JPH03173020A - Element-wire insulated conductor manufacture - Google Patents

Element-wire insulated conductor manufacture

Info

Publication number
JPH03173020A
JPH03173020A JP31368689A JP31368689A JPH03173020A JP H03173020 A JPH03173020 A JP H03173020A JP 31368689 A JP31368689 A JP 31368689A JP 31368689 A JP31368689 A JP 31368689A JP H03173020 A JPH03173020 A JP H03173020A
Authority
JP
Japan
Prior art keywords
conductor
copper
contact
oxide film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31368689A
Other languages
Japanese (ja)
Inventor
Fumio Takeshita
竹下 文夫
Akira Imai
章 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP31368689A priority Critical patent/JPH03173020A/en
Publication of JPH03173020A publication Critical patent/JPH03173020A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the formation of a partly poor oxide film on the surface of each of copper element-wires so as to form a uniform oxide film all over the length of the copper twisted element-wire conductor by heating a copper twisted element-wire conductor and then bringing it into contact with an oxidizing reaction gas of a temperature higher than its temperature to form an oxide film on its surface at a point of the time when its temperature rise rate becomes steady. CONSTITUTION:When a copper conductor is started to be brought into contact with an oxidizing reaction gas in such a condition that the temperature rise rate of the conductor does not reach its steadiness, copper hydroxide may be generated because the conductor temperature is too low to sufficiently advance the film-forming reaction of copper oxide. In order to satisfactorily advance the oxidizing reaction, a preferable gas contact start temperature of the conductor is specified to range from 30 deg.C to 35 deg.C. When the copper twisted element-wire conductor is brought into contact with the oxidizing reaction gas to form an oxide film, it is brought into contact with the oxidizing reaction gas in such a condition that the temperature rise rate of the copper twisted element-wire conductor itself becomes steady. The oxidizing reaction of the surface of each of copper element-wires may thus be advanced quickly to satisfactorily form the copper oxide film.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、大型ケーブル用の低損失化導体として有用な
素線絶縁導体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a strand insulated conductor useful as a low-loss conductor for large cables.

(従来の技術) 電力震要の増大に伴って、電カケープルの導体の大型化
が進んでいる。
(Prior Art) As the demand for electric power increases, the conductors of power cables are becoming larger.

そして、大型ケーブルで大容量送電を行う場合、ケーブ
ルを構成する導体の表皮効果による交流抵抗が増大する
ため、これを低減する方法が検討されている。
When large-capacity power transmission is performed using a large cable, alternating current resistance increases due to the skin effect of the conductors that make up the cable, so methods to reduce this are being studied.

たとえば、低損失化導体として、通當、導体の断面積が
1000mm2以上となる場合、銅素線を撚り合せて断
面形状を扇形に圧縮成形したセグメント導体を作製し、
このセグメント導体を所要数集合させて断面形状を円形
にした分割導体が使用されている。
For example, when a conductor with a cross-sectional area of 1000 mm2 or more is used as a low-loss conductor, a segment conductor is produced by twisting copper wires together and compression-molding the cross-sectional shape into a sector shape.
A divided conductor is used in which a required number of segment conductors are assembled to form a circular cross-sectional shape.

さらに、各セグメント間を絶縁テープなどで絶縁すると
ともに、セグメントを構成する各銅素線をも絶縁して、
導体表層部への電流の集中を防止している。
Furthermore, we insulate each segment with insulating tape, etc., and also insulate each copper wire that makes up the segment.
Prevents concentration of current on the surface layer of the conductor.

銅素線の絶縁方法としては、銅素線の表面に黒色の酸化
皮膜を形成することが知られており、このような素線絶
縁導体は、セグメント導体のユニットを酸化処理液(た
とえばNaCl02 + Na011溶液、112 0
2 + 1lNO!溶液など)中に浸漬し、液相反応で
銅素線表面にCuO皮膜を形成する湿式法や、導体をア
ンモニア雰囲気下で加熱し、気相反応で銅素線表面にC
uO皮膜を形成する乾式法などによって作製されている
As a method for insulating copper wire, it is known to form a black oxide film on the surface of the copper wire, and such wire insulated conductors are manufactured by treating the segment conductor units with an oxidizing solution (for example, NaCl02 + Na011 solution, 112 0
2+1lNO! There is a wet method in which the conductor is immersed in a solution (such as a solution) to form a CuO film on the surface of the copper wire through a liquid phase reaction, or a conductor is heated in an ammonia atmosphere to form a CuO film on the surface of the copper wire through a gas phase reaction.
It is manufactured by a dry method that forms a uO film.

