でもよく、通常5岬岬〆上で実用
的な促進効果が発揮できる。アンモニアが最とも促進効
果が大であり、その議導体に当る脂肪族アミンも十分効
果を発揮するが炭素数が増加すると共にその効果が低下
する鏡向にあり炭素数6以上では実用上促進効果が得が
たい。したがって本発明で用いる脂肪族アミンは炭素数
5以下のものであり、例えばメチルアミン、ジメチルア
ミン、エチルアミン、プロピルアミン、ブチルアミン等
があり、揮発性の液体あるいは水溶液として入手される
。通常の撚り合せや圧縮成形導体は銅線表面に少量なが
ら潤滑油等の有機物被膜が付着しており、そのため単な
る加湿のみの酸化性雰囲気中では所定の酸化膜厚を得る
のに長時間例えば数日以上を要するので生産性に乏しく
、非実用的となる場合がある。
The temperature at this time may be room temperature, but the reaction proceeds more rapidly with flooding, so the temperature is preferably about 4°C or higher. Further, the oxidizing atmosphere here means that it contains oxygen, and generally air may be used, and the oxygen concentration may be increased by adding oxygen. Ammonia or aliphatic amine is thought to act catalytically in the oxidation reaction, and its amount may be trace or small, and can usually exert a practical accelerating effect. Ammonia has the greatest promoting effect, and its conductor, aliphatic amine, also exhibits sufficient effects, but as the number of carbon atoms increases, the effect decreases, and when the number of carbon atoms is 6 or more, it has no practical promoting effect. is difficult to obtain. Therefore, the aliphatic amine used in the present invention has 5 or less carbon atoms, such as methylamine, dimethylamine, ethylamine, propylamine, butylamine, etc., and is available as a volatile liquid or an aqueous solution. Ordinary twisted or compression-molded conductors have a small amount of organic film such as lubricating oil attached to the surface of the copper wire, so in an oxidizing atmosphere with only humidification, it takes a long time (for example, several hours) to obtain the desired oxide film thickness. Since it takes more than a day, productivity is poor and it may be impractical.

このため、有機物被膜の付着した導体を予じめトルェン
等の有機溶媒で洗浄することもできるが、線間間隙まで
完全に清浄化するには大量の溶媒を用いかつ設備、動力
、人手等を要することは言うまでもない。これに対して
本発明では、アンモニア又はアミンを加湿酸化性雰囲気
に含有せしめたことにより、上記の如き洗浄前処理を省
略しても迅速に絶縁被膜が生成されるので工業的に著し
く有利である。
For this reason, it is possible to clean the conductor with the organic film attached in advance with an organic solvent such as toluene, but it requires a large amount of solvent and equipment, power, manpower, etc. to completely clean the gaps between the wires. Needless to say, this is essential. On the other hand, in the present invention, since ammonia or amine is contained in the humidified oxidizing atmosphere, an insulating film can be formed quickly even if the above-mentioned cleaning pretreatment is omitted, which is extremely advantageous industrially. .

さらに、本発明方法によって得られる絶縁被膜すなわち
主として銅の酸化物からなる腐食生成物の被膜は繊密で
しかも鋼界面との密着性に富み、従来の湿式化成処理に
よる生成物の被膜に比べて遜色ないものであるとし同時
に腐食生成物以外の物質の付着や吸蔵がほとんどない点
でも大きな利点である。すなわち、従来の緑式処理法で
は前述の如く、アルカリ性の不輝性塩類の濃厚溶液を使
用するので撚線間隙に浸入したかかる溶液を十分洗出す
るには長時間の洗浄を必要とする。それでも洗浄不十分
な部分が生じそこに塩類が残留し、かかる導体を使用し
たOFケーブルは運転時に絶縁油の性能低下が起き絶縁
破壊と言う致命的な事故をもたらすことになる。本発明
方法においては、アンモニア又は炭素数5以下の脂肪族
アミンは揮発性物質であり、しかも少量しか使用しない
ので、反応処理後の導体には、洗浄せずそのままでアン
モニア又はアミンの痕跡も認め得ぬのが普通である。
Furthermore, the insulating coating obtained by the method of the present invention, that is, the corrosion product coating mainly consisting of copper oxide, is dense and has excellent adhesion to the steel interface, compared to the coating produced by conventional wet chemical conversion treatment. It is comparable in quality, and at the same time has a great advantage in that there is almost no adhesion or occlusion of substances other than corrosion products. That is, as mentioned above, in the conventional green processing method, a concentrated solution of alkaline non-bright salts is used, and therefore, a long cleaning time is required to sufficiently wash out the solution that has entered the gaps between the strands. Even so, there will be areas where cleaning is insufficient and salts will remain there, and in OF cables using such conductors, the performance of the insulating oil will deteriorate during operation, resulting in a fatal accident called dielectric breakdown. In the method of the present invention, ammonia or aliphatic amines having carbon atoms of 5 or less are volatile substances and are used only in small quantities, so traces of ammonia or amines are observed in the conductor after reaction treatment without cleaning. It is normal to not get it.

