JP5050817B2 - Magnetic encoder - Google Patents

Magnetic encoder Download PDF

Info

Publication number
JP5050817B2
JP5050817B2 JP2007311878A JP2007311878A JP5050817B2 JP 5050817 B2 JP5050817 B2 JP 5050817B2 JP 2007311878 A JP2007311878 A JP 2007311878A JP 2007311878 A JP2007311878 A JP 2007311878A JP 5050817 B2 JP5050817 B2 JP 5050817B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic
thickness
magnetic field
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007311878A
Other languages
Japanese (ja)
Other versions
JP2009133794A5 (en
JP2009133794A (en
Inventor
利之 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2007311878A priority Critical patent/JP5050817B2/en
Publication of JP2009133794A publication Critical patent/JP2009133794A/en
Publication of JP2009133794A5 publication Critical patent/JP2009133794A5/ja
Application granted granted Critical
Publication of JP5050817B2 publication Critical patent/JP5050817B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主に各種産業用機器に使用されるサーボモータなどに搭載され、特に小型化に適した磁気式エンコーダに関する。
The present invention relates to a magnetic encoder that is mounted on a servo motor or the like mainly used in various industrial equipment and is particularly suitable for miniaturization.

従来より回転体の回転数や回転角度位置を検出するためのエンコーダには、光学式、光電式、磁気式、静電式などがあり、主として光学式と磁気式が用いられている。
磁気式エンコーダとしては、周方向に多極着磁した磁気ドラムと磁界検出素子からなる磁気ドラム型や、歯車形状またはスリットを有するディスクと磁界検出素子および永久磁石からなるリラクタンス型の磁気式エンコーダが用いられているが、小型化に適した磁気式エンコーダとして、2極着磁した永久磁石と磁界検出素子からなる1X型の磁気式エンコーダがある。
Conventionally, there are optical, photoelectric, magnetic, electrostatic and the like encoders for detecting the rotational speed and rotational angle position of a rotating body, and optical and magnetic methods are mainly used.
Magnetic encoders include a magnetic drum type composed of a magnetic drum and a magnetic field detection element magnetized in the circumferential direction, and a reluctance type magnetic encoder composed of a disk having a gear shape or slit, a magnetic field detection element, and a permanent magnet. As a magnetic encoder suitable for miniaturization, there is a 1X type magnetic encoder comprising a permanent magnet with two poles and a magnetic field detecting element.

以下に、従来の1X型の磁気式エンコーダおよびそれに用いられる磁気回路について説明する。
(第1の従来例)
第1の従来例を図6に示す。図6は、従来の円板形状の永久磁石を用いた1X型磁気式エンコーダの平面断面図である(例えば、特許文献1)。図6において、101は円板形状の永久磁石、103は永久磁石の磁化の方向、121は磁界検出素子である。
ここで、2極着磁した円板形状の永久磁石101の発生磁界を磁界検出素子121で検出すると、1周期/回転(1X)の正弦波信号が得られ、この信号から1回転内の絶対角度位置情報が得られる。しかし、磁界検出素子や永久磁石の取り付け精度によって得られる角度位置精度が劣化してしまう。
A conventional 1X type magnetic encoder and a magnetic circuit used therefor will be described below.
(First conventional example)
A first conventional example is shown in FIG. FIG. 6 is a plan sectional view of a conventional 1X magnetic encoder using a disk-shaped permanent magnet (for example, Patent Document 1). In FIG. 6, 101 is a disk-shaped permanent magnet, 103 is the direction of magnetization of the permanent magnet, and 121 is a magnetic field detection element.
Here, when the magnetic field generated by the disk-shaped permanent magnet 101 magnetized with two poles is detected by the magnetic field detection element 121, a sine wave signal of 1 cycle / rotation (1X) is obtained, and an absolute value within one rotation is obtained from this signal. Angular position information is obtained. However, the angular position accuracy obtained by the mounting accuracy of the magnetic field detection element and the permanent magnet deteriorates.