(発明が解決しようとする課題) 上述したような酸化皮膜は、エナメル皮膜などに比べて
膜厚が薄く、電気的、機械的にも優れた特性を有し、そ
の幅広い適用が期待されているものである。
(Problem to be solved by the invention) The oxide film described above is thinner than enamel films and has excellent electrical and mechanical properties, and is expected to be widely applied. It is something.

ところが、銅素線導体への酸化処理は通常、導体をドラ
ムに巻きつけて行われ、このようなドラム巻きの方法で
は、長い導体がドラムにt11周にも亘って巻かれるた
め、銅素線導体同士が接触し、この接触部分には充分な
酸化反応ガスあるいは酸化反応溶液が浸透しないという
現象が生じる。
However, oxidation treatment of copper bare wire conductors is usually carried out by winding the conductor around a drum, and in this drum winding method, a long conductor is wound around the drum for t11 times. A phenomenon occurs in which the conductors come into contact with each other, and sufficient oxidizing reaction gas or oxidizing reaction solution does not penetrate into this contact area.

このため、銅素線表面に形成されるCuO皮膜が全体と
して不均一となり、さらには、銅素線の一部に不要な成
分(たとえば水酸化銅等)が生成するという問題がある
For this reason, there is a problem that the CuO film formed on the surface of the copper wire becomes non-uniform as a whole, and unnecessary components (for example, copper hydroxide, etc.) are generated on a part of the copper wire.

また、良好に酸化皮膜が形成された導体部分も、導体の
全長が100w以上と長くなる場合、次工程への送り出
し時に導体同士の接触による、擦れやぶつかりによって
皮膜が傷つき易く、絶縁不良、信頼性低下の原因となっ
ている。
In addition, even if the conductor part has a well-formed oxide film, if the total length of the conductor is longer than 100W, the film will be easily damaged by rubbing or bumping due to contact between the conductors when sent to the next process, resulting in poor insulation and reliability. It is the cause of sexual decline.

したがって、素線絶縁導体の信頼性向上を図る上で、ド
ラム巻き時の導体同士の接触による部分的な酸化反応不
良をなくし、同時に導体同士の接触による酸化皮膜の損
1uを防止することが課題となっている。
Therefore, in order to improve the reliability of bare wire insulated conductors, it is necessary to eliminate partial oxidation reaction failures due to contact between conductors during drum winding, and at the same time prevent loss of 1u of oxide film due to contact between conductors. It becomes.

本発明はこのような課題を解決するためになされたもの
で、銅素線表面における部分的な酸化皮膜形成不良を防
止し、銅素線導体全長に互って均一な酸化皮膜を形成す
ることのできる素線絶縁導体の製造方法を提供すること
を目的とする。
The present invention has been made to solve these problems, and aims to prevent the formation of a partial oxide film on the surface of a copper wire conductor and form a uniform oxide film over the entire length of the copper wire conductor. The purpose of the present invention is to provide a method for manufacturing a stranded insulated conductor that can achieve the following.

[発明の構成] (課題を解決するための手段) 本発明の素線絶縁導体の製造方法は、銅素線を撚り合せ
た銅撚線導体を加熱し、この加熱によって前32銅撚線
導体の昇温速度が定常になった時点で、該銅撚線導体を
この銅撚線導体の温度よりも高い温度の酸化反応ガスと
接触させ、前記銅素線導体の表面に酸化皮膜を形成する
ことを特徴ととしている。
[Structure of the Invention] (Means for Solving the Problems) The method for manufacturing a stranded insulated conductor of the present invention involves heating a copper stranded conductor made by twisting copper strands together, and by this heating, the first 32 copper stranded conductor When the temperature increase rate becomes steady, the stranded copper wire conductor is brought into contact with an oxidizing reaction gas at a temperature higher than the temperature of the stranded copper wire conductor to form an oxide film on the surface of the copper wire conductor. It is characterized by this.

本発明においては、通常の銅撚線導体、または#4撚線
導体をロールなどで圧縮成形したセグメント導体を、た
とえば密封加熱装置内に配置して加熱する。
In the present invention, a segment conductor obtained by compression molding a normal copper stranded conductor or a #4 stranded conductor using a roll or the like is placed in, for example, a sealed heating device and heated.

