JPS6030838A - Vibration damper - Google Patents

Vibration damper

Info

Publication number
JPS6030838A
JPS6030838A JP13774983A JP13774983A JPS6030838A JP S6030838 A JPS6030838 A JP S6030838A JP 13774983 A JP13774983 A JP 13774983A JP 13774983 A JP13774983 A JP 13774983A JP S6030838 A JPS6030838 A JP S6030838A
Authority
JP
Japan
Prior art keywords
vibration
frequency range
force
resonance
elastic support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13774983A
Other languages
Japanese (ja)
Inventor
Masaru Sugino
勝 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP13774983A priority Critical patent/JPS6030838A/en
Publication of JPS6030838A publication Critical patent/JPS6030838A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combined Devices Of Dampers And Springs (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

PURPOSE:To effect reliable damping of vibration during resonance and to perform reliable absorption of vibration outside a resonance frequency range, by a method wherein a force, which is exerted in the reverse direction to that of a vibration and has amplitude approximately proportional to the velocity of vibration, is exerted on an elastic retainer part only within a resonance frequency range. CONSTITUTION:An actuator part, which serves to generate a force across an elastic retainer part 11 for retaining a vibration body, is formed with a chamber 14, a line 22, a servo valve 23, and hydraulic source 24. Only components, in a specified frequency range, of signals from a speed detector 25 and a pressure detector 26, are selected by low pass filters 27 and 28 and sent to a controller part 31, and the servo valve 23 is controlled to actuate the actuator part. A force, which is generated in the reverse direction to that of a vibration and has amplitude approximately proportional to the velocity of vibration, is exerted on the elastic retainer part within the specified (resonance) frequency range to increase a dynamic spring constant. Vibration is absorbed, outside the specified (resonance) frequency range, by means of the constant of the elastic retainer part 11.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は自動車のエンジンマウント等に用いる制振装置
に関するものである。 制振装置としては従来、例えは第5図に示す如きものが
あり、この制振装置はコツプ状ゴム部材lを具え、その
開口部をボルト2が結合された金属部材3により閉塞す
ると共に底部にボルト4が結合された金属部材5を固着
する。ゴム部材1及び金属部材8間にダイアフラム6及
び仕切板7を挟設し、仕切板7にオリフィス7aを形成
する。 金属部材3及びダイアフラム6間の室8は密閉空気室と
し、ゴム部材lの底部及びダイアフラム6間にあって仕
切板7により区画された室9.l。 には液体を封入する。 かかる制振装置はゴム部材1の開口部をボルト2により
振動体(例えばエンジン)に、又ゴム部材1の底部をボ
ルト4により支持体(例えは車体フレーム)に夫々取付
けて実用し、以下の如くに機能Tる。即ち、振動体がら
の振動はゴム部材1を弾性変形させ、これにより容積変
化する室9゜10間で封入液体はオリフィス7atl−
経て制限下に往来する。この時の流動抵抗が振動を減衰
し、所定の制振作用が得られる。なお、この作用中室9
.10の合計容程(の変化はダイアフラム6を介し室8
内の空気が圧縮又は膨張されることにより吸収され、上
記の作用を妨げない。 上記制振装置の作用特性は、入力される振動の周波数に
対するロスファクター(静はね定数をに1減衰係数を0
1角徐動数をωとするとtan yで表わされる)の変
化特性を示すと第6図中実線aの如くになる。 ところで制振装置は、振動体が自由振動を始めた時これ
を速やかに減衰する目的を持って用いることから、振動
体及び支持体の自由振fiI117+1波数(共振周波
数)域(例えは第6図中f。以下)において動はね定数
kd (kd = k” + (ccc+−一で表わさ
れる)を太きくシ、それ以外の周波数域で動はね定数k
clがほとんど零になるような例えは第6図中一点鎖線
すの如き作用特性を持ったものであるのが理想的である
。 しかして従来の制振装置は、共振周波数域の動はね定数
k(1を上記の要求通り大きくなるようにすると、第6
図中の特性aから明らかなように画該周波数域以外にお
ける動ばね定数kdも大きくなり、振動体からの振動が
支持体にそのまま伝達されるO従って従来の制振装置は
自動車用エンジンマウントに用いる場合、共振周波数域
外でのエンジン振動を吸収しきれず、車体振動を惹起し
たり、車内騒音を大きくする問題を避けられない。又実
開昭57−422に示された制振装置のようにエンジン
回転に応じて制振装置の剛性を変えるものもあるが、こ
のような制振装置にあっては単に一義的に制振装置の剛
性を変えるだけのため、常に車室内騒音の発生を防ぐこ
とはできなかった。 本発明は、振動体を支持体に支持する弾性支持部の両端
間に力を発生させるアクチュエータ部を設け、規定(共
振)周波数域でこのアクチュエータ部を作動させて振動
方向と逆向き及び振動速度に略比例した大きさの力を弾
性支持部に加えるようにし、又それ以外の周波数域では
当該力を弾性支持部に加えないようにして、その静はね
定数により振動を吸収するよう構成すれば、共&−周波
数域外で振動体からの振動が支持体にそのまま伝達され
るという前記の問題を解決しつつ、共振周波9数域で動
はね定数を要求通り大きくすることができるとの観点か
ら、この着想を具体化した制振装置を稈供しようとする
ものである。 以下、図示の実線例により本発明の詳細な説明する。 第1図は本発明装置rjの一実施例を、また第2図はそ
の概念図を示し、これら図中11は振動体を支持体に取
付けるための弾性支持部である。弾性支持部11は耐油
ゴム等で造った皿状の弾性体12を具え、その開口部を
金属部′JfA13により閉塞して室14を画成し、り
