JPS6031005A - Detector of position of rotary angle - Google Patents

Detector of position of rotary angle

Info

Publication number
JPS6031005A
JPS6031005A JP13886183A JP13886183A JPS6031005A JP S6031005 A JPS6031005 A JP S6031005A JP 13886183 A JP13886183 A JP 13886183A JP 13886183 A JP13886183 A JP 13886183A JP S6031005 A JPS6031005 A JP S6031005A
Authority
JP
Japan
Prior art keywords
magnetic flux
magnet
rotating
rotary
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13886183A
Other languages
Japanese (ja)
Inventor
Noboru Aoki
登 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13886183A priority Critical patent/JPS6031005A/en
Publication of JPS6031005A publication Critical patent/JPS6031005A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect the position of a rotary angle by a simple and compact constitution highly accurately, by detecting a voltage which responds to the change in magnetic flux in a sine wave shape, which is generated by a rotary magnet in thin plate shape, by two sets of Hall elements, which are provided at separated positions. CONSTITUTION:A rotary magnet 1 in a thin plate shape is rotated as a unitary body together with a rotary body. Two poles are a magnetized on the magnet so that the magnetic flux in the radial direction changes in the circumferential direction in a sine wave shape. Hall elements 6a and 6b, which are arranged at the positions separated by 90 deg., respond to the magnetic flux. Bias ACs Iosinwt and Iocoswt, whose phases are different by 90 deg., are applied to elements 6a and 6b. Then the sum V of the induced voltages, which are outputted from the elements 6a and 6b in correspondence with an angle theta with respect to the boundary of the magnetic fields N and S of the magnet 1, becomes V=KIoBosin (wt+theta), where K is a constant and Bo is magnetic flux. The angle theta is detected, and the position of the rotary angle is detected by the simple and compact constitution highly accurately.

Description

【発明の詳細な説明】 〔発明の技術分野〕 〔発明の技術的背景とその問題点〕 回転機械の回転数、回転角度、回転位置等を検出するも
のとして、従来、光学式回転角位置検出器(以下光学式
検出器と略称する)、電磁誘導を用いた回転電機式回転
角検出器(以下回転電機式検出器と略称する)等が用い
られている。
[Detailed Description of the Invention] [Technical Field of the Invention] [Technical Background of the Invention and Problems Therewith] Conventionally, optical rotation angle position detection has been used to detect the rotation speed, rotation angle, rotation position, etc. of rotating machines. A rotation angle detector (hereinafter referred to as an optical detector), a rotating electric machine type rotation angle detector (hereinafter referred to as a rotating electric machine type detector) using electromagnetic induction, and the like are used.

光学式検出器は、光し中へい構造が採用されたケース内
に、回転機械の軸と共に回転し且つ周上に細いスリット
が所定間隔を存して形成された円板を収納し、この円板
のスリットを介在して対向する発光素子と受光素子とを
配設し、上記発光素子からの光を上記回転するスリ、ト
によシ遮ぎることによシ、受光素子側からパルス出力を
得るようにしたものである。この光学式検出器における
スリットを形成した円板は、薄いものが採用できるので
、小形、軽量化は図られる。しかし乍ら、光ノイズの影
響を受けないようにして、検出精度を一定レベルに確保
するには、ケースと回転機械の軸との光しゃ断を完全に
施こす必要があシ、加工精度及び組立に高い技術力を要
した。また円板は、特性向上を図るために通常ガラス等
によシ製作され、更に多数のスリットが形成されている
ので、強度的に弱く、製作時及び運転時には取扱いに注
意を要する等の不具合があった。
An optical detector houses a disc that rotates with the shaft of a rotating machine and has thin slits formed at predetermined intervals on its circumference in a case that has a light-shielding structure. A light-emitting element and a light-receiving element are disposed facing each other with a slit in the plate interposed between them, and the light from the light-emitting element is blocked by the rotating slit and to thereby output a pulse from the light-receiving element side. This is what I did to get it. Since the disc with the slit in this optical detector can be thin, it can be made smaller and lighter. However, in order to avoid being affected by optical noise and ensure detection accuracy at a certain level, it is necessary to completely shut off the light between the case and the axis of the rotating machine. required high technical ability. In addition, disks are usually made of glass or the like in order to improve their characteristics, and because they have a large number of slits formed in them, they are weak in strength and have problems such as requiring careful handling during fabrication and operation. there were.

