JPS6030889B2 - Imaging type article detection or inspection device - Google Patents

Imaging type article detection or inspection device

Info

Publication number
JPS6030889B2
JPS6030889B2 JP52049592A JP4959277A JPS6030889B2 JP S6030889 B2 JPS6030889 B2 JP S6030889B2 JP 52049592 A JP52049592 A JP 52049592A JP 4959277 A JP4959277 A JP 4959277A JP S6030889 B2 JPS6030889 B2 JP S6030889B2
Authority
JP
Japan
Prior art keywords
output
register
signal
light receiving
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52049592A
Other languages
Japanese (ja)
Other versions
JPS53134485A (en
Inventor
貞夫 益吉
忠臣 黒木
潔 土田
信雄 中塚
寿行 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP52049592A priority Critical patent/JPS6030889B2/en
Publication of JPS53134485A publication Critical patent/JPS53134485A/en
Publication of JPS6030889B2 publication Critical patent/JPS6030889B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

【発明の詳細な説明】 本発明は撮像装置によって物品の映像信号を得、この信
号を解析して物品の検出或は検査を行う装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device that obtains a video signal of an article using an imaging device and analyzes this signal to detect or inspect the article.

撮隊装置としては種々なものがあるが、多数の受光素子
を並べ、これらの受光素子の出力をレジスタの対応する
ビットに記憶させ、次にこのレジスタをシフトさせて記
憶内容を順次出力させるようにした撮像素子を用いる方
式がある。このような方式に用いる撮像素子として例え
ばCCDイメージセンサ等が知られている。この素子に
よると映像信号は一つの受光素子に一つのパルスが対応
したパルス列となり各パルスの高さがアナログ的に画素
の明るさを表わす。この撮像素子(一般的に半導体を用
いた光電素子は何れも)は温度によって感度が異る。従
って温度補償の方法を講じておく必要がある。本発明は
上述した撮像素子を用いた物品の検出或は検査装置を対
象としており、また上記した温度補償手段とも関係した
ものである。
There are various types of photography equipment, but one is one in which a large number of light receiving elements are lined up, the outputs of these light receiving elements are stored in corresponding bits of a register, and then this register is shifted to sequentially output the stored contents. There is a method that uses an image sensor made of For example, a CCD image sensor is known as an image sensor used in such a system. According to this element, the video signal is a pulse train in which one pulse corresponds to one light receiving element, and the height of each pulse represents the brightness of the pixel in an analog manner. The sensitivity of this image sensor (generally any photoelectric device using a semiconductor) differs depending on the temperature. Therefore, it is necessary to take measures for temperature compensation. The present invention is directed to an article detection or inspection device using the above-mentioned image sensor, and is also related to the above-described temperature compensation means.

そこで本発明の目的を明らかにするため、まずその温度
補償の手段について説明する。第1図に本発明で用いる
撮像素子の構成の概略を示す。
Therefore, in order to clarify the purpose of the present invention, the means for temperature compensation will be explained first. FIG. 1 shows an outline of the configuration of an image sensor used in the present invention.