The present invention relates to a vibration damping device used in an automobile engine mount or the like. Conventionally, there is a vibration damping device as shown in FIG. 5, and this vibration damping device is equipped with a tip-shaped rubber member 1, the opening of which is closed by a metal member 3 to which a bolt 2 is connected, and a bottom portion of the damping device is closed. A metal member 5 to which a bolt 4 is connected is fixed. A diaphragm 6 and a partition plate 7 are interposed between the rubber member 1 and the metal member 8, and an orifice 7a is formed in the partition plate 7. A chamber 8 between the metal member 3 and the diaphragm 6 is a sealed air chamber, and a chamber 9 is located between the bottom of the rubber member 1 and the diaphragm 6 and partitioned by a partition plate 7. l. is filled with liquid. Such a vibration damping device is put into practical use by attaching the opening of the rubber member 1 to a vibrating body (for example, an engine) with bolts 2, and the bottom of the rubber member 1 to a support body (for example, a vehicle body frame) with bolts 4. It functions like this. That is, the vibration of the vibrating body elastically deforms the rubber member 1, and the sealed liquid flows through the orifice 7atl-10 between the chambers 9 and 10 whose volumes change.
After that, they come and go under restrictions. The flow resistance at this time damps vibrations, and a predetermined vibration damping effect is obtained. In addition, during this action, chamber 9
.. 10 total volume (change in chamber 8 via diaphragm 6
The air inside is absorbed by being compressed or expanded and does not interfere with the above action. The operating characteristics of the above vibration damping device are as follows: loss factor (static spring constant = 1 damping coefficient = 0) for the input vibration frequency
If the one-angle gradual number is ω, then the change characteristic of tan y is shown as the solid line a in FIG. 6. By the way, the vibration damping device is used for the purpose of quickly damping the free vibration of the vibrating body when it starts to vibrate. The dynamic spring constant kd (kd = k" + (expressed as ccc+-1) is made thicker in the middle f. and below), and the dynamic spring constant k is
Ideally, an example in which cl becomes almost zero would have operating characteristics as shown by the dashed dotted line in FIG. However, in the conventional vibration damping device, if the dynamic spring constant k (1) in the resonance frequency range is made large as required above, the 6th
As is clear from the characteristic a in the figure, the dynamic spring constant kd outside the frequency range of the image also increases, and vibrations from the vibrating body are directly transmitted to the support body. When used, engine vibrations outside the resonant frequency range cannot be absorbed completely, causing vibrations in the vehicle body and increasing noise inside the vehicle. There are also vibration damping devices that change the rigidity of the damping device according to engine rotation, such as the vibration damping device shown in Utility Model Application Publication No. 57-422, but such damping devices only provide vibration damping primarily. Because the system only changed the rigidity of the device, it was not possible to always prevent noise from occurring inside the vehicle. The present invention provides an actuator section that generates a force between both ends of an elastic support section that supports a vibrating body on a support body, and operates this actuator section in a specified (resonant) frequency range to produce vibrations in a direction opposite to the vibration direction and at a vibration speed. A force that is approximately proportional to the elastic support is applied to the elastic support, and the force is not applied to the elastic support in other frequency ranges, so that the vibration is absorbed by its static spring constant. For example, it is possible to solve the above-mentioned problem that vibrations from the vibrating body are directly transmitted to the support body outside the resonance frequency range, while increasing the dynamic spring constant as required in the resonance frequency range. From this point of view, we are attempting to provide a vibration damping device that embodies this idea. Hereinafter, the present invention will be explained in detail using solid line examples shown in the drawings. FIG. 1 shows an embodiment of the device rj of the present invention, and FIG. 2 shows its conceptual diagram. In these figures, reference numeral 11 denotes an elastic support portion for attaching the vibrating body to the support body. The elastic support part 11 includes a dish-shaped elastic body 12 made of oil-resistant rubber or the like, and its opening is closed by a metal part 'JfA13 to define a chamber 14.