一方、回転電機式検出器は、例えばレゾルバを例にとれ
ば、固定子に、第1、第2の固定子巻線を巻装し、回転
子に検出用の回転子巻線を巻装し、上記第1、第2の固
定子巻線に高周波電圧を印加し、回転子巻線からは回転
角度に比例した電圧を出力するようにしたものである。
On the other hand, in a rotating electric machine detector, for example, in the case of a resolver, first and second stator windings are wound around a stator, and a rotor winding for detection is wound around a rotor. A high frequency voltage is applied to the first and second stator windings, and the rotor winding outputs a voltage proportional to the rotation angle.

この場合、従来は、回転子巻線の出力はブラシによシ非
回転側に取出すようにしていたが、信頼性の低下を招く
等の理由で、最近にいたっては、回転トランスによシ非
回転側に取出すようにしている。このような構成では、
回転電機として構成されているので固定子、回転子は、
ある一定以上の大きさを必要とし、従って上述した光学
式検出器と比較すると大形化となってし1い、また巻線
の巻回工程においては多大な工数を要してしまう等の不
具合があった。
In this case, conventionally the output of the rotor winding was taken out to the non-rotating side by means of brushes, but due to reasons such as lowering reliability, recently it has been taken out by means of a rotating transformer. I try to take it out on the non-rotating side. In such a configuration,
Since it is configured as a rotating electric machine, the stator and rotor are
It requires a certain size or more, so it is likely to be larger than the optical detector described above, and the winding process requires a large number of man-hours. was there.

1〔発明の目的〕 本発明は上記事情に基づいてなされたものでその目的と
するところは、小形且つ構成簡単にして高精度に回転軸
の回転角を検出可能とした回転角位置検出器を提供する
ことにある。
1 [Object of the Invention] The present invention has been made based on the above-mentioned circumstances, and its object is to provide a rotation angle position detector which is small in size and has a simple configuration and is capable of detecting the rotation angle of a rotating shaft with high precision. It is about providing.

〔発明の概要〕 本発明による回転角位置検出器は上記目的を達成するた
めに以下の如く構成したことを特徴としている。即ち、
回転運動によシ中心から周縁部方向に正弦波状の磁束変
化を生じさせる薄板状の回転磁石を、回転角が検出され
るべき回転軸に設け、高周波の正弦波電流によシバイア
スされる少なくとも第1、第2のホール素子を、上記正
弦波状の磁束変化に感応して夫々電圧を出力すべく、上
記回転磁石の周縁部に対し中心から周縁部方向に距離を
介し且つ相互に離間して配置した構成としている。
[Summary of the Invention] In order to achieve the above object, the rotational angular position detector according to the present invention is characterized by being configured as follows. That is,
A thin plate-shaped rotating magnet that generates a sinusoidal change in magnetic flux from the center toward the periphery due to rotational movement is provided on the rotating shaft whose rotational angle is to be detected, and at least one magnet is biased by a high-frequency sinusoidal current. 1. The second Hall elements are disposed at a distance from the center toward the periphery of the rotating magnet and spaced apart from each other in order to output voltages in response to the sinusoidal magnetic flux changes. The structure is as follows.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説明する。第1
図及び第2図は本発明による回転角位置検出器の一実施
例を示すもので、第1図は正面方向からみた構成図、第
2図は側面方向から見た断面図である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
1 and 2 show an embodiment of the rotational angular position detector according to the present invention, FIG. 1 is a configuration diagram seen from the front direction, and FIG. 2 is a sectional view seen from the side direction.

第1図及び第2図において、1は斡示午澁中回転電機の
軸2に略筒状の嵌着部材3を介して取付けられた2極形
の薄円板状回転磁石である。
In FIGS. 1 and 2, reference numeral 1 denotes a bipolar thin disc-shaped rotating magnet that is attached to the shaft 2 of a rotating electric machine during a show session via a substantially cylindrical fitting member 3.

この回転磁石1は、薄円板状の磁性体に対し、円周方向
に渡シ、半径方間の磁束が正弦波状に変化するように着
磁して製作されている。4は上記回転磁石1の外径寸法
に対し、図示tだけ大きい内径寸法を有し、且つ中心に
対し90°離間した第1、第2の凸部5h、5bが形成
されたステーである。6a 、6bは上記凸部5&。
This rotating magnet 1 is manufactured by magnetizing a thin disc-shaped magnetic body so that the magnetic flux across the circumference and radially changes in a sinusoidal manner. Reference numeral 4 denotes a stay that has an inner diameter larger than the outer diameter of the rotating magnet 1 by the amount t shown in the drawing, and is formed with first and second convex portions 5h and 5b spaced apart by 90° from the center. 6a and 6b are the convex portions 5&.