PHが受光素子で多数が一列に並べられており物品の像
がその上に結ばれる。Gはゲートであり、このゲートを
はさんで各受光素子に対応したビットを有するシフトレ
ジスタSがある。走査の始めにゲートGに一つのパルス
を与えてこれを開き各受光素子PHの出力をシフトレジ
ス夕Sの対応ビットに記憶させる。次いでゲートGが閉
じている間にレジスタSにシフトパルスを与えて記憶内
容をシフトさせ各受光素子に対応する記憶を順次出力さ
せる。これが映像信号であって第2図に示すようなパル
ス列となっている。レジスタSの記憶内容を順次出力さ
せている間に各受光素子は光電流を積分しており、これ
が次回の走査における受光素子の出力となる。このよう
な素子において一走査の間にレジスタSをシフトさせる
回数を受光素子PHの数よりも多くすると走査の終り頃
にはシフトレジスタSは受光素子から受取った記憶を全
部放出してしまい、受光素子の出力を受入れないま)空
転送を行うようになり空転送ビットの出力が出て釆るよ
うになる。第2図でTが一走査周期であり、T′は各受
光素子PHに対応した映像信号の範囲であり、そのパル
ス数はPHの個数と同じである。tの部分が空転送ビッ
ト出力で本来は高さは0の筈であるが完全に0ではない
。しかもこの空転ビットの出力パルスの高さhは温度に
関係しており受光素子の出力の温度による変化と等しい
変化を呈する。従ってこの空転送ビットの出力の高さh
を温度補償用の信号として用いることが本件出願と同日
に同名の特許出願によって本件出願人により提案された
。即ちこの空転送ビットの出力レベルhを保持しこれに
適宜レベルを加算したレベルをスライスレベルLとして
第2図の映像信号をスライスし、同レベル以上の映像信
号を取出して種々の判定に供するようにすればhの高さ
が温度によって変ることにより温度補償ができたことに
なる。しかし他方各受光素子PHとシフトレジスタSの
各ビットとの間はゲートGにより隔てられておりGが閉
じている間はPHの出力はしジスタSに影響しない筈で
あるが実際にはゲートGの閉じている間のりーク等々よ
りシフトレジスタSをシフトさせる速さが比較的おそい
ときはレジスタの各ビットは対応受光素子の影響を受け
る。この影響を各ビット内のデータについてみると、各
ビットのデータは順次隣のビットに転送されて取出され
るので、空転送の間に各デー外ま各受光素子の影響を順
次受けて平均化して行き、空転送時の各ビット出力は各
受光素子への入射光量に不同があっても、相互に殆んど
同じになり、イメージセンサ全面の平均照度は通常は時
間的に略一定しているので、空転送ビットの出力は温度
の影響を表わすものとなるのである。第3図は入射光量
を変えたときの受光素子PHの一つとシフトレジスタS
の対応ビットの出力との関係を示す。もちろんこの図は
PHとSとの間のゲ−トGは閉じてある場合のものであ
るが、シフトレジスタの一つのビットの出力を直酸取出
すことはできないので、各受光素子を均一照度で照明し
たときの、各受光素子出力をシフトレジスタの対応ビッ
トに記憶させて、これを順次シフトさせて論出した場合
の各ビット出力と、同じ条件でゲートを閉じて空転送を
行ったときの対応ビット出力との関係を、受光素子全面
の照度を変えながら採取したデータをグラフ化したもの
である。PHの出力は入射光を強くするに従い増加する
が出力が3.75V位になると飽和する。他方レジス夕
Sの対応ビットの出力(前述した空転送時の出力)はP
Hの出力が3V位まではPHの出力に比例し、両者の比
は略2:1位である。所がPHの出力が3Vを超すよう
になるとしジスタの対応ビットの出力は急に増加してP
Hの出力に追いつきPHの出力3.75Vでは対応レジ
スタの出力も略3.75Vとなる。以上の関係は温度に
関係しない。即ち第3図の関係は温度には関係せず、例
えば受光素子の出力が2Vである入射光強度は温度によ
って変化するが、受光素子の出力2Vが閉じたゲ−トG
をリークして空転送ビット出力がIVになると云う関係
は温度によって変らない。CCDイメージセンサ等の撮
像素子にはこのような性質があるので上述した温度補償
の方法を用いると次のような問題が生じる。即ち被検物
体から撮像素子に入る光の強さが被検物体毎に余り変ら
なければよいが、これが大幅に変化するとき、例えば被
検体が自ら発光しているものでしかもその発光の強さが
物品毎に異るとか、彩色がしてあって暗い色のものや明
るい色の物がランダムに送られて来るような場合、空転
送ビットの出力は温度と共に被検体の明るさによっても
変化し、非常に明るい物体が来て受光素子の出力が飽和
値近くになると空転送ビットの出力そのものが受光素子
の出力と略等しくなり、その上に適宜レベルを加算した
スライスレベルL(第2図)は映像信号より上方に移動
してしまって物品検出の信号が得られなくなってしまつ
o本発明はこの問題を解決することを目的としたもので
ある。
A large number of PHs are light-receiving elements arranged in a line, and an image of the article is formed thereon. G is a gate, and a shift register S having bits corresponding to each light receiving element is provided across this gate. At the beginning of scanning, one pulse is given to the gate G to open it and the output of each light receiving element PH is stored in the corresponding bit of the shift register S. Next, while the gate G is closed, a shift pulse is applied to the register S to shift the stored contents and sequentially output the stored contents corresponding to each light receiving element. This is a video signal, which is a pulse train as shown in FIG. While the contents of the register S are being sequentially output, each light-receiving element integrates the photocurrent, and this becomes the output of the light-receiving element in the next scan. In such an element, if the number of shifts of the register S during one scan is greater than the number of light receiving elements PH, the shift register S will release all the memory received from the light receiving elements near the end of the scan, and the light receiving (Unless the output of the element is accepted), an empty transfer is performed, and an empty transfer bit is output. In FIG. 2, T is one scanning period, T' is the range of the video signal corresponding to each light receiving element PH, and the number of pulses is the same as the number of PHs. The part t is an empty transfer bit output, and originally the height should be 0, but it is not completely 0. Moreover, the height h of the output pulse of this idle bit is related to temperature and exhibits a change equal to the change in the output of the light receiving element due to temperature. Therefore, the output height h of this empty transfer bit