【性体12の底音)5に金属部月15を固着する。金
属部利15には、弾性体12の枠方向変形を制限する枠
体16を弾性ステー17を介し支持する。金属部利13
.15に夫1々ボルト18 、1.9を植設し、これら
ボルトを介し金属部vJ’ 13 、15を夫々振動体
側ブラケット20及び支持体側ブラケット2】に取付け
ることにより弾性支持部11は振動体を支持体へ支持す
室14は管路22を介しサーボ弁23に接続し、このサ
ーボ弁を油圧#24に接続して、これらで弾性支持部1
1に力を発生させるアクチュエータ部を構成する。サー
ボ弁23はその開時油圧源24の圧力を管路22より室
14内に供給して内圧を高め、閉時室14内の圧力を油
圧源24・に戻して室14.の内圧を低下させるもので
、以下の電子口跡により開閉制御される。 即ち、枠体16に弾性支持部11の両端相対移動速度を
検出する速度検知器25を設けると共に、室14.内に
その内圧を検出する圧力検知器26を設け、これら検知
器25.2Gからの信号を夫々ローパスフィルター27
.28及びアンプ29゜30を順次経て制御部81に入
力する。制御部3】はこれら入力信号の演算結果に基づ
きサーボ弁23を後述の如くに作動制御する。なお、ロ
ーパスフィルター27.28は夫々検知5z52.z6
からの信号のうち規定周波数域成分、例えば第6図中f
。以下の周波数域成分のみを選択して通過さ次に本発明
装置の原理を説明する。振動体の賀介1をm1弾性体1
2のはね定数をに1その両端相対移動h1をX1検知器
25により検出する速度を交(交= dX/at ) 
、この速度に比例する力の比例定数をCとすると、l自
由度の振動系に対する連動方稈式はm52+cx+kx
=6で表わされ、この式に交を乗じて時間積分し、エネ
ルギー収支をみると、3.imx2+3/、kx2= 
O−cf 女” −dt (但し0は定数)の式が得ら
れる。この式中右辺第2項、即ちCを常時正にしてやれ
は振動体と弾性体12との間でやりとりの行なわれるエ
ネルギーを次第に減少して、所定の制振作用を得ること
ができることが判る。この原lliを実現するには、振
動体、従って弾性支持部11の両端間に上記速度と逆位
相でその大きさに比例した値の力を加えれはよい。 そこで本例においては、サーボ弁2aの切換えにより室
14内に圧力変動ΔPを生じさせ、前記の力を発生する
ようにしたもので、この場合運動方稈式は有効受圧面積
をAとすると、%mM+ΔP・A+1(X=0で表わさ
れるが、受圧面積Aは略一定であるから、室14内に前
記速度と逆位相でその大きさに比例した飴の圧力変動Δ
Pを生じさせるよう、制御部31によりサーボ弁23を
・作動制御して前記の原理を満足させる。 具体的には第2図から明らかな如く制御部81は、速度
検知器25で検出した速度の位相及び大きさを、圧力検
知器26で検出した室14・内における′圧力のうち上
記速度と逆位相の成分と比較し、その比が一定となるよ
う、サーボ弁23を制御する。そしてこの制御は、ロー
パスフィルター27゜28が夫々第6図中f。以下の周
波数域成分のみを通過させるから、このI?、l波数域
のみにおいて実行され、それ以外の周波数域では上記の
制御を行なわず、第6図の要求特性すを得ることができ
る。 従って制御部31はマイクロコンピュータで構成する場
合、第3図のプログラムを実行して上記の制御を行なう
ようにする。即ち、先ずステップ40において検知器2
5により検出した速度及び検知器26により検出した圧
力変動が設定値より大か否かを判別する。そうであれば
、つまり振動が減衰させるべき大きなものである場合、
制御はけステップ41に進み、そうでなけれは以後の制
御を実行しない。ステップ41では速度及び圧力変動間
の位相差ψを測定し、次のステップ42で当該位相差?
を基に変動圧力xtanPを演算して圧力変動を生じた
速度成分をめる。次で制御はステップ413に進み、こ
こでは上記変動圧力xtan(pの演釣値を速度で除p
した後その除算値が目標値、例えは第6図中S。より大
か、小か、等しいかを判別する。目標値S。より大ぎい
場合、つまりロスファクターが大き過ぎる場合、制御は
ステップ44へ進んで、サーボ弁z3を閉じるようt(
信号を出力する。この詩宗]4・内の圧力は低下さね、
ロスファクターを目標値S。に近付けることができる。 上記の除算値が目標値S。より小さい場合、つまりロス
ファクターが小さ過ぎる場合、ff++御はステップ4
5に進んで、サーボ弁23を17Li <ような信号を
出力する。この詩宗14内の圧力は上昇され、ロスファ
クターを目標値S。にになっていれは、ロスファクター
は目標イ直S。であるからサーボ弁23を現状のままに
しておく。 以上の制御の繰近しにより本発明制振装置は、第6図に
一点鎖線すで示す如く規定周波数域(f。 以下)においてロスファクターを目標値S。に保ち、そ
れ以外の周波数域においてロスファクターを零に保つ理
想的な作用特性を得ることができる。 ちな、みに本発明装置をエンジンマウントに用いる場合
について述べると、共振同波数f。は6H2%振幅は5
闘程度であり、弾性支持部11を第5図の従来装置とほ
ぼ同寸法にして、受圧面積Aを46 cm! (直径約
40 mm )、静ばね定数を約13に9 f/、、 
。 ロスファクターSoを0.3にすると、圧力変動ΔPは
約0−5 kgf/cm2程度の小さな値でよいことを
確めた。 なお、前記実施例では弾性支持部11の両端間に力を作
用させるのに油圧を用いたが、第4図の如く室14内に
ガスを封入すると共に、永久磁石32及び電磁石88を
対向設置し、これら磁石間も、制御部3]か速度検知器
25からの信号に応じ沙用と逆位相でその大きさに比例
した値の上記吸引力または反発力を発生するよう電磁石
33を通■1、制御することにより、611述した例と
同様の作用を得ることができる。 かくして本発明制振装置は上述の如く、振動体を支持す
る弾性支持部11の両端間に力を発生させるアクチュエ
ータ部14.22〜24(32,33)を設け、規定周
波数域でこのアクチュエータ部を作動させて振動方向と
逆向き及び振動速度に略比例した大きさの力を弾性支持
部11に作用させるようにし、又そλ1以外のIi’i
l波数域では当該力を作用させないようにして弾性支持
部11の静はね定数により振動を吸収するようにしたか
ら、規定周波数域外で振動体からの振動を確実に吸収し
つつζハ1定周波数域で動はね定数を要求通り大きくし
て振動減衰作用を確実なものとすることができる。
[Undertone of the sexual body 12] Fix the metal part 15 to 5. A frame body 16 that limits deformation of the elastic body 12 in the frame direction is supported by the metal part 15 via an elastic stay 17. Metal department profit 13
.. By inserting bolts 18 and 1.9 into each of the ends of the elastic support section 11 and attaching the metal parts vJ' 13 and 15 to the vibrating body side bracket 20 and the support body side bracket 2 respectively through these bolts, the elastic support part 11 can be attached to the vibrating body. The chamber 14 for supporting the elastic support part 1 is connected via a conduit 22 to a servo valve 23, which in turn is connected to a hydraulic pressure #24.