5bの平面に、磁界感応面が平行となるように配設され
たgx、g2のホール素子である。
Hall elements gx and g2 are arranged so that their magnetic field sensitive surfaces are parallel to the plane 5b.

上記ホール素子6m、6bは第3図に示すように、入力
端に電流値Iなる電流バイアスを与え、この電流の通螺
方向に対し直角方向に磁束Bを加えると、この電流■と
磁束Bとに対し直角方向の出力端に電圧V=KBI(K
ld[感度と5− 称され定数である)が発生するものである。なお、電圧
Vは、第4図に示すように磁束Bに比例する。またこの
ようなホール素子6*、6bは近時にあって、高出力、
高耐熱、小ドリフト等の高特性品が製作され品質も製品
毎に均一である。
As shown in FIG. 3, the Hall elements 6m and 6b apply a current bias of current value I to their input ends, and when a magnetic flux B is applied in a direction perpendicular to the direction in which this current flows, the current ■ and the magnetic flux B The voltage V=KBI(K
ld (referred to as sensitivity and is a constant) is generated. Note that the voltage V is proportional to the magnetic flux B as shown in FIG. In addition, such Hall elements 6* and 6b have been recently available, and have high output and
Products with high characteristics such as high heat resistance and small drift are manufactured, and the quality is uniform for each product.

次に上記のように構成された本実施例の動作について第
5図を参照して説明する。第5図は第1図及び第2図に
示す実施例を模式的に示した図である。
Next, the operation of this embodiment configured as described above will be explained with reference to FIG. FIG. 5 is a diagram schematically showing the embodiment shown in FIGS. 1 and 2.

第5図において、第1、第2のホール素子6h、6bの
入力端夫々に第6図(a)(b)に示すような交流電流
Ia=Icoogω3 Ib = Iomωtを供給す
る。そして回転磁石1を軸2によ多回転させて第5図に
示すように、磁極の境界に対し角度θの位置に第2のホ
ール素子6bが位置しているとする。この状態で第1、
第2のホール素子6h、6bの磁界感応面には、第6図
(c) (d)に示すような磁界Ba = Bostn
θ、Bb = Bocosθが作用する。これによシ第
1、第2のホール素子の出6− 力端夫々からは、交流電圧Va = K−Ia4a=に
4oBocosωtsfnθ、Vb=KIb Bb=に
−Io−Bo slnωt・cosθが出力される。上
記第1、第2のホール素子6a、6b夫々の出方電圧の
和Vは、 V=Va+Vb=K HI o −B o −cm (
d t−tAnθ十K・I 0−Bo 噛Q) t −
asθ=に−IO−Bo−gin(ωt+θ)となる。
In FIG. 5, alternating currents Ia=Icoogω3 Ib=Iomωt as shown in FIGS. 6(a) and (b) are supplied to the input terminals of the first and second Hall elements 6h and 6b, respectively. It is assumed that the rotary magnet 1 is rotated around the shaft 2 many times and the second Hall element 6b is positioned at an angle θ with respect to the boundary of the magnetic poles, as shown in FIG. In this state, the first
On the magnetic field sensitive surfaces of the second Hall elements 6h and 6b, a magnetic field Ba = Bostn as shown in FIGS. 6(c) and 6(d) is applied.
θ, Bb = Bocos θ acts. As a result, from the output ends of the first and second Hall elements, an AC voltage Va=K-Ia4a=4oBocosωtsfnθ, and Vb=KIbBb=-Io-Boslnωt・cosθ are output. . The sum V of the output voltages of the first and second Hall elements 6a and 6b is as follows: V=Va+Vb=K HI o −B o −cm (
d t-tAnθ10K・I 0-Bo bite Q) t −
asθ=−IO−Bo−gin(ωt+θ).

この和電圧Vを第6図(d)に示す。上記和電圧V=に
−I o −B osin (ωt+θ)にょシ、回転
磁石1の回転位置、即ち角度θが検出可能となる。
This sum voltage V is shown in FIG. 6(d). When the sum voltage V=-I o -B osin (ωt+θ), the rotational position of the rotating magnet 1, that is, the angle θ can be detected.