酸化反応ガスを生成させるためには通常、アンモニア水
が用いられ、これを上記密封加熱容器内の別室に配置し
て加熱開始直後は導体と接触させず、導体の昇温速度が
定常状態となった時点でガスを導入し、酸化反応を行わ
せる。
Aqueous ammonia is usually used to generate the oxidation reaction gas, and it is placed in a separate chamber within the sealed heating container and is not brought into contact with the conductor immediately after heating starts, so that the temperature rise rate of the conductor reaches a steady state. At that point, gas is introduced to cause the oxidation reaction to occur.

または、導体加熱装置とは全く別の装置内で酸化反応ガ
スを生成させ、導体の昇温速度が定常となった時点で、
導体加熱装置内にガスを吹込み、酸化皮膜の形成を行っ
ても良い。
Alternatively, the oxidation reaction gas is generated in a device completely separate from the conductor heating device, and once the temperature increase rate of the conductor becomes steady,
The oxide film may be formed by blowing gas into the conductor heating device.

導体の昇温速度が定常に達しない状態で酸化反応ガスと
の接触を開始すると、酸化銅の皮膜形成反応が充分に進
行するには温度が低いため、このような低温状態で長時
間ガスと接触することにより、水酸化銅が生成してしま
うのである。
If contact with the oxidizing reaction gas is started before the heating rate of the conductor has reached a steady state, the temperature is too low for the copper oxide film formation reaction to proceed sufficiently, so if the conductor is exposed to the gas for a long time at such a low temperature, Upon contact, copper hydroxide is produced.

酸化反応を良好に進行させるために、より好ましいガス
接触開始温度は導体温度が30’C〜35℃の範囲の温
度である。
In order to promote the oxidation reaction favorably, a more preferable gas contact initiation temperature is a conductor temperature in the range of 30'C to 35C.

(作 用) 銅撚線導体の長さが長い場合、加熱容器内の雰囲気温度
と導体自身の温度とでは昇温速度に差が生じ、初期には
雰囲気は充分に昇温しでいても、導体の方は充分に温度
が上がっていないという現象が生じる。
(Function) When the length of the copper stranded wire conductor is long, there will be a difference in the rate of temperature rise between the ambient temperature inside the heating container and the temperature of the conductor itself, and even if the temperature of the atmosphere has risen sufficiently at the beginning, A phenomenon occurs in which the temperature of the conductor does not rise sufficiently.

このとき、導体が酸化反応ガスと接触すると、導体自身
が充分に反応するだけの温度に達していない状態で長時
間酸化反応ガスと接触することになり、水酸化銅を生成
させてしまうのである。
At this time, if the conductor comes into contact with the oxidizing reaction gas, the conductor itself will be in contact with the oxidizing reaction gas for a long time before it reaches a temperature sufficient to react sufficiently, resulting in the formation of copper hydroxide. .

そこで、本発明においては、銅撚線導体に絶縁のための
酸化皮膜を酸化反応ガスと接触させて形成する際、銅撚
線導体自身の昇温速度が定常となった状態で酸化反応ガ
スと接触させている。
Therefore, in the present invention, when an oxide film for insulation is formed on a copper stranded wire conductor by contacting it with an oxidizing reaction gas, the heating rate of the copper stranded wire conductor itself becomes steady. I am in contact with it.

これにより、銅素線表面の酸化反応を速やかに進行させ
、目的とする酸化鋼のみが良好に形成される。
As a result, the oxidation reaction on the surface of the copper wire progresses rapidly, and only the desired oxidized steel is formed satisfactorily.

(実施例) 次に本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例 3000ff1112ノ断面積ヲHスル長す200I1
1ノア分割導体をドラムに巻き付け、加熱装置内の一室
に配置した。
Example 3000ff1112 cross-sectional area length 200I1
A 1 Noah split conductor was wrapped around a drum and placed in a chamber within the heating device.

また、この加熱装置の別室内に、酸化反応ガスを生成さ
せるための596アンモニア水を配置した。
Furthermore, 596 ammonia water for generating oxidation reaction gas was placed in a separate chamber of this heating device.