したがって反応処理後導体は何ら洗浄を必要としない。
たとえ処理条件によって例えば低温で処理するなどして
アンモニア又はアミンの残留が心配される場合でも70
〜80oo以上の温度で短時間加熱するだけでの簡便な
工程を付加するのみでかかる残留物を皆無にすることが
できるので、いずれにしろ本発明では洗浄が不要である
。反応に要する時間は湿度、温度、雰囲気などによって
異なるが通常2〜3日以内である。
Therefore, the conductor does not require any cleaning after the reaction treatment.
Even if there is concern about residual ammonia or amines due to processing conditions, such as processing at low temperatures, the
In any case, the present invention does not require cleaning, since such residues can be completely eliminated by simply adding a simple step of heating at a temperature of ~80 oo or more for a short time. The time required for the reaction varies depending on humidity, temperature, atmosphere, etc., but is usually within 2 to 3 days.

処理方法としても特に限定されるものではなく、例えば
鋼索線を撚り合せた導体をコイル状に巻いた状態で望ま
しくは加湿加溢したチャンバー中に放置するだけでよく
、これにより、酸化鋼を主体とする黒色の被膜が素線表
面に形成される。
The treatment method is not particularly limited; for example, it is sufficient to simply leave a conductor made of twisted steel wires in a coiled state, preferably in a chamber filled with humidification. A black coating is formed on the surface of the wire.

なおチャンバ−内の条件は一定に保持するよりは、湿度
又は温度を上下にサイクル的に変化させることにより反
応が一層促進され有益である。アンモニア又はアミンは
一定量をガス状態でチャンバー内に注入することもでき
るが、水溶液でチヤンバー内の底部に入れておいてその
蒸気を発生させて利用することもできる。本発明におい
て鋼索線を撚り合せた導体とは所望本数の鋼索線を単に
綴り合せただけの導体またはさらにこの導体に圧縮成形
を施してなる導体などであり、その導体形状については
何ら限定されない。
Note that, rather than keeping the conditions in the chamber constant, it is advantageous to cyclically change the humidity or temperature up and down to further promote the reaction. A certain amount of ammonia or amine can be injected into the chamber in a gaseous state, or it can also be used as an aqueous solution by placing it in the bottom of the chamber and generating its vapor. In the present invention, a conductor made of twisted steel cables is a conductor made by simply tying together a desired number of steel cables, or a conductor obtained by compression molding this conductor, and there are no limitations on the shape of the conductor.

分割導体については各セグメントを本発明方法によって
処理した後でセグメントを分割導体に成形するのが一般
的であるが、セグメントを腐食生成物形成処理せず分割
導体に成形した後で本発明方法による処理を行ってもよ
い。以上の如く、本発明では、温式腐食反応に必要な水
分等を先ず気体状態で供9台するので撚線導体の内部素
線間の微小な間隙にまで迅速かつ一様に水分等が供艶台
され、そこで凝縮して液体状の水となり、その結果内部
の素線間にも撚線導体表面の素線と大差なくほぼ等しい
厚さの絶縁被膜が形成されることになる。
For segmented conductors, it is common to process each segment by the method of the present invention and then form the segments into segmented conductors. Processing may be performed. As described above, in the present invention, since the moisture etc. necessary for the hot corrosion reaction are first supplied in a gaseous state, the moisture etc. are quickly and uniformly supplied to the minute gaps between the internal strands of the stranded conductor. There, it condenses into liquid water, and as a result, an insulating coating is formed between the internal strands with a thickness that is almost the same as that of the strands on the surface of the stranded wire conductor.