上記のように本実施例では、回転電機式検出器と同様に
回転位置が検出可能である。また回転体である回転磁石
1は厚さ寸法が小さいものが採用可能であシ、更に検出
素子である第1、第2のホール素子6a、6bは、小形
素子であシ且つ回転磁石10周方向に設置されるもので
あるので、装置全体の外形寸法は著しく小形化が図られ
る。更に、先じゃへい構造を必要としないため、部材加
工及び組立は容易であシ安価となる。
As described above, in this embodiment, the rotational position can be detected in the same manner as the rotating electrical machine type detector. In addition, the rotating magnet 1, which is a rotating body, can have a small thickness, and the first and second Hall elements 6a and 6b, which are detection elements, are small elements, and the rotating magnet 10 turns around 10 times. Since the device is installed in the same direction, the external dimensions of the entire device can be significantly reduced. Furthermore, since no pre-emptive structure is required, processing and assembly of the parts are easy and inexpensive.

上記の構成は、回転機と別構成のものとじて実施した例
であるが、例えば第7図に示すように、DCササ−モー
タ等の回転電機7のフレーム8内において、第1図及び
第2図と同様に回転軸90回転磁石1を取付け、フレー
ム8にホール素子6m、6bを設けた構成としてもよい
。この様な構成とすれば、モータ部と検出部とを備え且
つ軸方向の寸法が極めて小さい回転電機7が得られる。
The above configuration is an example implemented as a separate configuration from a rotating machine, but for example, as shown in FIG. 7, the structure shown in FIG. It is also possible to adopt a configuration in which the rotating shaft 90 and the rotating magnet 1 are attached as in FIG. 2, and the Hall elements 6m and 6b are provided on the frame 8. With such a configuration, it is possible to obtain a rotating electric machine 7 that includes a motor section and a detection section and has an extremely small dimension in the axial direction.

この構成にあっては、特に小形化要求される工作機械、
口が、ト等のサーボモータに適用すれば有効である。ま
た、従来の光学式及び回転電機式検出器は、被検出回転
電機に力、プリングによ多接続した構成であるため、広
範囲の速度変化によ)、共振の発生及び特に回転電機式
にあってki電磁誘導作用の不均一性等が発生し、検出
積度を低下させていたが、上記構成では、被検出回転電
機7の回転軸9に直接回転磁石1を取付けた構成である
ので、速度変化及び力、プリング接続に伴う諸問題は生
じない。また回転磁石1及びが−ル素子6h+6bはフ
レーム8内に収納されているので、保護が確実に行なわ
れる。
This configuration is especially useful for machine tools that require downsizing.
It is effective if applied to servo motors such as G and G. In addition, conventional optical and rotating electric machine type detectors have a configuration in which multiple connections are made to the rotating electric machine to be detected by force and pull, so they are susceptible to resonance (due to wide range speed changes) and especially to the rotating electric machine type. However, in the above configuration, the rotating magnet 1 is directly attached to the rotating shaft 9 of the rotating electrical machine 7 to be detected, so Problems associated with speed changes and force and pull connections do not occur. Furthermore, since the rotating magnet 1 and the coil elements 6h+6b are housed within the frame 8, they are reliably protected.

上記実施例において、回転磁石1は、円板体の1回転(
360’)を2分割した2極形として実施したが、これ
に限定されるものではなく、円板状の強磁性体の円周上
を軸倍角n1電気角をθnにて分割して、その分割部毎
に、N、19゜N、S、・・・極というようにn極(n
は整数)を着磁して構成した回転磁石であってもよい。
In the above embodiment, the rotating magnet 1 rotates one rotation of the disk (
360') was implemented as a bipolar type divided into two parts, but the invention is not limited to this. The circumference of the disk-shaped ferromagnetic material is divided by the axial angle multiplier n1 electrical angle by θn, and the For each divided part, there are n-poles (n
may be an integer).

この場合、θ=nθmの関係が成立し、出力電圧Vはv
=に−IO−Bo11flI(ωt−nθm)となシ、
回転磁石の1回転における分解能を細かくすることが出
来る。
In this case, the relationship θ=nθm holds true, and the output voltage V is v
= to -IO-Bo11flI(ωt-nθm),
The resolution per rotation of the rotating magnet can be made finer.

第8図にn = 2、n=5の場合の出方電圧Vの波形
を示す。
FIG. 8 shows the waveform of the output voltage V when n=2 and n=5.