The use of the signal as a signal for temperature compensation was proposed by the applicant in a patent application of the same name on the same day as the present application. In other words, the output level h of this empty transfer bit is held, and the level obtained by adding an appropriate level to this is set as the slice level L, and the video signal shown in FIG. 2 is sliced, and video signals of the same level or higher are extracted and used for various determinations. By doing so, temperature compensation can be achieved by changing the height of h depending on the temperature. However, on the other hand, each light receiving element PH and each bit of the shift register S are separated by a gate G, and while G is closed, the output of PH should not affect the register S, but in reality, the gate G When the speed at which the shift register S is shifted is relatively slow due to leakage while the register is closed, each bit of the register is affected by the corresponding light receiving element. If we look at this effect on the data within each bit, the data in each bit is sequentially transferred to the adjacent bit and retrieved, so during idle transfer, the influence of each light receiving element is sequentially applied to the outside of each data and is averaged. Therefore, each bit output during idle transfer is almost the same even if the amount of light incident on each light receiving element is different, and the average illuminance over the entire surface of the image sensor is usually approximately constant over time. Therefore, the output of the idle transfer bit represents the effect of temperature. Figure 3 shows one of the light receiving elements PH and the shift register S when the amount of incident light is changed.
shows the relationship between the output of the corresponding bit and the output of the corresponding bit. Of course, this figure shows the case where the gate G between PH and S is closed, but since the output of one bit of the shift register cannot be taken out directly, each light receiving element is illuminated with uniform illuminance. The output of each light-receiving element during illumination is stored in the corresponding bit of the shift register, and each bit output is sequentially shifted and output, and the output when empty transfer is performed with the gate closed under the same conditions. This is a graph of data collected while changing the illuminance of the entire surface of the light receiving element to show the relationship with the corresponding bit output. The output of the PH increases as the intensity of the incident light increases, but it saturates when the output reaches about 3.75V. On the other hand, the output of the corresponding bit of register S (the output during the above-mentioned idle transfer) is P.
The H output is proportional to the PH output up to about 3V, and the ratio between the two is about 2:1. However, when the output of PH exceeds 3V, the output of the corresponding bit of the register suddenly increases and P
When the output of PH catches up with the output of H and reaches 3.75V, the output of the corresponding register also becomes approximately 3.75V. The above relationship is not related to temperature. In other words, the relationship shown in Fig. 3 is not related to temperature; for example, the intensity of incident light when the output of the light receiving element is 2V changes depending on the temperature, but when the output of the light receiving element is 2V and the gate G is closed,
The relationship that the idle transfer bit output becomes IV due to leakage does not change depending on the temperature. Since image pickup devices such as CCD image sensors have such properties, the following problems occur when the temperature compensation method described above is used. In other words, it is fine if the intensity of light that enters the image sensor from the object to be examined does not vary much from object to object, but if this changes significantly, for example, if the object is emitting its own light, and the intensity of that light emitted The output of the empty transfer bit will vary depending on the temperature and the brightness of the object. However, when a very bright object comes and the output of the light-receiving element approaches the saturation value, the output of the empty transfer bit itself becomes approximately equal to the output of the light-receiving element, and the slice level L (see Figure 2) is obtained by adding an appropriate level to it. ) moves above the video signal, making it impossible to obtain an article detection signal.The present invention is aimed at solving this problem.

