JPH01188737A - Vibration damper - Google Patents

Vibration damper

Info

Publication number
JPH01188737A
JPH01188737A JP1166188A JP1166188A JPH01188737A JP H01188737 A JPH01188737 A JP H01188737A JP 1166188 A JP1166188 A JP 1166188A JP 1166188 A JP1166188 A JP 1166188A JP H01188737 A JPH01188737 A JP H01188737A
Authority
JP
Japan
Prior art keywords
chamber
pressure
orifice
voltage
primary chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1166188A
Other languages
Japanese (ja)
Inventor
Shigeki Sato
茂樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1166188A priority Critical patent/JPH01188737A/en
Publication of JPH01188737A publication Critical patent/JPH01188737A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
    • F16F13/30Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for varying fluid viscosity, e.g. of magnetic or electrorheological fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To utilize sufficient vibration damping performance by detecting the pressure inside a primary chamber, applying a voltage to an electric rheological fluid inside an orifice according to the pressure variation state inside the primary chamber based on the detected data and controlling the applied voltage. CONSTITUTION:Based on the detected data of a pressure detector 14, a control means 17 is informed of the pressure variation state inside a primary chamber 4. According to the pressure variation state, a voltage is applied to the electric rheological fluid 13 inside the orifice 11 and said applied voltage is controlled. Based on the difference between the phases of both the supporting spring load of a resilient body 1 with respect to the relative displacement of a mounting member 3 and the extension spring load varying according to the pressure inside the primary chamber 4, the viscosity of the electric rheological fluid 13 flowing inside the orifice 11 is varied so that the load of the extension spring may be regulated quickly. As a result, forces generated inside a damper, including an internal force which varies inside the primary chamber 4 when the fluid moves between the primary chamber 4 and a secondary chamber 7 may be used effectively so that the sufficient vibration damping function operates.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車のエンジンマウンティング等に使用さ
れる流体封入式の振動減衰装置に関し、特にオリフィス
を通して2室間を移動する電気レオロジカル流体の粘性
を変化させ、広い周波数範囲で振動減衰能を発揮する振
動減衰装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a fluid-filled vibration damping device used in automobile engine mounting, etc., and in particular to a vibration damping device using an electrorheological fluid moving between two chambers through an orifice. This invention relates to a vibration damping device that exhibits vibration damping ability over a wide frequency range by changing viscosity.

(従来の技術) 近時、自動車のエンジンマウンティング等にはより高度
な振動減衰特性が要求されており、広い周波数範囲の振
動を効果的に減衰させるために、例えば流体封入式の振
動減衰装置が用いられている。このような振動減衰装置
においては、シェーク等の低周波−大振幅の振動入力時
に弾性体の変形に伴いオリフィスを通る流体の絞り作用
によって大きな減衰が促され、一方、高周波−小振幅の
振動入力時に低ばね定数の弾性体により振動吸収してこ
もり音等の騒音を低減させるようにしている。しかし、
装置自体の周波数特性は一定であり、十分な振動減衰能
を発揮できるのは大i幅および小振幅の振動それぞれの
所定周波数範囲に限られていた。このだめ、流体粘性を
変化させてより広い周波数範囲で振動減衰能を発揮させ
るものが提案されている。
(Prior Art) In recent years, more sophisticated vibration damping characteristics have been required for automobile engine mountings, etc., and in order to effectively damp vibrations in a wide frequency range, for example, fluid-filled vibration damping devices have been developed. It is used. In such a vibration damping device, large damping is promoted by the squeezing action of the fluid passing through the orifice due to the deformation of the elastic body when low-frequency, large-amplitude vibrations are input, such as shaking, while large damping is promoted when high-frequency, small-amplitude vibrations are input. Sometimes, vibrations are absorbed by an elastic body with a low spring constant to reduce noise such as muffled sounds. but,
The frequency characteristics of the device itself are constant, and sufficient vibration damping ability can be exhibited only within predetermined frequency ranges for large amplitude and small amplitude vibrations. To overcome this problem, it has been proposed to change the viscosity of the fluid to exhibit vibration damping ability over a wider frequency range.