(第2の従来例)
第2の従来例として、図7に示したように、円筒形状の永久磁石を用いた1X型磁気式エンコーダが提案されている(例えば、特許文献2)。図7において、102は円筒形状の永久磁石、111は外壁であり、残りは第1の従来例と同じであるため説明を省略する。
この構成によれば、円筒形状の永久磁石102の内側の空間に配置した磁界検出素子121で1周期/回転の疑似正弦波信号が得られるので、磁気式エンコーダとして用いることができる。また、円筒形状の永久磁石の内側の空間には均一な磁界が得られるので、磁界検出素子や永久磁石の取り付け精度への配慮は不要である。しかし、外壁111の材質や寸法などが規定されておらず、得られる角度位置精度は高くない。
(Second conventional example)
As a second conventional example, as shown in FIG. 7, a 1X magnetic encoder using a cylindrical permanent magnet has been proposed (for example, Patent Document 2). In FIG. 7, reference numeral 102 denotes a cylindrical permanent magnet, 111 denotes an outer wall, and the rest is the same as that of the first conventional example, and the description thereof is omitted.
According to this configuration, a pseudo sine wave signal of 1 cycle / rotation can be obtained by the magnetic field detection element 121 arranged in the space inside the cylindrical permanent magnet 102, and can be used as a magnetic encoder. In addition, since a uniform magnetic field is obtained in the space inside the cylindrical permanent magnet, it is not necessary to consider the mounting accuracy of the magnetic field detection element and the permanent magnet. However, the material and dimensions of the outer wall 111 are not defined, and the obtained angular position accuracy is not high.

(第3の従来例)
第3の従来例を図8に示す。図8も、円筒形状の永久磁石を用いた1X型磁気式エンコーダであるが、円筒形状の永久磁石102の外側に円筒形状の強磁性体を配置することを明示している。すなわち、図8において、112は円筒形状の強磁性体であり、残りは第1および第2の従来例と同じであるため説明を省略する。
この構成によれば、磁界検出素子121で高調波歪みの少ない正弦波波形が得られるので、高精度の角度位置情報が得られる。
WO99/13296号公報(第1−5頁、図1) 特開昭59−061702号公報(第1−3頁、図11) 特開2002−228486号公報(第2−4頁、図4)
(Third conventional example)
A third conventional example is shown in FIG. FIG. 8 also shows a 1X type magnetic encoder using a cylindrical permanent magnet, but clearly shows that a cylindrical ferromagnetic body is disposed outside the cylindrical permanent magnet 102. That is, in FIG. 8, reference numeral 112 denotes a cylindrical ferromagnetic body, and the rest is the same as in the first and second conventional examples, and the description thereof is omitted.
According to this configuration, a sinusoidal waveform with less harmonic distortion can be obtained by the magnetic field detection element 121, so that highly accurate angular position information can be obtained.
WO99 / 13296 (page 1-5, FIG. 1) JP 59-061702 (page 1-3, FIG. 11) JP 2002-228486 A (page 2-4, FIG. 4)

ところが、第3の従来例の構成においても使用する永久磁石の残留磁束密度などの磁気特性の違いや永久磁石の厚み、円筒形状の強磁性体の厚みなどの形状の違いによって角度位置特性がばらつき、十分に安定した高精度の角度位置情報が得られないという課題があった。   However, even in the configuration of the third conventional example, the angular position characteristics vary due to differences in magnetic characteristics such as the residual magnetic flux density of the permanent magnet used, and differences in shape such as the thickness of the permanent magnet and the thickness of the cylindrical ferromagnetic material. There is a problem that sufficiently stable and highly accurate angular position information cannot be obtained.

本発明はこのような問題点を鑑みてなされたものであり、高調波歪みが極めて少ない正弦波波形を得ることができ、これにより高精度の角度位置情報が得られる磁気式エンコーダを提供することを目的とする。
The present invention has been made in view of such problems, and provides a magnetic encoder that can obtain a sinusoidal waveform with extremely low harmonic distortion and thereby obtain highly accurate angular position information. With the goal.