本発明はこの目的を達成するため、上述した温度補償の
方法に併せて、撮像素子の出力が或る限度以上になった
ら温度補償回路の動作の如何にか)わらず物品検出信号
を出すようにした。受光素子の出力が飽和に近づく位受
光素子への入射光が強くなれば、温度の如何に関係なく
物品有りとしても何等の支障もないのである。以下実施
例によって本発明を説明する。第4図は本発明の一実施
例を示すものである。
In order to achieve this object, the present invention, in addition to the above-described temperature compensation method, outputs an article detection signal regardless of the operation of the temperature compensation circuit when the output of the image sensor exceeds a certain limit. I made it. As long as the light incident on the light-receiving element becomes strong enough that the output of the light-receiving element approaches saturation, there will be no problem even if an article is present, regardless of the temperature. The present invention will be explained below with reference to Examples. FIG. 4 shows an embodiment of the present invention.

1はタイミングパルス発生回路で、第1図に示した撮像
素子のゲートGを開くパルス及びシフトレジスタSをシ
フトさせるシフトパルスを発生する池後述するサンプリ
ングパルスを発生する。
Reference numeral 1 denotes a timing pulse generation circuit which generates a pulse to open the gate G of the image pickup device shown in FIG.

2が第1図に示した撮像素子でCCDイメージセンサが
用いられている。
2 is an image sensor shown in FIG. 1, which uses a CCD image sensor.

撮像素子2の出力は増幅器AMPで増幅されて比較回路
4に送られる。比較回路4には規準レベルとして前述第
2図にLで示したスライスレベルも印加されている。A
MPの出力はサンプルホールド回路3にも送られている
。他方同回路には第2図において空転送ビットの出力の
出ている期間tにおける適宜のタイミングにおいてパル
ス発生回路1からサンプリングパルスが送られて来て空
転送ビットの出力パルスのレベルhを読込みこれを保持
する。この保持されている信号が加算回路5に印加され
る。他方加算回路5には設定器6によって適当に設定さ
れたレベルも印加されていてサンプルホールド回路3の
出力と加算され、加算出力が前述スライスレベルとして
比較回路4に送られている。このようにして通常は比較
回路4から第2図でレベルLより高いパルスのみが選別
されてオア回路ORを経て判別回路(図外)に送り出さ
れる。更にサンプルホールド回路3に保持された信号は
第2の比較回路7に送られこ)で或る値に設定された規
準レベルと比較され、サンプルホールド回路3の出力の
方がその規準レベルより高いときは比較回路7から信号
が出されてOR回路ORを通して判別回路(図外)に送
られる。
The output of the image sensor 2 is amplified by an amplifier AMP and sent to a comparison circuit 4. The slice level indicated by L in FIG. 2 is also applied to the comparator circuit 4 as a reference level. A
The output of the MP is also sent to the sample hold circuit 3. On the other hand, a sampling pulse is sent to the same circuit from the pulse generating circuit 1 at an appropriate timing during the period t during which the idle transfer bit is output as shown in FIG. 2, and the level h of the output pulse of the idle transfer bit is read. hold. This held signal is applied to the adder circuit 5. On the other hand, a level appropriately set by a setter 6 is also applied to the adder circuit 5, which is added to the output of the sample and hold circuit 3, and the added output is sent to the comparator circuit 4 as the aforementioned slice level. In this way, normally only pulses higher than level L in FIG. 2 are selected from the comparator circuit 4 and sent to a discrimination circuit (not shown) via the OR circuit OR. Further, the signal held in the sample and hold circuit 3 is sent to a second comparison circuit 7, where it is compared with a reference level set to a certain value, and the output of the sample and hold circuit 3 is higher than the reference level. In this case, a signal is output from the comparator circuit 7 and sent to a discriminator circuit (not shown) through an OR circuit OR.