1 constitutes an actuator section that generates force. The servo valve 23 supplies the pressure of the hydraulic pressure source 24 into the chamber 14 through the pipe line 22 to increase the internal pressure when the servo valve 23 is open, and returns the pressure inside the chamber 14 to the hydraulic source 24 when the servo valve 23 is closed. It lowers the internal pressure of the valve, and the opening and closing are controlled by the following electronic mouth traces. That is, the frame body 16 is provided with a speed detector 25 for detecting the relative movement speed of both ends of the elastic support section 11, and the chamber 14. A pressure detector 26 for detecting the internal pressure is provided inside the interior, and signals from these detectors 25.2G are passed through a low-pass filter 27, respectively.
.. 28 and amplifiers 29 and 30, and then input to the control section 81. The control section 3 controls the operation of the servo valve 23 as described later based on the calculation results of these input signals. Note that the low-pass filters 27 and 28 are used for detection 5z52. z6
Specified frequency range component of the signal from
. Only the following frequency range components are selected and passed.Next, the principle of the device of the present invention will be explained. The vibrating body Kasuke 1 is m1 elastic body 1
Intersect the spring constant of 2 with the speed at which the relative movement h1 at both ends is detected by the X1 detector 25 (intersection = dX/at)
, the proportionality constant of the force proportional to this speed is C, then the interlocking culm equation for a vibration system with l degrees of freedom is m52 + cx + kx
= 6, and by multiplying this equation by the intersection, integrating it over time, and looking at the energy balance, we get 3. imx2+3/, kx2=
The formula O-cf woman'-dt (where 0 is a constant) is obtained.If the second term on the right side of this formula, that is, C, is always positive, the energy exchanged between the vibrating body and the elastic body 12 It can be seen that a predetermined vibration damping effect can be obtained by gradually decreasing the above-mentioned velocity. Therefore, in this example, the pressure fluctuation ΔP is generated in the chamber 14 by switching the servo valve 2a to generate the force. The formula is expressed as %mM+ΔP・A+1 (X=0, where A is the effective pressure-receiving area, but since the pressure-receiving area A is approximately constant, there is a candy in the chamber 14 with an opposite phase to the speed and proportional to its size. Pressure fluctuation Δ
The control section 31 controls the operation of the servo valve 23 so as to cause P to satisfy the above principle. Specifically, as is clear from FIG. 2, the control unit 81 converts the phase and magnitude of the speed detected by the speed detector 25 into the above-mentioned speed and the pressure within the chamber 14 detected by the pressure sensor 26. The servo valve 23 is controlled so that the ratio is compared with the opposite phase component and the ratio is constant. This control is carried out by the low-pass filters 27 and 28 at f in FIG. 6, respectively. Since only the following frequency range components are passed, this I? , l wavenumber range only, and the above-mentioned control is not performed in other frequency ranges, and the required characteristics shown in FIG. 6 can be obtained. Therefore, when the control section 31 is constituted by a microcomputer, it executes the program shown in FIG. 3 to perform the above-mentioned control. That is, first, in step 40, the detector 2