したがって、導体内外の黍線に形成される絶縁被膜の厚
さに大差が見られた従釆の湿式酸化処理法では、導体の
表面に位置する素線に形成これる絶縁被膜の厚さが著し
く厚くなるまで処理しないと内部素線の電気絶縁に必要
なだけの厚さの被膜が生成されないので全体として平均
肉厚が2〜3rと厚くなってし、のに対して、本発明で
は、上記の如く内外素線ともほぼ等しい厚さの被膜が均
一に生成されるので、平均肉厚が少なくとも0.1ムで
その電気的機能を果すものである。
Therefore, in the conventional wet oxidation treatment method, where there was a large difference in the thickness of the insulating film formed on the inside and outside of the conductor, the thickness of the insulating film formed on the strands located on the surface of the conductor was significantly different. If the film is not treated until it becomes thick, a film with the thickness necessary for electrical insulation of the internal strands will not be generated, so the average thickness will be as thick as 2 to 3 r as a whole.In contrast, in the present invention, the above-mentioned As shown in FIG. 2, a coating having approximately the same thickness is uniformly formed on both the inner and outer strands, so that the electrical function can be achieved with an average thickness of at least 0.1 mm.

しかも本発明では被膜生成反応自体は、湿式的に行われ
るので、従来の緑式酸化処理法とは異なり、繊密で密着
性に富みかつ比較的加工性の良い絶縁被膜が容易に縛ら
れる。
Furthermore, in the present invention, the film formation reaction itself is carried out in a wet manner, so unlike the conventional green oxidation treatment method, the insulating film, which is dense, highly adhesive, and relatively processable, is easily bound.

次に本発明を実施例及び比較例で説明する。Next, the present invention will be explained using Examples and Comparative Examples.

実施例 1直径2.3肌の軟鋼線総本を撚り合せ、これ
を断面扇形に圧縮成形してセグメントを得た。このセグ
メントをコイル状に巻き、相対湿度95%、温度70%
のチャンバー内に入れた。このチャンバーには70の血
のアンモニアガスを含有する空気を流入させた。1幼時
間放置後コイル状のセグメントを取り出した。
Example 1 Mild steel wires having a diameter of 2.3 mm were twisted together and compression molded into a fan-shaped cross section to obtain segments. This segment is wound into a coil at a relative humidity of 95% and a temperature of 70%.
was placed in the chamber. Air containing 70 g of blood ammonia gas was introduced into the chamber. After leaving it for one hour, the coiled segment was taken out.

かくして処理したセグメントの一部を切り取りカソード
還元法(電解液0.1N−KCそ水溶液、亀流密度0.
軌の/仇)によって表面の銅酸化物被膜を測定した結果
平均0.41山の厚さであった。
A part of the thus treated segment was cut out and subjected to cathodic reduction method (electrolyte 0.1N-KC aqueous solution, tortoise current density 0.
The copper oxide film on the surface was measured using a method of measuring the thickness of the copper oxide film, and the average thickness was 0.41 mounds.

次に、かくして得たセグメントを6本撚り合せて導体断
面積2000嫌の6分割導体とし、この直流抵抗値Ro
と50HZ交流抵抗値R^とを夫々測定し表皮効果係数
y=鷺−1を算出したところに0.04であった。
Next, six segments obtained in this way are twisted together to form a six-divided conductor with a conductor cross-sectional area of 2000, and the DC resistance value Ro
The skin effect coefficient y=Sagi-1 was calculated by measuring the 50Hz AC resistance value R^ and found to be 0.04.

なお全く上記処理をしなかったセグメントのソは0.1
5であった。
In addition, the value of the segment that did not undergo any of the above processing is 0.1.
It was 5.

実施例 2 実施例1においてアンモニアガス流入に替えてチャンバ
ー内にメチルアミン5%溶液50そを用いたほかは実施
例1と全く同様に実験した結果鋼酸化物被膜の厚さは平
均0.25rであり、表皮効果係数yは0.雌であった
Example 2 An experiment was carried out in exactly the same manner as in Example 1, except that 50% methylamine solution was used in the chamber instead of ammonia gas inflow. As a result, the average thickness of the steel oxide film was 0.25 r. and the skin effect coefficient y is 0. It was a female.

またチャンバー内での放置時間を2岬時間とした場合は
、被膜の厚さは平均0.52山であり、yは0.05で
あった。
Further, when the standing time in the chamber was 2 hours, the average thickness of the film was 0.52 peaks, and y was 0.05.