こ)で比較回路7に設定される規準レベルは第3図を参
照して決められる。例えば或る標準温度の下で前述スラ
イスレベルLをIVに定めたとし、標準物品が存在する
ときの撮像素子1における受光素子PHの出力が1.5
Vであるとする。この場合空転送ビットの出力は0.7
5VであるからスライスレベルL=IVを得るために加
算回路5に与えられる設定器6の出力は0.2Wと定め
られる。こ)で標準物品より明色の物品(これも良品)
が送られて来て撮像素子における受光素子の出力が3.
5 Vになったとする。このとき空転送ビットの出力は
第3図によれば約2Vであるが、この辺から第2図のカ
ーブは急に寝ていて素子のわづかのばらつき、わづかな
温度変化で空転送ビットの出力は大きく変り、3V以上
になることも予想される。仮に3Vとするとスライスレ
ベルはそれに0.25Vを加えて3.25Vとなり、受
光素子の出力3.5Vとの差は0.25Vしかなく物品
が検出できないおそれがある。従って第3図のカーブが
曲り始めるときの空転送ビットの出力1.5Vよりも梢
余裕をとって1.2V位を規準レベルとして比較回路7
に設定する。かくして標準物体よりも綾度の大なる物品
をも安定に検出することができる。本発明撮像式物品検
出或は検査装置は上述したような構成で、多数の受光素
子を並べ、各受光素子の出力をレジスタの対応ビットに
記憶させ、このレジスタの記憶をシフトさせて順次出力
を取出して映像信号を得、この映像信号を適宜スライス
レベルでスライスして検出信号を得る構成を用い、上記
しジスタの空転送ビットの出力を温度補償用信号として
用いるようになっているので温度補償のため別途感温素
子を用いるのに比し素子数が少くでき、しかもこのよう
な構成にした場合被検体の輝度が大幅に変化する場合明
るい被検体の検出検査が不確実となる欠点があるのが、
第2の比較回路を設けるだけで簡単に解消されたのであ
る。
The reference level set in the comparator circuit 7 in this step is determined with reference to FIG. For example, if the slice level L is set to IV under a certain standard temperature, the output of the light receiving element PH in the image sensor 1 when the standard article is present is 1.5.
Suppose that V. In this case, the output of the empty transfer bit is 0.7
Since the voltage is 5V, the output of the setter 6 applied to the adder circuit 5 to obtain the slice level L=IV is determined to be 0.2W. This item is lighter in color than the standard item (this is also a good item)
is sent, and the output of the light receiving element in the image sensor is 3.
Suppose it becomes 5V. At this time, the output of the idle transfer bit is approximately 2V according to Figure 3, but from this point onwards the curve in Figure 2 suddenly dips, and due to slight variations in the elements and slight temperature changes, the output of the idle transfer bit is approximately 2V. It is expected that the output will vary greatly and may reach 3V or more. If it is 3V, the slice level is 3.25V by adding 0.25V to it, and the difference from the output of the light receiving element of 3.5V is only 0.25V, and there is a possibility that the article cannot be detected. Therefore, the comparison circuit 7 is set at a reference level of about 1.2V, with a margin above the 1.5V output of the idle transfer bit when the curve in FIG. 3 starts to curve.
Set to . In this way, it is possible to stably detect objects with a higher degree of texture than the standard object. The imaging type article detection or inspection device of the present invention has the above-mentioned configuration, in which a large number of light receiving elements are arranged, the output of each light receiving element is stored in the corresponding bit of a register, and the memory of this register is shifted to output sequentially. A configuration is used in which the video signal is extracted and the video signal is sliced at an appropriate slice level to obtain the detection signal, and the output of the empty transfer bit of the register described above is used as the temperature compensation signal, so the temperature compensation is performed. Therefore, the number of elements can be reduced compared to using a separate temperature sensing element, and this configuration also has the disadvantage that the detection test of bright objects becomes uncertain if the brightness of the object changes significantly. The thing is,
This problem could be easily solved by simply providing a second comparison circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いられる撮像素子の構成の概略を示
すブロック図、第2図は上記素子で得られる映像信号の
図、第3図は上記素子における受光素子としジスタの空
転送ビットの出力の相互関係を示す図、第4図は本発明
の一実施例のブロック図である。 PH・・・・・・受光素子、G・・・・・・ゲート、S
・…・・シフトレジスタ。 次l園 次2図 次3図 ヌ4図
Fig. 1 is a block diagram showing the outline of the configuration of the image sensor used in the present invention, Fig. 2 is a diagram of a video signal obtained by the above-mentioned element, and Fig. 3 is a diagram of the light-receiving element and empty transfer bit of the register in the above-mentioned element. FIG. 4, which is a diagram showing the interrelationship of outputs, is a block diagram of an embodiment of the present invention. PH... Light receiving element, G... Gate, S
...Shift register. Next 1 Next 2 Figures Next 3 Figures 4