この別室は、上記7分割導体の配置された一室に通じる
ガス導入口が設けられている。
This separate room is provided with a gas inlet that communicates with the room in which the seven-part conductor is arranged.

その後、加熱装置内を25℃から5℃/hの昇温速度で
加熱を開始し、5%アンモニア水から酸化反応ガスを生
成させると同時に、導体温度のalll定を行った。
Thereafter, heating was started in the heating device from 25° C. at a temperature increase rate of 5° C./h, and at the same time an oxidizing reaction gas was generated from 5% ammonia water, all conductor temperatures were determined.

昇温開始後、導体の昇lH速度が定常となり、導体温度
が31”Cまで上がった時点で、加熱装置別室から酸化
反応ガスを導入し、導体と接触させ、酸化鋼の皮膜形成
を開始した。
After the temperature rise started, when the IH rate of the conductor became steady and the conductor temperature rose to 31"C, an oxidizing reaction gas was introduced from a separate room of the heating device, brought into contact with the conductor, and the formation of an oxidized steel film was started. .

加熱装置の加熱は80℃まで昇温を続け、約10時間酸
化処理を行った。
The heating device continued to raise the temperature to 80° C., and the oxidation treatment was performed for about 10 hours.

こうして得た素線絶縁導体は、銅素線表面全体に黒色の
酸化皮膜が良好に形成されており、水酸化鋼の生成は認
められなかった。
In the stranded insulated conductor thus obtained, a black oxide film was well formed on the entire surface of the copper strand, and no formation of hydroxide steel was observed.

比較例 300011m 2の断面積を有する長さ20(1mの
7分割導体をドラムに巻き付け、加熱装置内に配置した
Comparative Example A 7-segment conductor of length 20 (1 m) with a cross-sectional area of 300011 m 2 was wound around a drum and placed in a heating device.

また、この加熱装置内に、酸化反応ガスを生成させるた
めの5%アンモニア水を上記導体と隔てて配置した。
Furthermore, 5% ammonia water for generating an oxidation reaction gas was placed in this heating device, separated from the conductor.

その後、加熱装置内を25℃から5℃/!1の昇lH速
度で加熱を開始し、5%アンモニア水から酸化反応ガス
を生成させると同時に、導体の昇温速度が定常状態に達
する前に、導体と酸化反応ガス接触させ、酸化銅の皮膜
形成を開始した。
After that, the inside of the heating device was heated from 25℃ to 5℃/! Heating is started at a rising rate of 1H to generate an oxidizing reaction gas from 5% ammonia water, and at the same time, before the heating rate of the conductor reaches a steady state, the conductor is brought into contact with the oxidizing reaction gas to form a copper oxide film. began to form.

加熱装置の加熱は80℃まで昇温を続け、約10時間酸
化処理を行った。
The heating device continued to raise the temperature to 80° C., and the oxidation treatment was performed for about 10 hours.

こうして得た素線絶縁導体は、銅素線表面に黒色の酸化
皮膜が形成される一方、青緑色の水酸化鋼が生成してい
た。
In the stranded insulated conductor thus obtained, a black oxide film was formed on the surface of the copper strand, while blue-green hydroxide steel was formed.

これらの結果から明らかなように、導体と酸化反応ガス
とを加熱装置の加熱開始と同時に、すぐ接触させる従来
の方法で作製した素線絶縁導体は酸化銅以外に水酸化銅
が生成し、電気絶縁性の低下が見られたのに対し、実施
例の方法で作製した素線絶縁導体は水酸化銅の生成がな
く、酸化銅皮膜を良好に形成することができた。
As is clear from these results, the wire insulated conductor fabricated using the conventional method of bringing the conductor and the oxidizing reaction gas into contact immediately at the same time as the heating starts in the heating device produces copper hydroxide in addition to copper oxide, causing electrical While a decrease in insulation was observed, the wire insulated conductor produced by the method of the example did not produce copper hydroxide, and a copper oxide film could be formed satisfactorily.

なお、上述した実施例では、加熱装置内を2室に仕切り
、l室からもう 1室へガスを導入することによって導
体と酸化反応ガスとを接触させているが、酸化ガス発生
用の加熱装置と導体を加熱する加熱装置とを別個に独立
させて設け、両者の加熱開始温度および導体と反応ガス
との接触条件を、本発明による所定の温度条件で行うこ
とにより水酸化銅の生成を防止することができる。
In the above embodiment, the inside of the heating device is partitioned into two chambers, and the conductor and the oxidizing reaction gas are brought into contact with each other by introducing gas from one chamber to the other. and a heating device for heating the conductor are provided separately, and the heating start temperature of both and the contact condition of the conductor and the reaction gas are set to the predetermined temperature conditions according to the present invention, thereby preventing the formation of copper hydroxide. can do.