実施例 3 実施例1において相対湿度90%、温度6ぴ0、アンモ
ニアガス濃度を100Q剛としたほかは実施例1と全く
同様に実験した場合は、銅酸化物被膜の厚さは平均0.
20一であり、yは0.09であった。
Example 3 When an experiment was conducted in exactly the same manner as in Example 1 except that the relative humidity was 90%, the temperature was 60%, and the ammonia gas concentration was 100Q, the average thickness of the copper oxide film was 0.
201, and y was 0.09.

実施例 4実施例1において相対湿度聡%、温度80o
o、アンモニアガス濃度を9■mとしたほかは実施例1
と全く同様に実験した場合は銅酸化物被膜の厚さは平均
0.52rであり、yは0.04であった。
Example 4 In Example 1, the relative humidity was % and the temperature was 80o.
o, Example 1 except that the ammonia gas concentration was 9 m
When an experiment was conducted in exactly the same manner as above, the average thickness of the copper oxide film was 0.52r, and y was 0.04.

実施例 5実施例1においてアンモニアガス流入に替え
てチャンバ−内にプロピルアミン5%水溶液50夕を用
い処理時間を24時間としたほかは実施例1と全く同様
に実験した場合は、被膜厚は平均0.37山であり、y
は0.07であった。
Example 5 If an experiment was conducted in exactly the same manner as in Example 1, except that a 5% aqueous solution of propylamine was used in the chamber for 50 minutes instead of ammonia gas inflow, and the treatment time was changed to 24 hours, the film thickness would be as follows. The average is 0.37 peaks, y
was 0.07.

実施例 6 実施例4で用いたと同じ圧縮成形セグメントを6本撚り
合せて6分割導体としてから、相対湿度95%、温度9
ぴ○、アンモニアガス濃度100血のチヤンバー内に入
れて2岬時間放置したところ、酸化被膜厚は平均0.4
8仏であり、yは0.05であった。
Example 6 The same six compression molded segments used in Example 4 were twisted together to form a 6-segment conductor, and then heated to a relative humidity of 95% and a temperature of 9.
Pi○, when I put it in a chamber with an ammonia gas concentration of 100 and left it for 2 hours, the average thickness of the oxide film was 0.4
8 Buddhas, and y was 0.05.

比較例 1実施例1において、アンモニアガスの流入を
しなかったほかは実施例1と全く同様にした場合は被膜
厚は平均0.07仏であり、yは0.13であった。
Comparative Example 1 When Example 1 was carried out in exactly the same manner as in Example 1 except that ammonia gas was not introduced, the average coating thickness was 0.07 mm, and y was 0.13.

比較例 2比較例1において、処理に先立ち、工業用ァ
ロマティックソルベント中に1時間セグメントを浸溝脱
脂処理してから乾燥し、次いでチャンバー内タ内に入れ
て、以下比較例2と同一条件で処理した結果被膜厚は平
均0.13ムであり、yは0.10であった。
Comparative Example 2 In Comparative Example 1, prior to treatment, the segment was immersed in an industrial aromatic solvent for 1 hour to degrease the segment, then dried, then placed in a chamber, and then subjected to the same conditions as Comparative Example 2. As a result of the treatment, the average film thickness was 0.13 mm, and y was 0.10.

以上の如く、本発明方法によれば、上導体素線上に形成
される腐食生成物被膜は、導体内部の素線0間にも均一
に生成されるので、導体全体としての平均膜厚が薄くて
も各素線間の電気絶縁作用を有効に発揮できるばかりで
なく、密着かつ繊密であるのでケーブル使用中に導体が
受ける機械的及び熱的変形にも充分耐え得ることができ
る。
As described above, according to the method of the present invention, the corrosion product film formed on the upper conductor strand is uniformly formed even between the strands inside the conductor, so that the average film thickness of the entire conductor is thin. Not only can it effectively exert an electrical insulation effect between each strand even when the cable is in use, but also it can sufficiently withstand the mechanical and thermal deformation that the conductor undergoes during use of the cable because it is close and dense.

タ また本発明による処理は、コイル状に巻いた導体を
収納できるチャンバーと、温度、湿度などを発生制御す
る簡単安価な装置とからなり、小スペースしか必要とし
ない設備で行うことができる。
Furthermore, the treatment according to the present invention can be carried out with equipment that requires only a small space, as it consists of a chamber that can accommodate a coiled conductor and a simple and inexpensive device that generates and controls temperature, humidity, etc.