It is determined whether the speed detected by 5 and the pressure fluctuation detected by the detector 26 are larger than a set value. If so, that is, if the vibration is large enough to be damped,
Control proceeds to step 41, otherwise no further control is executed. In step 41, the phase difference ψ between velocity and pressure fluctuations is measured, and in the next step 42, the phase difference ?
Based on this, the fluctuating pressure xtanP is calculated and the velocity component that caused the pressure fluctuation is found. Next, the control proceeds to step 413, where the above-mentioned variable pressure xtan (the calculated value of p is divided by the speed p
After that, the divided value is the target value, for example S in Figure 6. Determine whether it is greater than, less than, or equal to. Target value S. If it is larger, that is, if the loss factor is too large, the control proceeds to step 44 where t(
Output a signal. 4. The internal pressure will not decrease,
Loss factor to target value S. can be approached. The above division value is the target value S. If it is smaller, that is, the loss factor is too small, ff++ control is performed in step 4.
Proceeding to step 5, the servo valve 23 outputs a signal such as 17Li<. The pressure inside Shisou 14 is increased, and the loss factor is set to the target value S. In this case, the loss factor is the target. Therefore, the servo valve 23 is left as it is. By repeating the control described above, the vibration damping device of the present invention can set the loss factor to the target value S in the specified frequency range (f. or less) as shown by the dashed line in FIG. It is possible to obtain ideal operating characteristics that keep the loss factor at zero in other frequency ranges. By the way, to describe the case where the device of the present invention is used for an engine mount, the resonance wave number f. is 6H2% amplitude is 5
The elastic support part 11 has almost the same dimensions as the conventional device shown in Fig. 5, and the pressure receiving area A is 46 cm! (diameter approximately 40 mm), static spring constant approximately 13 to 9 f/,,
. It was confirmed that when the loss factor So is set to 0.3, the pressure fluctuation ΔP can be as small as about 0-5 kgf/cm2. In the above embodiment, hydraulic pressure was used to apply force between both ends of the elastic support part 11, but as shown in FIG. An electromagnet 33 is also connected between these magnets so as to generate the above-mentioned attractive force or repulsive force with a value proportional to the magnitude of the magnetic force and the phase opposite to that of the electromagnet according to the signal from the control unit 3 or the speed detector 25. 1. By controlling, the same effect as in the example described in 611 can be obtained. Thus, as described above, the vibration damping device of the present invention is provided with the actuator sections 14, 22 to 24 (32, 33) that generate force between both ends of the elastic support section 11 that supports the vibrating body, and the actuator sections 14, 22 to 24 (32, 33) generate force in a specified frequency range. is actuated to apply a force opposite to the vibration direction and approximately proportional to the vibration speed to the elastic support part 11, and