[発明の効果] 以上説明したように、本発明の素線絶縁導体の製造方法
によれば、酸化性雰囲気下で導体を加熱することにより
銅素線の表面に酸化皮膜を形成するにあたり、導体の加
熱条件、および導体と酸化反応ガスとの接触条件を、特
定の条件に設定して酸化処理を行っている。
[Effects of the Invention] As explained above, according to the method for manufacturing a wire insulated conductor of the present invention, when forming an oxide film on the surface of a copper wire by heating the conductor in an oxidizing atmosphere, The oxidation treatment is performed by setting specific heating conditions and contact conditions between the conductor and the oxidizing reaction gas.

これにより、導体のサイズにかかわりなく大サイズ導体
の場合でも、不要な水酸化銅の生成を防+L L、良好
に酸化皮膜を形成することができるため、信頼性の向上
を実現することができる。
As a result, regardless of the size of the conductor, even in the case of a large conductor, it is possible to prevent the generation of unnecessary copper hydroxide and to form a good oxide film, thereby improving reliability. .

Claims (1)

【特許請求の範囲】[Claims] (1)銅素線を撚り合せた銅撚線導体を加熱し、この加
熱によって前記銅撚線導体の昇温速度が定常になった時
点で、該銅撚線導体をこの銅撚線導体の温度よりも高い
温度の酸化反応ガスと接触させ、 前記銅素線導体の表面に酸化被膜を形成することを特徴
とする素線絶縁導体の製造方法。
(1) A copper stranded wire conductor made of copper wires twisted together is heated, and when the heating rate of the copper stranded wire conductor becomes steady, the copper stranded wire conductor is heated. A method for producing an insulated copper wire conductor, comprising: forming an oxide film on the surface of the copper wire conductor by bringing it into contact with an oxidizing reaction gas at a temperature higher than that temperature.
JP31368689A 1989-11-30 1989-11-30 Element-wire insulated conductor manufacture Pending JPH03173020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31368689A JPH03173020A (en) 1989-11-30 1989-11-30 Element-wire insulated conductor manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31368689A JPH03173020A (en) 1989-11-30 1989-11-30 Element-wire insulated conductor manufacture

Publications (1)

Publication Number Publication Date
JPH03173020A true JPH03173020A (en) 1991-07-26

Family

ID=18044295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31368689A Pending JPH03173020A (en) 1989-11-30 1989-11-30 Element-wire insulated conductor manufacture

Country Status (1)

Country Link
JP (1) JPH03173020A (en)

Similar Documents

Publication Publication Date Title
US5094703A (en) Conductor for an electrical power cable and a method for manufacturing the same
JPH03173020A (en) Element-wire insulated conductor manufacture
JPS6014451B2 (en) How to make an insulation film on copper wire
JPS59808A (en) Method of producing strand insulated conductor
JPS5823470B2 (en) How to make copper oxide film on copper stranded wire
JPS6031048B2 (en) Manufacturing method of strand insulated conductor
JPH0421287B2 (en)
JPS58131609A (en) Method of producing oxide film strand insulating conductor
JPH05217443A (en) Manufacture of strand insulated conductor
JPS6129211B2 (en)
JPH04136150A (en) Production of wire-insulated conductor
JPS58113379A (en) Oxidation treatment for stranded steel wire
JPS6314446B2 (en)
JPH03176916A (en) Manufacture of element wire insulated conductor
JPH03173019A (en) Element-wire insulated conductor manufacture
JPS6031047B2 (en) Method for manufacturing strand insulated cable conductor
SU691938A1 (en) Method of making windings for electromagnets
JPH0349112A (en) Electric sheathed wire and manufacture thereof
JPS6250928B2 (en)
JPS6124769B2 (en)
JPS53142442A (en) Manufacturing of insulated conductor
JPS5834888B2 (en) Manufacturing method of copper oxide film wire insulated conductor
JPS5838479A (en) Method of connecting power cable
JPS6250929B2 (en)
JPS641884B2 (en)