従来のこの種の振動減衰装置としては、例えば特開昭6
0−104828号公報に記載されたものがある。この
装置では、弾性体と共に第1の室を画成する中間板に二
つのプレート電極からなる配管が装着され、入力振動に
よってマウントが変形したとき、第1の室内の電気レオ
ロジカル流体がこの配管を通って中間板および弾性室壁
により画成された第2の室に流出しあるいは第2の室か
ら流入するようにしている。また、配管のプレート電極
間にはエンジンの回転数等の情報に応じた電圧が印加さ
れ、エンジン回転数が増加するにつれて電気レオロジカ
ル流体の粘性を低(して減衰力を減少させ、装置全体の
共振特性を変化させて大振幅域で広い周波数範囲の入力
振動に対応するようになっている。
As a conventional vibration damping device of this type, for example, Japanese Patent Application Laid-open No. 6
There is one described in Publication No. 0-104828. In this device, a pipe consisting of two plate electrodes is attached to an intermediate plate that defines a first chamber together with an elastic body, and when the mount is deformed by input vibration, the electrorheological fluid in the first chamber flows into this pipe. through which it flows into and out of a second chamber defined by the intermediate plate and the elastic chamber wall. In addition, a voltage is applied between the plate electrodes of the piping according to information such as the engine speed, and as the engine speed increases, the viscosity of the electrorheological fluid is lowered (and the damping force is reduced, reducing the damping force throughout the device). By changing the resonance characteristics of the sensor, it is possible to respond to input vibrations in a large amplitude range and a wide frequency range.

(発明が解決しようとする課題) しかしながら、このような従来の振動減衰装置にあって
は、エンジン回転数等の外部情報のみに応じて配管内の
電気レオロジカル流体に印加する電圧が制御される構成
となっていたため、配管内を通る流体によって発生する
内圧変化等を含めた適確な電圧制御が行われず、装置内
で発生する力の位相のずれにより十分な振動減衰能を得
ることができないという問題点があった。
(Problem to be Solved by the Invention) However, in such conventional vibration damping devices, the voltage applied to the electrorheological fluid in the piping is controlled only according to external information such as engine speed. Due to this configuration, accurate voltage control, including changes in internal pressure caused by fluid passing through the piping, was not performed, and sufficient vibration damping ability could not be obtained due to the phase shift of the forces generated within the device. There was a problem.

すなわち、装置内には両取付部材の相対変位による弾性
体の変形に応じた支持ばね力と第1の室内の圧力変化を
伴う弾性体の拡張ばね力とが作用するようになっており
、拡張ばね力は、配管内を通る電気レオロジカル流体の
マスに粘性に基づく減衰力が付加されることによって支
持ばね力と位相を異にして変動する。したがって、車体
側からの加振力を受けたエンジンシェイク等の場合、支
持ばね力と拡張ばね力が同位相の力としてエンジンに作
用するときにはエンジンへの伝達力は大きくなり、逆位
相の力として作用するときには伝達力は小さくなる。こ
のため、両ばね力の位相を考慮して印加電圧を随時加減
調節していない従来の振動減衰装置にあっては、減衰効
果の大きい伝達力を最適のタイミングで発揮することが
できず、十分な振動減衰能を得ることができなかった。
That is, a supporting spring force corresponding to the deformation of the elastic body due to the relative displacement of both mounting members and an expansion spring force of the elastic body accompanied by a pressure change in the first chamber act within the device. The spring force varies out of phase with the supporting spring force due to the addition of a viscous damping force to the mass of electrorheological fluid passing through the pipe. Therefore, in the case of engine shake caused by excitation force from the vehicle body, when the support spring force and expansion spring force act on the engine as forces in the same phase, the force transmitted to the engine increases, and as forces in opposite phases. When it acts, the transmitted force becomes small. For this reason, with conventional vibration damping devices that do not adjust the applied voltage at any time by considering the phase of both spring forces, the transmission force with a large damping effect cannot be exerted at the optimal timing, and it is not possible to sufficiently It was not possible to obtain sufficient vibration damping ability.

(発明の目的) そこで本発明は、第1の室内の圧力変化を直接検出し、
装置内で発生する力の位相を考慮して印加電圧を制御す
ることにより、装置内で発生する力を効果的に利用して
十分な振動減衰能を発揮させることを目的としている。
(Objective of the invention) Therefore, the present invention directly detects the pressure change in the first chamber,
By controlling the applied voltage in consideration of the phase of the force generated within the device, the purpose is to effectively utilize the force generated within the device to exhibit sufficient vibration damping ability.

(課題を解決するための手段) 本発明は、上記の目的を達成するために、機関側の取付
部材と支持体側の取付部材との間に介装され、内部に第
1の室を画成する弾性体と、両取付部材の少なくとも一
方に設けられたオリフィスおよび該オリフィスを介して
第1の室に連通ずる容積変化自在な第2の室を存し、両
取付部材の相対変位による弾性体の変形に応じて第1の
室および第2の室間でオリフィスを通して流体を移動さ
せることができる流体移動手段と、第1の室および第2
の室に封入され、印加電圧に応じて液体からほぼ固体ま
で粘性が変化しうる電気レオロジカル流体と、第1の室
内の圧力を検出する圧力検出手段と、該圧力検出手段の
検出情報に基づく第1の室内の圧力変化状態に応じてオ
リフィス内の電気レオロジカル流体に電圧を印加し、該
印加電圧を制御する制御手段と、を備えている。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a first chamber which is interposed between an engine-side mounting member and a support-side mounting member, and defines a first chamber therein. an orifice provided in at least one of both mounting members, and a second chamber whose volume can be changed freely communicating with the first chamber via the orifice, and the elastic body a fluid moving means capable of moving fluid through an orifice between the first chamber and the second chamber in response to deformation of the first chamber and the second chamber;
an electrorheological fluid whose viscosity can change from liquid to almost solid depending on the applied voltage; a pressure detection means for detecting the pressure in the first chamber; A control means is provided for applying a voltage to the electrorheological fluid in the orifice according to a pressure change state in the first chamber and controlling the applied voltage.

(作用) 本発明では、制御手段により圧力検出手段の検出情報に
基づいて第1の室内の圧力変化状態が把握されるととも
に該圧力変化状態に応じてオリフィス内の電気レオロジ
カル流体に電圧が印加され、該印加電圧が制御される。
(Function) In the present invention, the control means grasps the pressure change state in the first chamber based on the detection information of the pressure detection means, and applies voltage to the electrorheological fluid in the orifice according to the pressure change state. and the applied voltage is controlled.

したがって、°取付部材間の相対変位に対応する弾性体
の支持ばね力と第1の室内の圧力に応じて変化する拡張
ばね力との位相差に基づいてオリフィス内を流れる電気
レオロジカル流体の粘性が変化され、拡張ばね力が迅速
に加減調節される。この結果、第1の室および第2の室
間を移動する流体によって発生する第1の室内の内圧変
化等を含めて装置内で発生する力が効果的に利用され、
十分な振動減衰能が発揮される。
Therefore, the viscosity of the electrorheological fluid flowing through the orifice is based on the phase difference between the supporting spring force of the elastic body, which corresponds to the relative displacement between the mounting members, and the expansion spring force, which varies depending on the pressure in the first chamber. is changed to quickly adjust the expansion spring force. As a result, the forces generated within the device, including internal pressure changes in the first chamber caused by the fluid moving between the first chamber and the second chamber, are effectively utilized;
Sufficient vibration damping ability is demonstrated.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第1〜5図は本発明に係る振動減衰装置の一実施例を示
す図であり、本発明を自動車のエンジンマウンティング
装置に適用した例である。
1 to 5 are diagrams showing one embodiment of a vibration damping device according to the present invention, and are examples in which the present invention is applied to an engine mounting device for an automobile.

第1図において、1は筒状の弾性体であり、弾性体1は
機関側の取付部材2と支持体側の取付部材3との間に介
装され、内部に第1の室4を画成している。第1の室4
の図中上方側には仕切板5およびダイヤフラム6が装着
されており、仕切板5およびダイヤフラム6は取付部材
2に取り付けられ、ダイヤフラム6の弾性変形によって
容積変化自在な第2の室7を画成している。また、仕切
板5の中央部には外筒電極8および内筒電極9が設けら
れており、外筒電極8および内筒電極9は環状のオリフ
ィス11を形成し、オリフィス11を介して第1の室4
および第2の室7を連通させている。これらの仕切板5
、ダイヤフラム6およびオリフィス11は機関、すなわ
ち、エンジン(図示していない)からの加振力あるいは
支持体である車体からの加振力による弾性体lの変形に
応じて第1の室4および第2の室7の間で流体(詳細後
述する)を移動さ妊゛ることができる流体移動手段12
を構成しており、流体移動手段12はオリフィス11を
通る流体の絞り作用によって入力振動を減衰させるよう
になっている。
In FIG. 1, 1 is a cylindrical elastic body, and the elastic body 1 is interposed between a mounting member 2 on the engine side and a mounting member 3 on the support side, and defines a first chamber 4 inside. are doing. first chamber 4
A partition plate 5 and a diaphragm 6 are attached to the upper side in the figure, and the partition plate 5 and diaphragm 6 are attached to the mounting member 2, and define a second chamber 7 whose volume can be freely changed by elastic deformation of the diaphragm 6. has been completed. Further, an outer cylinder electrode 8 and an inner cylinder electrode 9 are provided in the center of the partition plate 5, and the outer cylinder electrode 8 and the inner cylinder electrode 9 form an annular orifice 11. room 4
and the second chamber 7 are communicated with each other. These partition plates 5
, the diaphragm 6 and the orifice 11 open the first chamber 4 and the orifice 11 in accordance with the deformation of the elastic body l due to the excitation force from the engine (not shown) or the excitation force from the vehicle body which is the support body. a fluid moving means 12 capable of moving a fluid (described in detail later) between the two chambers 7;
The fluid moving means 12 is configured to damp input vibrations by the throttling action of the fluid passing through the orifice 11.

第1の室4および第2の室7には電−気レオロジカル流
体13が封入されている。電気レオロジカル流体13は
、例えばシリコン油等の絶縁油内に所定量の粒子(シリ
カゲル等)が含有されたものであり、印加電圧に基づく
電場の強さに応じて含有粒子の配列が変化し、この粒子
配列が極めて整一になされたときにはほぼ固体に近いも
のに状態が遷位する。すなわち、電気レオロジカル流体
13は、絶縁油が備えた流体としての粘性からほぼ固体
の状態まで、印加電圧の大きさに応じて粘性が連続的に
変化し、また、電圧印加から粘性変化までの反応時間が
極めて短い(数ミリ秒)という特徴を有している。そし
て、流体移動手段12の作動によってオリフィス11を
通る電気レオロジカル流体13が外筒電極8および内筒
電極9間の印加電圧に応じて粘性変化することにより粘
性抵抗等の流動抵抗が増減し、最適共振点を変化させて
周波数特性の異なる振動減衰性能を発揮することができ
るようになっており、負荷状態によって振動周波数の異
なるアイドル振動あるいは車体側からの加振力によるエ
ンジンシェイク等を存効に減衰するようにしている。
The first chamber 4 and the second chamber 7 are filled with an electrorheological fluid 13. The electrorheological fluid 13 includes a predetermined amount of particles (such as silica gel) contained in an insulating oil such as silicone oil, and the arrangement of the contained particles changes depending on the strength of the electric field based on the applied voltage. When this particle arrangement becomes extremely uniform, the state transitions to something almost solid. That is, the viscosity of the electrorheological fluid 13 changes continuously depending on the magnitude of the applied voltage, from the fluid viscosity of insulating oil to the almost solid state, and the viscosity changes continuously from the voltage application to the viscosity change. It is characterized by an extremely short reaction time (several milliseconds). Then, the viscosity of the electrorheological fluid 13 passing through the orifice 11 changes according to the voltage applied between the outer tube electrode 8 and the inner tube electrode 9 due to the operation of the fluid moving means 12, so that flow resistance such as viscous resistance increases or decreases. By changing the optimum resonance point, it is possible to exhibit vibration damping performance with different frequency characteristics, and it is possible to suppress idle vibrations with different vibration frequencies depending on the load condition or engine shake caused by excitation force from the vehicle body. It is designed to attenuate.

一方、第1の室4内には室内の圧力PAを検出する圧力
検出器(圧力検出手段)14が設けられており、圧力検
出器14は制御回路15に接続され、取付部材2.3の
相対変位量とオリフィス11内の電気レオロジカル流体
13の流れ方向および速度等とに応じた圧力PAの変化
を検出情報として制御回路15に与えるようになってい
る。制御回路15はマイクロコンピュータ等からなり、
圧力検出器14の検出情報に基づいて圧力paの時間微
分値paおよび初期圧力からの圧力変化量等の圧力変化
状態(詳細後述する)を識別し、オリフィス11を通る
電気レオロジカル流体13によって発生する第1の室4
の内圧変動を含めて第2図に示す弾性体1の支持ばね力
F、および拡張ばね力F2を把握し、両ばね力の大きさ
および位相のずれ等に応じた制御信号Scを電源回路1
6に出力する。電源回路16は外筒電極8に常時一定な
直流の基準電圧v8(例えば、Vイ=OV)を出力すム
とともに、制御信号Scに応じて内筒電極9に基準電圧
■8と同値から基準電圧vNより高い所定値まで変化す
る直流電圧V「を出力するようになっており、制御信号
Scにより直流電圧V、の変化を促してオリフィスll
内を通る電気レオロジカル流体13に印加される電圧が
制御されるようになっている。すなわち、制御回路15
および電源回路16は圧力検出器14の検出情報に基づ
く第1の室4の圧力変化状態に応じてオリフィス11内
の電気レオロジカル流体13に電圧を印加するとともに
、該印加電圧を制御する制御手段17を構成している。
On the other hand, a pressure detector (pressure detection means) 14 is provided in the first chamber 4 to detect the pressure PA in the chamber, and the pressure detector 14 is connected to a control circuit 15, Changes in the pressure PA according to the relative displacement amount and the flow direction and velocity of the electrorheological fluid 13 in the orifice 11 are provided to the control circuit 15 as detection information. The control circuit 15 consists of a microcomputer, etc.
Based on the detection information of the pressure detector 14, the time differential value pa of the pressure pa and the pressure change state (details will be described later) such as the amount of pressure change from the initial pressure are identified, and the pressure change state caused by the electrorheological fluid 13 passing through the orifice 11 is identified. First chamber 4
The support spring force F and expansion spring force F2 of the elastic body 1 shown in FIG.
Output to 6. The power supply circuit 16 outputs a constant DC reference voltage v8 (for example, V=OV) to the outer cylinder electrode 8, and outputs a reference voltage v8 (for example, V=OV) to the inner cylinder electrode 9 from the same value as the reference voltage v8 in accordance with the control signal Sc. It is designed to output a DC voltage V'' that changes to a predetermined value higher than the voltage vN, and the control signal Sc prompts a change in the DC voltage V to open the orifice ll.
The voltage applied to the electrorheological fluid 13 passing therethrough is controlled. That is, the control circuit 15
And the power supply circuit 16 applies a voltage to the electrorheological fluid 13 in the orifice 11 according to the pressure change state of the first chamber 4 based on the detection information of the pressure detector 14, and a control means for controlling the applied voltage. It consists of 17.

なお、第2図は本実施例の概略構成をモデル化したもの
であり、本実施例がエンジンのマスMおよび弾性体1の
ばね定数に1を有する主振動系と弾性体1の拡張ばね定
数Kz、オリフィス11内の電気レオロジカル流体13
のマスmおよびオリフィス内減衰力f、を発揮する減衰
器りを有する副振動系とからなることを示している。こ
の場合、主振動系の共振振幅を抑えるよう副振動系のマ
スmおよびばね定数に2を設定すると、減衰器りの減衰
係数の大きさによって第3図の共振曲線a、b、Cに示
すような周波数特性を示すことは周知であり、電気レオ
ロジカル流体13に電圧が印加されない非制御時には共
振曲線C(最適共振曲線)の特性となるようにしている
Note that FIG. 2 is a model of the schematic configuration of this embodiment, and this embodiment has a main vibration system in which the mass M of the engine and the spring constant of the elastic body 1 are 1, and the extended spring constant of the elastic body 1. Kz, electrorheological fluid 13 in orifice 11
, and a sub-vibration system having a damping device that exerts a mass m and an orifice damping force f. In this case, if the mass m and spring constant of the secondary vibration system are set to 2 to suppress the resonance amplitude of the main vibration system, the resonance curves a, b, and C in Figure 3 are shown depending on the magnitude of the damping coefficient of the damping device. It is well known that the electrorheological fluid 13 exhibits such frequency characteristics, and when no voltage is applied to the electrorheological fluid 13 and is not controlled, the electrorheological fluid 13 exhibits the characteristics of the resonance curve C (optimal resonance curve).

次に、作用を説明する。Next, the effect will be explained.

いま、エンジンあるいは車体側から取付部材2.3の一
方あるいは両方に比較的低周波の振動(アイドル振動お
よびエンジンシェイク等)が加わると、該加振力によっ
て弾性体1が弾性変形するとともに第1の室4の圧力p
aが変化して、取付部材2.3間の伝達力(振動減衰力
)が変化する。
Now, when relatively low-frequency vibrations (idling vibration, engine shake, etc.) are applied to one or both of the mounting members 2.3 from the engine or the vehicle body side, the elastic body 1 is elastically deformed by the excitation force, and the first The pressure p in chamber 4 of
As a changes, the transmission force (vibration damping force) between the mounting members 2 and 3 changes.

この場合、強制振動の位相遅れ特性により、第2図のマ
スmであるオリフィス11内の電気レオロジカル流体1
3が共振周波数未満の加振時に加振変位Xo  (第2
図のXI−XIに相当)と略同相に移動し、共振時には
加振変位X0と90’の位相差(遅れ)で移動し、さら
に、共振周波数を越える周波数の加振時に加振変位X0
と略逆相(180゜遅れ)に移動する。したがって、第
1の室4内の圧力PAが弾性体1の弾性変形に基づいて
変化するとともに、オリフィスll内の電気レオロジカ
ル流体13の移動によっても変動する。これらの各状態
において圧力検出器14によって第1の室4内の圧力P
Aが常時検出され、制御回路15により圧力検出器14
の検出情報に基づく第1の室4内の圧力変化状態が識別
されて装置内に作用する支持ばね力Flおよび拡張ばね
力F!とその位相差等が把握される。
In this case, due to the phase delay characteristic of forced vibration, the electrorheological fluid 1 in the orifice 11, which is the mass m in FIG.
3 is less than the resonant frequency, the excitation displacement Xo (second
(corresponding to
It moves almost in reverse phase (180° delay). Therefore, the pressure PA in the first chamber 4 changes based on the elastic deformation of the elastic body 1, and also changes due to the movement of the electrorheological fluid 13 in the orifice 11. In each of these states, the pressure P in the first chamber 4 is determined by the pressure detector 14.
A is constantly detected, and the pressure detector 14 is detected by the control circuit 15.
The pressure change state in the first chamber 4 is identified based on the detected information of the supporting spring force Fl and the expansion spring force F! acting in the device. and its phase difference etc. can be grasped.

具体的には、制御手段17により第4図に示すような処
理が所定時間毎に繰り返される。まず、圧力検出器14
の検出情報である第1の室4の圧力PAが制御回路15
に入力されると、圧力Pあの時間微分値Paが計算され
た後、圧力paと時間微分値I)Aが乗算され、CHE
 CK値(=PaX銭)が求められる。次いで、CHE
CK値が予め設定された負の所定値Xより大きいか否か
が判別され、この判別結果に基づく制御信号Scが電源
回路16に出力される。そして、電源回路16から内筒
電極9に出力される直流電圧V、が制御信号Scに応じ
て所定電圧に増加(CHECK値〉Xのとき)あるいは
基準電圧■8と同値に減少(CHECK値くXのとき)
され、オリフィス11内の電気レオロジカル流体13に
印加する印加電圧が0N10FFされる。
Specifically, the control means 17 repeats the process shown in FIG. 4 at predetermined intervals. First, the pressure detector 14
The pressure PA in the first chamber 4 which is the detection information of the control circuit 15
When the pressure P is input, the time derivative Pa is calculated, and then the pressure pa is multiplied by the time derivative I) A,
The CK value (=PaX coins) is calculated. Then, CH.E.
It is determined whether the CK value is larger than a preset negative predetermined value X, and a control signal Sc based on the determination result is output to the power supply circuit 16. Then, the DC voltage V outputted from the power supply circuit 16 to the inner cylinder electrode 9 increases to a predetermined voltage (when CHECK value>X) or decreases to the same value as the reference voltage ■8 (when CHECK value When X)
Then, the applied voltage applied to the electrorheological fluid 13 in the orifice 11 is set to 0N10FF.

すなわち、弾性体1の拡張ばね力F2が第5図に示すよ
うな時刻歴上の波形であるとすると、取付部材2.3が
初期位置から互いに接近して拡張ばね力F2が増大する
A区間においては、CHECK値が正となって印加電圧
がONされ、オリフィスll内の減衰力fcが増大して
拡張ばね力F2が減少するよう制御され、一方、取付部
材2.3が最も接近した後に互いに離隔し始めて拡張ば
ね力F2が減少するB区間においては、CHECK値が
負となって印加電圧がOFFされ、減衰力fCが減少し
て拡張ばね力F2が増大するよう制御される。次いで、
取付部材2.3が初期位置から互いに離隔して拡張ばね
力F2が逆方向に増大するC区間において印加電圧がO
Nされ、さらに、拡張ばね力F2が減少するD区間にお
いて印加電圧がOFFされる。
That is, assuming that the expansion spring force F2 of the elastic body 1 has a waveform on the time history as shown in FIG. , the CHECK value becomes positive and the applied voltage is turned ON, and control is performed so that the damping force fc in the orifice ll increases and the expansion spring force F2 decreases, while after the mounting member 2.3 approaches the closest In section B, where they begin to separate from each other and the expansion spring force F2 decreases, the CHECK value becomes negative, the applied voltage is turned off, the damping force fC is reduced, and the expansion spring force F2 is controlled to increase. Then,
In section C, where the mounting members 2.3 are separated from each other from the initial position and the expansion spring force F2 increases in the opposite direction, the applied voltage is O.
N, and further, the applied voltage is turned off in section D where the expansion spring force F2 decreases.

この間、支持ばね力F1は取付部材2.3の初期位置か
らの相対変位量に基づいて変動するため、支持ばね力F
、および拡張ばね力F2が同相の力となるときに印加電
圧がONされ、両ばね力が逆相の力となるときに印加電
圧がOFFされることになる。したがって、支持ばね力
F、および拡張ばね力F8の合力である振動減衰力Fが
拡張ばね力F、の加減調節に基づく共振特性の変化によ
りリアルタイムで最適制御され、十分な振動減衰能が発
揮される。なお、第5図に示したA−D区間はCHEC
K値の比較基準である所定値Xを0として分割したもの
であり、実際には第1の室4内の初期圧力を考慮して上
述したように適当な負の値を設定することにより、厳密
なリアルタイムの減衰力制御が促されている。因に、第
3図の共振曲線dは本実施例の作動時を示すものであり
、同図から明らかなように本実施例では共振曲線C(非
作動時の最適共振曲線)より大幅に振動伝達率が低減さ
れ、アイドル振動およびエンジンシェイク等の振動を有
効に減衰できることがわかる。
During this time, the support spring force F1 fluctuates based on the amount of relative displacement of the mounting member 2.3 from the initial position.
, and the extended spring force F2 become forces in the same phase, the applied voltage is turned on, and when both spring forces become forces in the opposite phase, the applied voltage is turned off. Therefore, the vibration damping force F, which is the resultant force of the support spring force F and the expansion spring force F8, is optimally controlled in real time by changing the resonance characteristics based on the adjustment of the expansion spring force F, and sufficient vibration damping ability is exhibited. Ru. Note that the A-D section shown in Figure 5 is CHEC
The predetermined value Tight real-time damping force control is encouraged. Incidentally, the resonance curve d in FIG. 3 shows the operating state of this embodiment, and as is clear from the figure, the vibration in this embodiment is significantly greater than that of the resonance curve C (optimum resonance curve when not operating). It can be seen that the transmission rate is reduced and vibrations such as idle vibration and engine shake can be effectively damped.

なお、本実施例においては、第2の室7を取付部材2側
に設けているが、本発明はこれに限らず、取付部材3側
あるいは再取付部材2.3側に設けても良いことはいう
までもない。
In this embodiment, the second chamber 7 is provided on the mounting member 2 side, but the present invention is not limited to this, and may be provided on the mounting member 3 side or the remounting member 2.3 side. Needless to say.

(効果) 本発明によれば、圧力検出手段によって第1の室内の圧
力を検出し、制御手段によって圧力検出手段の検出情報
に基づく第1の室内の圧力変化状態に応じてオリフィス
内の電気レオロジカル流体に電圧を印加するとともに該
印加電圧を制御しているので、取付部材間の相対変位に
対応する弾性体の支持ばね力と第1の室内の圧力に応じ
て変化する拡張ばね力との位相差に基づいてオリフィス
内を流れる電気レオロジカル流体の粘性を変化させるこ
とができる。この結果、第1の室および第2の室間を移
動する流体によって発生する第1の室の内圧変化等を含
めて装置内で発生する力を効果的に利用し、十分な振動
減衰能を発揮させることができる。
(Effects) According to the present invention, the pressure in the first chamber is detected by the pressure detection means, and the electric rheostat in the orifice is controlled by the control means in accordance with the state of pressure change in the first chamber based on the detection information of the pressure detection means. Since a voltage is applied to the logical fluid and the applied voltage is controlled, the support spring force of the elastic body corresponding to the relative displacement between the mounting members and the expansion spring force that changes depending on the pressure inside the first chamber are combined. The viscosity of the electrorheological fluid flowing through the orifice can be changed based on the phase difference. As a result, the forces generated within the device, including changes in the internal pressure of the first chamber caused by the fluid moving between the first chamber and the second chamber, are effectively used, and sufficient vibration damping ability is achieved. It can be demonstrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜5図は本発明に係る振動減衰装置の一実施例を示
す図であり、第1図はその振動減衰装置の正面断面図、
第2図はその物理モデル図、第3図はその周波数特性を
示すグラフ、第4図はその制御アルゴリズムを示すフロ
ーチャート、第5図はその制御タイミングを示すグラフ
である。 1・・・・・・弾性体、 2・・・・・・機関側の取付部材、 3・・・・・・支持体側の取付部材、 4・・・・・・第1の室、 7・・・・・・第2の室、 11・・・・・・オリフィス、 12・・・・・・流体移動手段、 13・・・・・・電気レオロジカル流体、14・・・・
・・圧力検出器(圧力検出手段)、17・・・・・・制
御手段。
1 to 5 are diagrams showing an embodiment of a vibration damping device according to the present invention, and FIG. 1 is a front sectional view of the vibration damping device;
FIG. 2 is a physical model diagram thereof, FIG. 3 is a graph showing its frequency characteristics, FIG. 4 is a flowchart showing its control algorithm, and FIG. 5 is a graph showing its control timing. 1...Elastic body, 2...Mounting member on the engine side, 3...Mounting member on the support body side, 4...First chamber, 7. ... Second chamber, 11 ... Orifice, 12 ... Fluid moving means, 13 ... Electrorheological fluid, 14 ...
...Pressure detector (pressure detection means), 17... Control means.