上記問題を解決するため、本発明は、次のように構成したものである。
すなわち、本発明の一の観点による磁気式エンコーダは、2極着磁した円筒形状の永久磁石と、前記永久磁石の外周に設けられ、前記永久磁石の内側の空間に均一な磁界強度を有する磁気回路を構成する円筒形状の強磁性体と、前記磁気回路の回転による磁界の変化を検出する磁界検出素子と、前記磁気回路と前記磁界検出素子との相対的な回転による前記磁界検出素子からの出力信号を処理する処理回路とを備えた磁気式エンコーダにおいて、前記永久磁石の材質、密度から決まる残留磁束密度をBr、前記永久磁石の肉厚をtm、強磁性体の肉厚をtyとしたとき、永久磁石の肉厚tmを永久磁石の肉厚tmと強磁性体の肉厚tyの和で除した比で求められる永久磁石の肉厚比kmを、使用する永久磁石の前記残留磁束密度Brが高いときには肉厚比kmを小さく、前記残留磁束密度Brが低いときには肉厚比kmを大きくしたことを特徴とする。
また、上記一の観点による磁気式エンコーダは、永久磁石の残留磁束密度Brが1.0T以上の場合、永久磁石の肉厚比kmが0.5未満であることを特徴としてもよい。
また、上記一の観点による磁気式エンコーダは、永久磁石の残留磁束密度Brが0.55T以上1.0T未満の範囲の場合、永久磁石の肉厚比kmが0.5以上ら0.65未満の範囲であることを特徴としてもよい。
また、上記一の観点による磁気式エンコーダは、永久磁石の残留磁束密度Brが0.55T未満の場合、永久磁石の肉厚比kmが0.65以上であることを特徴としてもよい。
また、上記一の観点による磁気式エンコーダは、前記磁気回路の内側の空間に前記磁界検出素子を設置したことを特徴としてもよい。
In order to solve the above problems, the present invention is configured as follows.
In other words, a magnetic encoder according to one aspect of the present invention is a magnet having a uniform magnetic field strength in a space inside a permanent magnet, a cylindrical permanent magnet magnetized with two poles, and an outer periphery of the permanent magnet. A cylindrical ferromagnetic body constituting a circuit, a magnetic field detection element for detecting a change in magnetic field due to rotation of the magnetic circuit, and a magnetic field detection element from the magnetic field detection element by relative rotation of the magnetic circuit and the magnetic field detection element. In a magnetic encoder having a processing circuit for processing an output signal, Br is a residual magnetic flux density determined by the material and density of the permanent magnet, tm is a thickness of the permanent magnet, and ty is a thickness of the ferromagnetic material. The permanent magnet thickness ratio km obtained by dividing the permanent magnet thickness tm by the sum of the permanent magnet thickness tm and the ferromagnetic thickness ty is the residual magnetic flux density of the permanent magnet used. If Br is high Reduced km thickness ratio is, the when the residual magnetic flux density Br is low, characterized in that increasing the km thickness ratio.
Further, the magnetic encoder according to the first aspect may be characterized in that when the residual magnetic flux density Br of the permanent magnet is 1.0 T or more, the thickness ratio km of the permanent magnet is less than 0.5 .
Further, in the magnetic encoder according to the above one aspect, when the residual magnetic flux density Br of the permanent magnet is in the range of 0.55 T or more and less than 1.0 T, the thickness ratio km of the permanent magnet is 0.5 or more and less than 0.65. It may be characterized by being in the range .
Further, the magnetic encoder according to the first aspect may be characterized in that when the residual magnetic flux density Br of the permanent magnet is less than 0.55 T, the thickness ratio km of the permanent magnet is 0.65 or more .
In the magnetic encoder according to the first aspect, the magnetic field detection element may be installed in a space inside the magnetic circuit .