なお、本発明は上記実施例に限定されるものではなく、
例えば、回転磁石と被検軸との接続手段、回転磁石及び
ポール素子の配設方法、ホール素子からの出力電圧の処
理方法等は適宜諸々実施可能である。この他に、本発明
はその要旨を逸脱しない範囲で種々変形して実施できる
Note that the present invention is not limited to the above embodiments,
For example, various methods can be used as appropriate, such as the means for connecting the rotating magnet and the shaft to be tested, the method for arranging the rotating magnet and the pole element, and the method for processing the output voltage from the Hall element. In addition, the present invention can be modified in various ways without departing from the spirit thereof.

9− 〔発明の効果〕 以上述べたように本発明によれば、回転軸に設けられて
一体的に回転運動する薄板状の回転磁石によシ、周縁部
方向に正弦波状に変化する磁束を発生させ、この磁束を
、高周波の正弦波電流によシバイアスされ、互いに上記
回転磁石の周縁部に離間して配置された少なくとも第1
、第2のホール素子に感厄させて夫々電圧を出方せしめ
、これら二つの電圧の和電圧又は差電圧をめ、それらの
位相差にょシ上記回転軸の回転角を検出するようにした
ので、小形且つ構成簡単にして高精度に回転角の検出が
可能とした回転角位置検出器が提供できる。
9- [Effects of the Invention] As described above, according to the present invention, a thin plate-shaped rotating magnet provided on a rotating shaft and rotating integrally generates a magnetic flux that changes sinusoidally in the direction of the peripheral edge. The magnetic flux is biased by a high frequency sinusoidal current, and the magnetic flux is biased by at least first
, the second Hall element is caused to emit a voltage, the sum or difference of these two voltages is determined, and the rotation angle of the rotation axis is detected from the phase difference between them. Therefore, it is possible to provide a rotation angle position detector that is small in size and has a simple configuration, and is capable of detecting rotation angles with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明による回転角位置検出器の一
実施例を示すもので、第1図は正面方向から見た構成図
、第2図は第1図のA−A方向の断面図、第3図はホー
ル素子の特性を説明するための模式図、第4図は同ホー
ル累子の特性図、第5図は第1図及び第2図に示す実施
10− 実施例の作用を説明するための波形図、第7図は同実施
例を回転電機に組込んだ適用例を示す断面図、第8図は
本発明の他の実施例を説明するための波形図である。 10.・回転磁石、2・・・軸、3・・・嵌着部材、4
・・・スラー、5 m 、 5 b−凸部、6 m 、
 6 b −・ホール素子。 出願人代理人 弁理士 鈴 江 武 彦11− 第5図 第6図 io −−−− l ’ a ’ wt (a) ・ 1 1111 1−+ ’ 1 ’ II 11’ (b) ’ + wt 11 1 +、 1 l l。 +” l l’ (C) ” 1 l l + l ” 氏 −f−l + ’ 11 (d)1 “ ′1 11 Wt 1 1 1 1 第7図
1 and 2 show an embodiment of the rotational angular position detector according to the present invention. FIG. 1 is a configuration diagram seen from the front, and FIG. 3 is a schematic diagram for explaining the characteristics of the Hall element, FIG. 4 is a characteristic diagram of the Hall transducer, and FIG. 5 is a diagram showing the tenth embodiment shown in FIGS. FIG. 7 is a sectional view showing an application example in which the embodiment is incorporated into a rotating electrical machine. FIG. 8 is a waveform diagram for explaining another embodiment of the present invention. . 10.・Rotating magnet, 2... Shaft, 3... Fitting member, 4
... slur, 5 m, 5 b-convex part, 6 m,
6 b - Hall element. Applicant's agent Patent attorney Takehiko Suzue 11- Figure 5 Figure 6 io ---- l ' a ' wt (a) ・ 1 1111 1-+ ' 1 ' II 11' (b) ' + wt 11 1 +, 1 l l. +" l l' (C) " 1 l l + l " Mr. -f-l + ' 11 (d) 1 "'1 11 Wt 1 1 1 1 Fig. 7

Claims (1)

【特許請求の範囲】[Claims] 回転運動により中心から周縁部方向に正弦波状の磁束変
化を生じる薄板状の回転磁石を、回転軸に設け、高周波
の正弦波電流にょシバイアスされる少なくとも第1、第
2のホール累子を、周縁部方向に距離を介し且つ相互に
離間して配置して表る回転角位置検出器。
A thin plate-like rotating magnet that generates a sinusoidal magnetic flux change from the center toward the periphery due to rotational movement is provided on the rotating shaft, and at least first and second Hall transponders biased by a high-frequency sinusoidal current are attached to the periphery. Rotational angular position detectors arranged at a distance in the direction of the parts and spaced apart from each other.
JP13886183A 1983-07-29 1983-07-29 Detector of position of rotary angle Pending JPS6031005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13886183A JPS6031005A (en) 1983-07-29 1983-07-29 Detector of position of rotary angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13886183A JPS6031005A (en) 1983-07-29 1983-07-29 Detector of position of rotary angle