Since the force is not applied in the l-wavenumber range and vibrations are absorbed by the static spring constant of the elastic support 11, vibrations from the vibrating body are reliably absorbed outside the specified frequency range while maintaining the ζ-1 constant. The dynamic spring constant can be increased as required in the frequency range to ensure the vibration damping effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すシステム図、第2図は
同じくその概念図、 第8図は同実施例の制御部が実行する制御プログラムの
フローチャート、 第4図は本発明の他の例を示すシステム図、第5図は従
来の制振装置を示す断面図〜第6図は本発明装置による
ロスファクター変化特性を従来装置によるそれと比較し
て示す線図である。 11・・−弾性支持部 12・・・弾性体13 、15
・・・金属部材 14・・・室16・・・枠体 17・
・・弾性ステー18.19・・・取付ボルト 20・・
・振動体側ブラケット21・・・支持体側ブラケット 22・・・管路 23・・・サーボ弁 24・・・油圧源 25・・・M度検知器26・・・I
E、l知器 27,28・・・ローパスフィルター29
.30・・・アンプ 81・・・制御部32・・・永久
磁石 83・・・電磁石第4図
Fig. 1 is a system diagram showing an embodiment of the present invention, Fig. 2 is a conceptual diagram thereof, Fig. 8 is a flowchart of a control program executed by the control unit of the embodiment, and Fig. 4 is a system diagram showing an embodiment of the present invention. FIG. 5 is a sectional view showing a conventional vibration damping device. FIG. 6 is a diagram showing a loss factor change characteristic of the device of the present invention in comparison with that of a conventional device. 11...-Elastic support part 12... Elastic body 13, 15
... Metal member 14 ... Chamber 16 ... Frame 17.
・・Elastic stay 18.19・Mounting bolt 20・・
- Vibrating body side bracket 21...Support side bracket 22...Pipe line 23...Servo valve 24...Hydraulic pressure source 25...M degree detector 26...I
E, l detector 27, 28...Low pass filter 29
.. 30...Amplifier 81...Control unit 32...Permanent magnet 83...Electromagnet Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 1 弾性支持部を介し振動体を支持体に支持する振動体
支持構造において、振動体及び弾性支持部に取付ける前
記弾性支持部の両端間の相対移動速度及び移動方向を検
知する検知器と、該検知器からの信号のうち規定周波数
域成分のみを選択して出力するフィルターと、前記弾性
支持部の両端間に力を発生させるアクチュエータ部と、
前記フィルターからの出力を入力され前記規定周波数域
における前記相対移動速度が設定値以上の時該相対移動
速ルに略比例した大きさで前記移動方向と逆方向の力を
発生するよう前記アクチュエータ部を作動させる制御部
とよりなることを特徴とする制振装置。
1. In a vibrating body support structure that supports a vibrating body on a support body via an elastic support part, a detector is attached to the vibrating body and the elastic support part to detect the relative movement speed and direction of movement between both ends of the elastic support part; a filter that selects and outputs only a specified frequency range component from the signal from the detector; an actuator unit that generates a force between both ends of the elastic support unit;
The actuator section is configured to receive the output from the filter and generate a force in the opposite direction to the moving direction with a magnitude substantially proportional to the relative moving speed when the relative moving speed in the specified frequency range is equal to or higher than a set value. A vibration damping device comprising: a control unit that operates a vibration damping device;
JP13774983A 1983-07-29 1983-07-29 Vibration damper Pending JPS6030838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13774983A JPS6030838A (en) 1983-07-29 1983-07-29 Vibration damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13774983A JPS6030838A (en) 1983-07-29 1983-07-29 Vibration damper