本発明の一の観点による磁気式エンコーダによると、どのような磁気特性の永久磁石を用いても非常に高調波歪みの少ない正弦波波形を得ることができ、これにより角度位置情報が極めて高い磁気式エンコーダを提供できる。
According to the magnetic encoder according to one aspect of the present invention, a sinusoidal waveform with very little harmonic distortion can be obtained even if a permanent magnet having any magnetic characteristic is used. A type encoder can be provided.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施例を示す磁気回路の平面断面図である。図1において、1は円筒形状の永久磁石、2は永久磁石の磁化の方向、11は円筒形状の強磁性体である。このような構成により、円筒形状の永久磁石1の内側の空間に均一な磁界が得られる。
図2は、図1の磁気回路を用いた磁気式エンコーダの平面断面図である。図2において、21は磁界検出素子であり、残りは図1と同じであるため省略する。このような構成により、磁気回路の内側の均一な磁界を磁界検出素子21で検出することにより、1周期/回転の正弦波波形の信号が得られ、回転角度位置情報を得ることができる。
本発明が従来技術、特に従来例3と異なる点は、以下のように寸法を規定することである。
FIG. 1 is a cross-sectional plan view of a magnetic circuit showing a first embodiment of the present invention. In FIG. 1, 1 is a cylindrical permanent magnet, 2 is the direction of magnetization of the permanent magnet, and 11 is a cylindrical ferromagnetic material. With such a configuration, a uniform magnetic field can be obtained in the space inside the cylindrical permanent magnet 1.
FIG. 2 is a plan sectional view of a magnetic encoder using the magnetic circuit of FIG. In FIG. 2, 21 is a magnetic field detection element, and the rest is the same as FIG. With such a configuration, a uniform magnetic field inside the magnetic circuit is detected by the magnetic field detection element 21, whereby a signal having a sinusoidal waveform of 1 cycle / rotation can be obtained and rotation angle position information can be obtained.
The present invention is different from the prior art, particularly the conventional example 3 in that the dimensions are defined as follows.

円筒形状の永久磁石1の肉厚をtm、円筒形状の強磁性体11の肉厚をtyとし、以下
の式で定義する永久磁石の肉厚比kmを0.3から0.8の範囲で調べた。
km=tm/(tm+ty)
図3は本発明の磁気回路を用いた磁気式エンコーダの角度誤差曲線を示す。角度誤差は
、磁界検出素子21が出力した4個の信号に差動処理や位相調整を施してから回転角度を
導出し、基準エンコーダの値を差し引いて求めた。ここで、用いた円筒形状の永久磁石は
SmCo系焼結磁石であり、残留磁束密度Brは1.06T、永久磁石の肉厚比kmは
0.36、0.50、0.63の3種類とした。
4周期/回転の角度誤差曲線が得られるが、この角度誤差曲線の振幅値(pp値)を
角度誤差値と呼ぶことにする。図3より、肉厚比kmによって角度誤差曲線の極性が異な
ることが分かるが、この極性より角度誤差値に符号を付加した。
The thickness of the cylindrical permanent magnet 1 is tm, the thickness of the cylindrical ferromagnetic body 11 is ty, and the thickness ratio km of the permanent magnet defined by the following formula is in the range of 0.3 to 0.8. Examined.
km = tm / (tm + ty)
FIG. 3 shows an angle error curve of a magnetic encoder using the magnetic circuit of the present invention. The angle error was obtained by subjecting the four signals output from the magnetic field detection element 21 to differential processing and phase adjustment, deriving the rotation angle, and subtracting the value of the reference encoder. Here, the cylindrical permanent magnet used is an Sm Co sintered magnet, the residual magnetic flux density Br is 1.06 T, and the thickness ratio km of the permanent magnet is 0.36, 0.50, 0.63. There were three types.
4 cycles / rotation angular error curve is obtained, the amplitude value of the angular error curve - will be referred to as (p p value) and the angular error value. From FIG. 3, it can be seen that the polarity of the angle error curve differs depending on the wall thickness ratio km.