Publications (1)

Publication Number Publication Date
JPS6031005A true JPS6031005A (en) 1985-02-16

Family

ID=15231848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13886183A Pending JPS6031005A (en) 1983-07-29 1983-07-29 Detector of position of rotary angle

Country Status (1)

Country Link
JP (1) JPS6031005A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195407U (en) * 1985-05-28 1986-12-05
EP0511459A2 (en) * 1991-04-27 1992-11-04 Daimler-Benz Aerospace Aktiengesellschaft Synchrosystem
JPH05203402A (en) * 1992-01-23 1993-08-10 Mitsubishi Electric Corp Rotational displacement detecting device
EP0612974A2 (en) * 1993-02-25 1994-08-31 Siemens Aktiengesellschaft Magnetic angular indicator
WO1996016316A1 (en) * 1994-11-22 1996-05-30 Robert Bosch Gmbh Arrangement for the contactless determination of the angle of rotation of a rotatable component
EP0859213A1 (en) * 1997-02-15 1998-08-19 Itt Manufacturing Enterprises, Inc. Angle of rotation detector comprising Hall-effect sensors arranged in an annular yoke
JP2009516186A (en) * 2005-11-15 2009-04-16 ムービング マグネット テクノロジーズ Magnetic angular position sensor with a course of up to 360 °

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195407U (en) * 1985-05-28 1986-12-05
JPH0511445Y2 (en) * 1985-05-28 1993-03-22
EP0511459A2 (en) * 1991-04-27 1992-11-04 Daimler-Benz Aerospace Aktiengesellschaft Synchrosystem
JPH05203402A (en) * 1992-01-23 1993-08-10 Mitsubishi Electric Corp Rotational displacement detecting device
EP0612974A2 (en) * 1993-02-25 1994-08-31 Siemens Aktiengesellschaft Magnetic angular indicator
EP0612974A3 (en) * 1993-02-25 1995-04-12 Siemens Ag Magnetic angular indicator.
WO1996016316A1 (en) * 1994-11-22 1996-05-30 Robert Bosch Gmbh Arrangement for the contactless determination of the angle of rotation of a rotatable component
US5880586A (en) * 1994-11-22 1999-03-09 Robert Bosch Gmbh Apparatus for determining rotational position of a rotatable element without contacting it
EP0859213A1 (en) * 1997-02-15 1998-08-19 Itt Manufacturing Enterprises, Inc. Angle of rotation detector comprising Hall-effect sensors arranged in an annular yoke
JP2009516186A (en) * 2005-11-15 2009-04-16 ムービング マグネット テクノロジーズ Magnetic angular position sensor with a course of up to 360 °

Similar Documents

Publication Publication Date Title
US6693422B2 (en) Accurate rotor position sensor and method using magnet and sensors mounted adjacent to the magnet and motor
US4086519A (en) Hall effect shaft angle position encoder
JP3740984B2 (en) Electric pole position detector
WO2013094042A1 (en) Motor, motor system, and motor encoder
US6720763B1 (en) Compact rotary magnetic position sensor having a sinusoidally varying output
JPH0218693Y2 (en)
JP2734759B2 (en) Rotation detection device
EP3407024A1 (en) Halbach array for rotor position sensing
KR20060101998A (en) Apparatus for sensing rotor position of ac motor
US4659953A (en) Magnetic structure for synchro and tachometer
US10209098B2 (en) Radial position sensor
JPS6031005A (en) Detector of position of rotary angle
JPH083183Y2 (en) Generator
JP4070869B2 (en) Servo motor device
WO2022260071A1 (en) Movement detector
US11973456B2 (en) Motor
JP2001264346A (en) Detecting device for rotational number or position of rotary body and reluctance motor
US20210281198A1 (en) Motor
KR20210078102A (en) Motor
JPH02246758A (en) Manufacture of brushless motor
JP5050817B2 (en) Magnetic encoder
JPS5972017A (en) Frequency generator
JPS61189412A (en) Magnetic flux density change detector
JP2020089129A (en) Rotor manufacturing method and motor
JPS62226012A (en) Resolver