Claims (1)

【特許請求の範囲】[Claims] 機関側の取付部材と支持体側の取付部材との間に介装さ
れ、内部に第1の室を画成する弾性体と、両取付部材の
少なくとも一方に設けられたオリフィスおよび該オリフ
ィスを介して第1の室に連通する容積変化自在な第2の
室を有し、両取付部材の相対変位による弾性体の変形に
応じて第1の室および第2の室間でオリフィスを通して
流体を移動させることができる流体移動手段と、第1の
室および第2の室に封入され、印加電圧に応じて液体か
らほぼ固体まで粘性が変化しうる電気レオロジカル流体
と、第1の室内の圧力を検出する圧力検出手段と、該圧
力検出手段の検出情報に基づく第1の室内の圧力変化状
態に応じてオリフィス内の電気レオロジカル流体に電圧
を印加し、該印加電圧を制御する制御手段と、を備えた
ことを特徴とする振動減衰装置。
an elastic body interposed between the engine-side mounting member and the support-side mounting member and defining a first chamber therein; and an orifice provided in at least one of both mounting members; It has a second chamber whose volume can be changed freely and communicates with the first chamber, and the fluid is moved between the first chamber and the second chamber through the orifice according to the deformation of the elastic body due to the relative displacement of both mounting members. an electrorheological fluid that is sealed in a first chamber and a second chamber and whose viscosity can change from liquid to almost solid depending on an applied voltage; and detecting the pressure in the first chamber. and a control means for applying a voltage to the electrorheological fluid in the orifice and controlling the applied voltage according to the pressure change state in the first chamber based on the detection information of the pressure detection means. A vibration damping device characterized by comprising:
JP1166188A 1988-01-20 1988-01-20 Vibration damper Pending JPH01188737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1166188A JPH01188737A (en) 1988-01-20 1988-01-20 Vibration damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1166188A JPH01188737A (en) 1988-01-20 1988-01-20 Vibration damper

Publications (1)

Publication Number Publication Date
JPH01188737A true JPH01188737A (en) 1989-07-28

Family

ID=11784166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1166188A Pending JPH01188737A (en) 1988-01-20 1988-01-20 Vibration damper

Country Status (1)

Country Link
JP (1) JPH01188737A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020084387A (en) * 2001-04-30 2002-11-07 현대자동차주식회사 Engine head cover mounting controlled device of vehicle and method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020084387A (en) * 2001-04-30 2002-11-07 현대자동차주식회사 Engine head cover mounting controlled device of vehicle and method thereof

Similar Documents

Publication Publication Date Title
US6491290B2 (en) Fluid-filled vibration damping device having pressure receiving chamber whose spring stiffness is controllable
US5060919A (en) Damping coefficient control device for vibration damper
JPH083343B2 (en) Controlled power unit mounting device
JP2598987B2 (en) Fluid-filled mounting device
JPH033088B2 (en)
EP0300445B1 (en) Method for controlling a vibration damping device
JP3407465B2 (en) Liquid filled type vibration damping device
JP2002174288A (en) Pneumatic active vibration control device
JPH06675Y2 (en) Controlled vibration control device
US20020153647A1 (en) Hydraulic mount and control method
JPH01312242A (en) Vibration preventing body of variable viscosity fluid sealing control type
JPH05584Y2 (en)
JPH01188737A (en) Vibration damper
JPH0362934B2 (en)
JPH01182106A (en) Vibration damping equipment
JPH06117475A (en) Vibration isolating mount device
US6848682B2 (en) Bi-state hydraulic mount
JPH02159437A (en) Control type engine mount
JPH02240427A (en) Control type engine mount
JPS6030838A (en) Vibration damper
JP3570105B2 (en) Liquid filled type vibration damping device
JPH04339019A (en) Vibration-proof device
JPS62270843A (en) Mounting device for power unit
JPH01199031A (en) Actuation control device for vibration isolating device
JPH08166037A (en) Vibration control device