図4は様々な永久磁石での角度誤差値の肉厚比kmに対する依存性を調べた結果を示す。角度誤差値が零となる肉厚比kmが存在する。
また、図5は永久磁石の残留磁束密度Brと上記角度誤差値が零となる最適な永久磁石の肉厚比kmの関係を示す。
今回用いた永久磁石は、フェライト系焼結磁石(Br=0.40T)からNdFeB系焼結磁石(Br=1.17T)であるが、これらよりも磁気特性(残留磁束密度)が低い永久磁石も高い永久磁石も存在する。そのことを考慮して、高精度な磁気式エンコーダ用の磁気回路における永久磁石の肉厚比kmは、0.3から0.8の範囲であることが望ましい。
FIG. 4 shows the results of examining the dependence of the angle error value on the thickness ratio km in various permanent magnets. There is a thickness ratio km at which the angle error value becomes zero.
FIG. 5 shows the relationship between the residual magnetic flux density Br of the permanent magnet and the optimum thickness ratio km of the permanent magnet in which the angle error value is zero.
Permanent magnets used this time range from ferrite-based sintered magnets (Br = 0.40T) to Nd - Fe - B-based sintered magnets (Br = 1.17T), but magnetic properties (residual magnetic flux density) than these. There are low and high permanent magnets. In view of this, it is desirable that the thickness ratio km of the permanent magnet in the magnetic circuit for the high-precision magnetic encoder is in the range of 0.3 to 0.8.

また、永久磁石の残留磁束密度Brが高いときには永久磁石の肉厚比kmを小さく、永久磁石の残留磁束密度Brが低いときには永久磁石の肉厚比kmを大きくし、角度誤差値が零となるように肉厚比を選び、これから永久磁石の厚みと強磁性体の厚みを決定した磁気式エンコーダを構成すれば、高調波歪の極めて少ない正弦波信号を磁界検出素子から得ることが出来、角度位置情報が極めて高い磁気式エンコーダを実現することができる。   Further, when the permanent magnet residual magnetic flux density Br is high, the permanent magnet thickness ratio km is decreased, and when the permanent magnet residual magnetic flux density Br is low, the permanent magnet thickness ratio km is increased, and the angular error value becomes zero. In this way, a magnetic encoder in which the thickness ratio is selected and the thickness of the permanent magnet and the thickness of the ferromagnetic material is determined can be used to obtain a sinusoidal signal with extremely low harmonic distortion from the magnetic field detection element. A magnetic encoder with extremely high position information can be realized.

図4および図5の結果から角度誤差値を約1度以内に収めるための本発明のより望ましい条件は、以下の通りとなる。
・永久磁石の残留磁束密度Brが1.0T以上では、永久磁石の肉厚比kmが0.5未満。
・永久磁石の残留磁束密度Brが0.55T以上1.0T未満の範囲では、永久磁石の肉厚比kmが0.5以上0.65未満の範囲。
・永久磁石の残留磁束密度Brが0.55T未満では、永久磁石の肉厚比kmが0.65以上。
From the results shown in FIGS. 4 and 5, the more desirable conditions of the present invention for keeping the angle error value within about 1 degree are as follows.
-When the residual magnetic flux density Br of the permanent magnet is 1.0 T or more, the thickness ratio km of the permanent magnet is less than 0.5.
-In the range where the residual magnetic flux density Br of the permanent magnet is 0.55T or more and less than 1.0T, the thickness ratio km of the permanent magnet is in the range of 0.5 or more and less than 0.65.
-If the residual magnetic flux density Br of the permanent magnet is less than 0.55T, the thickness ratio km of the permanent magnet is 0.65 or more.