Publications (1)

Publication Number Publication Date
JPS6030838A true JPS6030838A (en) 1985-02-16

Family

ID=15205930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13774983A Pending JPS6030838A (en) 1983-07-29 1983-07-29 Vibration damper

Country Status (1)

Country Link
JP (1) JPS6030838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260194A (en) * 1988-04-11 1989-10-17 Nkk Corp Underground propelled-laying construction for bent pipe
JPH05196084A (en) * 1991-06-25 1993-08-06 Carl Freudenberg:Fa Controllable engine mount

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260194A (en) * 1988-04-11 1989-10-17 Nkk Corp Underground propelled-laying construction for bent pipe
JPH05196084A (en) * 1991-06-25 1993-08-06 Carl Freudenberg:Fa Controllable engine mount

Similar Documents

Publication Publication Date Title
US4986393A (en) Adjustable vibration dampers for motor vehicles
JPH0437294B2 (en)
JPH09280307A (en) Active type vibration control device for vehicle
JPH06323360A (en) Vibration damping supporter
JPH0718470B2 (en) Controlled vibration control device
JP3407465B2 (en) Liquid filled type vibration damping device
JPH06675Y2 (en) Controlled vibration control device
JPS6030838A (en) Vibration damper
US4679649A (en) Motor vehicle engine mounting arrangement
JP3372975B2 (en) Active vibration isolation method and vibration isolation device
JPS6339457Y2 (en)
JPH0239065Y2 (en)
JPH06117475A (en) Vibration isolating mount device
JP3366089B2 (en) Vehicle vibration reduction device
JPS59222635A (en) Engine mounting device with variable damping force
JP3371477B2 (en) Active vibration control device for vehicle and active noise control device for vehicle
JPH04302729A (en) Mount for power unit
JPH01188737A (en) Vibration damper
JPS5857536A (en) Vibration proof supporter
JPH09273589A (en) Vibration noise control device
JPH051739A (en) Vibration isolation support device
JPH01182106A (en) Vibration damping equipment
JPH02159437A (en) Control type engine mount
JPH04210141A (en) Vibration isolating device
JP3289520B2 (en) Anti-vibration support device