Claims (1)

【特許請求の範囲】[Claims] 1 多数の受光素子を並べ、その出力をレジスタの対応
ビツトに記憶させ、同レジスタの記憶をシフトさせて順
次取出して映像信号とし、適宜スライスレベルによつて
上記映像信号をスライスして物品又は検査対象の欠点の
存否の判別のための信号とする構成を用い、上記レジス
タに対し一走査の間に受光素子の個数よりも多数回のシ
フト動作を行わせて空転送ビツト出力を得、この空転送
ビツト出力を適宜タイミングでサンプリングしホールド
して温度補償用信号として上記スライスレベルに加算す
るようにすると共に、同空転送ビツト出力のサンプリン
グホールド値を比較回路に送り、適宜設定されたレベル
と比較して同値がこの設定レベルを超えたとき上記比較
回路から出される信号をも物品又は検査対象における欠
点の存否の判別のための信号とするようにした撮像式物
品検出或は検査装置。
1 Arrange a large number of light-receiving elements, store their outputs in corresponding bits of a register, shift the memory of the register and take them out sequentially to make a video signal, and slice the video signal according to an appropriate slice level to slice the product or inspect it. Using a configuration in which the signal is used to determine the presence or absence of a target defect, the above register is made to perform a shift operation more times than the number of light receiving elements during one scan to obtain an empty transfer bit output, and this empty transfer bit is output. The transferred bit output is sampled and held at appropriate timing and added to the above slice level as a temperature compensation signal, and the sampled and held value of the same transferred bit output is sent to a comparator circuit and compared with an appropriately set level. An imaging type article detection or inspection device, wherein when the same value exceeds the set level, the signal output from the comparison circuit is also used as a signal for determining the presence or absence of a defect in the article or the object to be inspected.
JP52049592A 1977-04-27 1977-04-27 Imaging type article detection or inspection device Expired JPS6030889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52049592A JPS6030889B2 (en) 1977-04-27 1977-04-27 Imaging type article detection or inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52049592A JPS6030889B2 (en) 1977-04-27 1977-04-27 Imaging type article detection or inspection device

Publications (2)

Publication Number Publication Date
JPS53134485A JPS53134485A (en) 1978-11-24
JPS6030889B2 true JPS6030889B2 (en) 1985-07-19

Family

ID=12835495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52049592A Expired JPS6030889B2 (en) 1977-04-27 1977-04-27 Imaging type article detection or inspection device

Country Status (1)

Country Link
JP (1) JPS6030889B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017341A (en) * 1983-07-11 1985-01-29 Toshiba Corp Preprocessor for deciding dangerous substance

Also Published As

Publication number Publication date
JPS53134485A (en) 1978-11-24

Similar Documents

Publication Publication Date Title
US5047863A (en) Defect correction apparatus for solid state imaging devices including inoperative pixel detection
JPS60151632A (en) Calibrating method of photographic image information
US9264643B1 (en) Methods and circuitries for pixel sampling
KR20010083872A (en) Multiple sampling image sensor system and method via a time-indexed method to achieve wide dynamic ranges
USH1616H (en) Web inspection system having enhanced video signal preprocessing
EP0046058A3 (en) Web monitoring apparatus
US5027148A (en) Autofocus chip with reference level determination circuit
EP0496867B1 (en) Apparatus for locating perforation
KR880004703A (en) Electronic data conversion system
JPS6030889B2 (en) Imaging type article detection or inspection device
JP2000504519A (en) Image signal detection method
GB1271505A (en) Method and apparatus for determining the exposure of a recording material
WO1991000504A1 (en) Method and apparatus for detecting stress in an object
JP2621690B2 (en) Printing defect inspection equipment
JPH011939A (en) Yarn package inspection device
JPH07104286B2 (en) Inspecting device for yarn package
US4633319A (en) Method and apparatus for detecting focusing in an image pickup device
JPS62111227A (en) Video endoscope
JPS562563A (en) Deciding method for particle coagulation pattern
JP2655546B2 (en) Light source fluctuation correction method and device
JPH0510730A (en) Displacement meter
JPS6219965Y2 (en)
JPH01225927A (en) Metering device
JPH01313743A (en) Method for inspecting colored periodic pattern
JPS59142407A (en) Detecting method of optical edge position