また、図5から判るように最適な永久磁石の肉厚比kmは、永久磁石の残留磁束密度Brに対して反比例の関係にあり、以下の近似式で表される。
すなわち、km=0.8720.373×Br±αである。
ここで、αは、磁気式エンコーダの製造工程において生じる寸法公差など不可避な要因に対する許容誤差である。
前述の関係から永久磁石の残留磁束密度Brに基づいて最適なkmを求め、このkmを満たす永久磁石1の厚みおよび強磁性体11の厚みで磁気式エンコーダを構成することによって、より高精度な磁気式エンコーダが実現できる。
Further, as can be seen from FIG. 5, the optimum thickness ratio km of the permanent magnet is inversely proportional to the residual magnetic flux density Br of the permanent magnet, and is expressed by the following approximate expression.
That, km = 0.872 - a 0.373 × Br ± α.
Here, α is an allowable error for an inevitable factor such as a dimensional tolerance generated in the manufacturing process of the magnetic encoder.
By calculating the optimum km based on the residual magnetic flux density Br of the permanent magnet from the above-mentioned relationship and configuring the magnetic encoder with the thickness of the permanent magnet 1 and the thickness of the ferromagnetic body 11 satisfying this km, a higher accuracy can be obtained. A magnetic encoder can be realized.

本発明の磁気式エンコーダは、簡単な構成で、小径でも高精度・高分解能であり、一回転内の絶対角度を検出でき、どのような磁気特性の永久磁石を用いても高精度の角度位置情報が得られるので、サーボモータや各種産業用機器などの装置に適用できる。
The magnetic encoder of the present invention has a simple configuration, high accuracy and high resolution even with a small diameter, can detect an absolute angle within one rotation, and can be used with a permanent magnet of any magnetic characteristics. Since information can be obtained, it can be applied to devices such as servo motors and various industrial equipment.

本発明の第1の実施例を示す磁気回路の平面断面図Plan sectional drawing of the magnetic circuit which shows 1st Example of this invention 本発明の第1の実施例を示す磁気式エンコーダの平面断面図Plan sectional view of a magnetic encoder showing a first embodiment of the present invention 本発明の第1の実施例を示す磁気式エンコーダの角度誤差曲線Angular error curve of magnetic encoder showing first embodiment of the present invention 本発明の第1の実施例を示す磁気式エンコーダの角度誤差値の永久磁石の残留磁束密度および永久磁石の肉厚比に対する依存性を示す図The figure which shows the dependence with respect to the residual magnetic flux density of a permanent magnet and the thickness ratio of a permanent magnet of the angle error value of the magnetic encoder which shows 1st Example of this invention. 本発明の第2の実施例を示す磁気式エンコーダの永久磁石の残留磁束密度と最適な永久磁石の肉厚比の関係を示す図The figure which shows the relationship between the residual magnetic flux density of the permanent magnet of the magnetic encoder which shows the 2nd Example of this invention, and the optimal thickness ratio of a permanent magnet. 第1の従来例を示す磁気式エンコーダの平面断面図Plan sectional view of a magnetic encoder showing a first conventional example 第2の従来例を示す磁気式エンコーダの平面断面図Plane sectional view of a magnetic encoder showing a second conventional example 第3の従来例を示す磁気式エンコーダの平面断面図Plane sectional view of a magnetic encoder showing a third conventional example

符号の説明Explanation of symbols

1 円筒形状の永久磁石
2 永久磁石の磁化方向
11 円筒形状の強磁性体
21 磁界検出素子
101 円板形状の永久磁石
102 円筒形状の永久磁石
103 永久磁石の磁化方向
111 外壁
112 円筒形状の強磁性体
121 磁界検出素子
DESCRIPTION OF SYMBOLS 1 Cylindrical permanent magnet 2 Magnetization direction of permanent magnet 11 Cylindrical ferromagnetic material 21 Magnetic field detection element 101 Disc-shaped permanent magnet 102 Cylindrical permanent magnet 103 Permanent magnet magnetization direction 111 Outer wall 112 Cylindrical ferromagnetic Body 121 Magnetic field detection element

Claims (1)