その作業としても所定時間放置した後チャンバー0から
取り出し、そのまま導体として使用できるという単純な
ものである。したがって本発明は多量の有毒薬剤や用水
を使用し、かつその廃水処理を不可欠とする従来の湿式
処理法に比べて、生産性、経済性共に著し〈す5ぐれた
方法である。
The process is as simple as leaving it for a predetermined period of time, then taking it out of the chamber 0 and using it as a conductor. Therefore, the present invention is a method that is significantly superior in terms of productivity and economy compared to the conventional wet treatment method, which uses a large amount of toxic chemicals and water and requires wastewater treatment.

Claims (1)

【特許請求の範囲】 1 銅素線を撚り合せた導体をアンモニア又は炭素数5
以下の脂肪族アミンの蒸気を含有する加湿酸化性雰囲気
中に保持し銅素線表面に平均0.1μ以上の腐食反応生
成物を形成することを特徴とする素線絶縁ケーブル導体
の製造方法。 2 銅素線を撚り合せた上記導体が分割導体であること
を特徴とする特許請求の範囲第1項記載の素線絶縁ケー
ブル導体の製造方法。 3 銅素線を撚り合せた上記導体が銅素線を撚り合せた
後圧縮成形された導体であることを特徴とする特許請求
の範囲第1項記載の素線絶縁ケーブル導体の製造方法。
[Claims] 1. A conductor made by twisting copper wires with ammonia or carbon number 5
1. A method for manufacturing a wire insulated cable conductor, which comprises maintaining the following in a humidified oxidizing atmosphere containing vapor of an aliphatic amine to form a corrosion reaction product having an average size of 0.1 μ or more on the surface of a copper wire. 2. The method for manufacturing a strand insulated cable conductor according to claim 1, wherein the conductor made of twisted copper strands is a split conductor. 3. The method for manufacturing a strand insulated cable conductor according to claim 1, wherein the conductor made of copper strands is a conductor that is compression-molded after stranding copper strands.
JP9621181A 1981-06-22 1981-06-22 Method for manufacturing strand insulated cable conductor Expired JPS6031047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9621181A JPS6031047B2 (en) 1981-06-22 1981-06-22 Method for manufacturing strand insulated cable conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9621181A JPS6031047B2 (en) 1981-06-22 1981-06-22 Method for manufacturing strand insulated cable conductor

Publications (2)

Publication Number Publication Date
JPS57210517A JPS57210517A (en) 1982-12-24
JPS6031047B2 true JPS6031047B2 (en) 1985-07-19

Family

ID=14158906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9621181A Expired JPS6031047B2 (en) 1981-06-22 1981-06-22 Method for manufacturing strand insulated cable conductor

Country Status (1)

Country Link
JP (1) JPS6031047B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583991U (en) * 1992-04-17 1993-11-12 富士通株式会社 Electromagnetic relay

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086790A (en) * 1983-10-18 1985-05-16 松下電器産業株式会社 Flexible heating wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583991U (en) * 1992-04-17 1993-11-12 富士通株式会社 Electromagnetic relay

Also Published As

Publication number Publication date
JPS57210517A (en) 1982-12-24

Similar Documents

Publication Publication Date Title
JPH033322B2 (en)
JPS6031047B2 (en) Method for manufacturing strand insulated cable conductor
JPS6031049B2 (en) Method for manufacturing strand insulated cable conductor
JPS6031048B2 (en) Manufacturing method of strand insulated conductor
JPS59808A (en) Method of producing strand insulated conductor
JP2565892B2 (en) Electrical wire
JPH0421287B2 (en)
JPS6314446B2 (en)
JPH03173019A (en) Element-wire insulated conductor manufacture
JPS6057165B2 (en) cable conductor
JPS6031050B2 (en) Manufacturing method of strand insulated conductor
JPS5810314A (en) Method of producing strand insulated conductor
JPS6250928B2 (en)
JPH11306882A (en) Electric power cable and manufacture thereof
JPH06203665A (en) Manufacture of superconducting cable
JPS641884B2 (en)
JPS5832176Y2 (en) power cable
JPS6136005Y2 (en)
JPH0566689B2 (en)
JPH03173020A (en) Element-wire insulated conductor manufacture
JPH0461711A (en) Inorganic insulated electric wire
JPH0652641B2 (en) Insulated winding manufacturing method
JPS5855573A (en) Treating liquid for forming copper oxide coating on surface of copper
JPH0351794B2 (en)
JPH03176916A (en) Manufacture of element wire insulated conductor