2極着磁した円筒形状の永久磁石と、
前記永久磁石の外周に設けられ、前記永久磁石の内側の空間に均一な磁界強度を有する磁気回路を構成する円筒形状の強磁性体と、
前記永久磁石の内側の空間に設けられ、前記磁気回路の回転による磁界の変化を検出する磁界検出素子と
備え、
前記永久磁石の材質、密度から決まる前記永久磁石の残留磁束密度をBrとし、前記永久磁石の肉厚をtmとし、強磁性体の肉厚をtyとし、前記永久磁石の肉厚tmを前記永久磁石の肉厚tmと前記強磁性体の肉厚tyの和で除した比で求められる永久磁石の肉厚比をkmとし、製造工程における許容誤差をαとした場合において、
前記残留磁束密度と前記肉厚比との関係が、
km=0.872−0.373×Br±α
である磁気式エンコーダ。
A cylindrical permanent magnet with two poles,
A cylindrical ferromagnetic body that is provided on the outer periphery of the permanent magnet and forms a magnetic circuit having a uniform magnetic field strength in the space inside the permanent magnet;
A magnetic field detection element that is provided in a space inside the permanent magnet and detects a change in a magnetic field due to rotation of the magnetic circuit ;
With
The permanent magnet residual magnetic flux density determined from the material and density of the permanent magnet is Br, the thickness of the permanent magnet is tm, the thickness of the ferromagnetic material is ty, and the thickness tm of the permanent magnet is the permanent magnet. When the thickness ratio of the permanent magnet obtained by dividing the magnet thickness tm by the sum of the thickness ty of the ferromagnetic material is km and the allowable error in the manufacturing process is α ,
The relationship between the residual magnetic flux density and the thickness ratio is
km = 0.877−0.373 × Br ± α
Is a magnetic encoder.
JP2007311878A 2007-12-03 2007-12-03 Magnetic encoder Expired - Fee Related JP5050817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007311878A JP5050817B2 (en) 2007-12-03 2007-12-03 Magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007311878A JP5050817B2 (en) 2007-12-03 2007-12-03 Magnetic encoder

Publications (3)

Publication Number Publication Date
JP2009133794A JP2009133794A (en) 2009-06-18
JP2009133794A5 JP2009133794A5 (en) 2011-10-20
JP5050817B2 true JP5050817B2 (en) 2012-10-17

Family

ID=40865799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007311878A Expired - Fee Related JP5050817B2 (en) 2007-12-03 2007-12-03 Magnetic encoder

Country Status (1)

Country Link
JP (1) JP5050817B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4304869B2 (en) * 2001-02-05 2009-07-29 株式会社安川電機 Magnetic encoder

Also Published As

Publication number Publication date
JP2009133794A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
US11391601B2 (en) Arrangement, method and sensor for measuring an absolute angular position using a multi-pole magnet
JP5079816B2 (en) Preferably a magnetic position sensor having a magnet shape that varies pseudo-sinusoidally.
JP4621987B2 (en) Magnetic encoder device and actuator
KR20130135918A (en) Absolute encoder device and motor
KR20140138253A (en) Magnetic rotation angle detector
JP2009534637A (en) Magnetic rotation angle generator
JPWO2007055135A1 (en) Magnetic encoder device
JP2020153806A (en) Rotation angle detector
JP4352189B2 (en) Magnetic encoder and motor with magnetic encoder
JP4706407B2 (en) Magnetic encoder device
US8928313B2 (en) Magnetic encoder with improved resolution
JP2000065596A5 (en) Magnetic encoder and motor with magnetic encoder
JP4900838B2 (en) Position detection device and linear drive device
JP5050817B2 (en) Magnetic encoder
JP5151958B2 (en) POSITION DETECTION DEVICE AND ROTARY LINEAR MOTOR HAVING THE SAME
US20040250632A1 (en) Apparatus for sensing position and/or torque
US10809097B2 (en) Detector apparatus and detector system
JP2020153980A (en) System for determining at least one rotation parameter of rotating member
JP6893267B1 (en) Magnetic detector
FI130594B (en) A variable reluctance position sensor
US20230273007A1 (en) Magnetic position sensor system with high accuracy
JP2009162783A (en) Position detector
JP2006138738A (en) Magnetic type encoder device
JP2008014671A (en) Magnetic encoder device
JP2005172441A (en) Angle and angular velocity integrated detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees