JPS6030728B2 - Manufacturing method of ferritic stainless steel sheet - Google Patents

Manufacturing method of ferritic stainless steel sheet

Info

Publication number
JPS6030728B2
JPS6030728B2 JP13932980A JP13932980A JPS6030728B2 JP S6030728 B2 JPS6030728 B2 JP S6030728B2 JP 13932980 A JP13932980 A JP 13932980A JP 13932980 A JP13932980 A JP 13932980A JP S6030728 B2 JPS6030728 B2 JP S6030728B2
Authority
JP
Japan
Prior art keywords
temperature
stainless steel
ferritic stainless
less
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13932980A
Other languages
Japanese (ja)
Other versions
JPS5763629A (en
Inventor
総一 泉
武夫 芦浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13932980A priority Critical patent/JPS6030728B2/en
Publication of JPS5763629A publication Critical patent/JPS5763629A/en
Publication of JPS6030728B2 publication Critical patent/JPS6030728B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 本発明はフェライト系ステンレス鋼板の製造方法の連続
化および省工程化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to continuous and process-saving methods for manufacturing ferritic stainless steel sheets.

従来、クロムを16〜18含有するフェライト系ステン
レス鋼板(SUS430)の製造方法は熱延板をボック
ス暁錨炉で800〜85ぴCに加熱後2時間以上保持し
次いで室温まで徐冷するという長時間凝鎚を行ない、中
間板厚まで一次冷延した後、中間暁鈍し、製品板厚まで
二次冷延し、最終暁鈍を行なって(この工程を本Rと呼
ぶ)最終製品を得ている。上記従来の製造法の製造上の
主要なポイントは2点ある。第1のポイントは熱延板の
ボックス嫁鎚である。すなわちフェライト系ステンレス
鋼板の熱間圧延組織は普通鋼の場合と異なり、冷間圧延
組織に近く、競鎚を施さずに冷延工程に入ると最終製品
の材質が著しく劣化するため省略することができず、良
好な最終製品材質を得るために800〜85ぴ0で2時
間以上の保持が必要であった。85ぴ0を超えるような
高温での燐鈍はオーステナイト変態相を生じ材質劣化に
つながり、さらに冷却速度が遠いと暁鎚後の酸洗時に粒
界腐食を生じ最終製品の表面性状を著しく阻害するため
、炉冷することが必要である。
Conventionally, the manufacturing method for ferritic stainless steel sheets (SUS430) containing 16 to 18 chromium involves a long process of heating a hot-rolled sheet to 800 to 85 pC in a box Akatsuki anchor furnace, holding it for at least 2 hours, and then slowly cooling it to room temperature. After time solidifying and primary cold rolling to an intermediate thickness, intermediate dulling, secondary cold rolling to product thickness, and final dulling (this process is called R) to obtain the final product. ing. There are two main points in the manufacturing process of the above-mentioned conventional manufacturing method. The first point is the hot-rolled plate box dowel. In other words, unlike ordinary steel, the hot-rolled structure of ferritic stainless steel sheets is similar to that of cold-rolled steel, and if the cold-rolling process is started without competitive hammering, the material quality of the final product will deteriorate significantly, so it can be omitted. In order to obtain a good final product material, it was necessary to maintain the temperature at 800 to 85 mm for more than 2 hours. Phosphorus annealing at high temperatures exceeding 85 mm causes an austenite transformation phase, leading to material deterioration, and furthermore, if the cooling rate is too slow, intergranular corrosion occurs during pickling after hammering, significantly impairing the surface quality of the final product. Therefore, it is necessary to cool the furnace.

これらのことからフェライト系ステンレス鋼熱延鋼板の
競錨はボックス煉錨によらざるを得なかった。第2のポ
イント冷延工程をXRで行うことである。すなわち、一
次冷延を省略した工程(この工程をICRと呼ぶ)で製
造した最終製品はプレス加工により深絞り加工を行う等
の場合、激しいリジングが発生するとともに深絞り性支
配因子であるr値が劣化し、深絞り加工性が極めて低下
する等の問題が生じるためにR工程のICR化は実用化
されていない。本発明の目的は、フェライト系ステンレ
ス鋼の熱延鋼板を蓮続焼錨後、ICR工程によって最終
成品として従来のボックス競錨−XR工程と同等以上の
材質を得る方法を提供しようとするものである。すなわ
ち本発明の要旨は以下のとおりである。
For these reasons, competitive anchors made of ferritic stainless steel hot-rolled steel sheets had no choice but to use box brick anchors. The second point is to perform the cold rolling process using XR. In other words, when a final product manufactured by a process that omits primary cold rolling (this process is called ICR) is deep drawn by pressing, severe ridging occurs and the r-value, which is a controlling factor for deep drawability, is generated. ICR of the R process has not been put to practical use because of problems such as deterioration of the steel and extremely poor deep drawing workability. The purpose of the present invention is to provide a method for obtaining a final product of a hot-rolled ferritic stainless steel plate using an ICR process that is equivalent to or better than the conventional box racing anchor-XR process after being subjected to a Rentsugi sintering process. be. That is, the gist of the present invention is as follows.

【1ー 山0.10%超〜0.25%含有するフェライ
ト系ステンレス鋼スラブを1050〜125ぴ0の温度
城に加熱後、熱間圧延により鋼帯とし、この熱間圧延鋼
帯を900午0以上1050q0未満の温度域に加熱し
、20分以下の短時間保持した後、室温までの冷却過程
で急冷する連続競錨を施し、その後最終製品板厚まで中
間焼鈍することなく冷間圧延し、次いで再結晶暁鈍する
ことを特徴とするフェライト系ステンレス鋼板の製造方
法。‘21 NO.10%超〜0.25%含有するフェ
ライト系ステンレス鋼スラブを1050〜125ぴ0の
温度城に加熱後、熱間圧延により鋼帯とし、この熱間圧
延鋼帯を900午0以上1050℃未満の温度域に加熱
し、20分以下の短時間保持した後、室温までの冷却過
程で850qo以下の温度城を50午C/sec以上の
冷却速度で冷却する蓮続焼雛を施し、その後、最終製品
板厚まで中間焼鈍することなく袷間圧延し、次いで再結
晶焼鈍することを特徴とするフェライト系ステンレス鋼
板の製造方法。
[1- After heating a ferritic stainless steel slab containing more than 0.10% to 0.25% peaks to a temperature of 1050 to 125 mm, hot rolling it into a steel strip, and converting this hot rolled steel strip into a 900% After heating to a temperature range of 0 to 1,050 q0 and holding for a short time of 20 minutes or less, continuous racing is applied to rapidly cool it down to room temperature, and then cold rolled to the final product thickness without intermediate annealing. A method for producing a ferritic stainless steel sheet, which comprises the steps of: recrystallization and dulling. '21 NO. A ferritic stainless steel slab containing more than 10% to 0.25% is heated to a temperature of 1050 to 125 degrees Celsius, then hot rolled into a steel strip, and this hot rolled steel strip is heated to a temperature of 900 degrees Celsius or more and less than 1050 degrees Celsius. After heating to a temperature range of 20 minutes or less and holding it for a short time of 20 minutes or less, in the cooling process to room temperature, a Rentsugi ware process is performed in which the temperature castle is 850 qo or less at a cooling rate of 50 pm C/sec or more, and then, A method for manufacturing a ferritic stainless steel sheet, characterized by rolling the plate to the final product thickness without intermediate annealing, and then recrystallization annealing.

フェライト系ステンレス鋼延鋼板の焼鎚の連続化に当っ
ての第1の問題点は、先にも触れたように熱延板を焼鈍
した後の酸洗時における粒界腐食である。すなわち、暁
鎚を連続的に行うためには短時間で暁鎚を終了する必要
があるが、短時間競鈍によって従来のボックス蛾鈍条件
である加熱温度800〜850℃、保持時間2時間以上
と同等の熱履歴を与えるためには85び○を超える鯖温
焼銘を行う必要がある。しかも通常のフェライト系ステ
ンレス鋼板では850午0を超える温度に加熱後空冷す
ると、加熱時に園溶し粒界に濃化した炭素が空冷過程で
Crと結合し、粒界にクロム炭化物を析出し粒界近傍の
Crを消費するため粒界近傍のCr含有量が低下し、こ
のため焼錨後の酸洗時に粒界が選択的に溶解し粒界腐食
を生ずる。このことが従来、フェライト系ステンレス鋼
熱建鋼板の暁鎚が連続化しえなかった原因の1つとなっ
ていた。本発明者等は上記粒界腐食の防止法について種
種検討した結果、AIがフェライト系ステンレス鋼熱延
鋼板の焼鈍時に発生する粒界腐食性に対して極めて有効
であることを見出した。第1図はその結果を示す図で、
各暁鎚温度に保持し空冷後の酸洗による粒界腐食の有無
を種々のN添加量のフェライト系ステンレス鋼板につい
て調査したものである。
The first problem in continuous hammering of rolled ferritic stainless steel sheets is, as mentioned earlier, intergranular corrosion during pickling after annealing the hot rolled sheets. In other words, in order to perform Akatsuki Tsuchi continuously, it is necessary to finish Akatsuki Tsuchi in a short period of time, but short-time slowing requires a heating temperature of 800 to 850°C and a holding time of 2 hours or more, which are the conventional box moth dulling conditions. In order to give the same thermal history as that, it is necessary to engrave more than 85 bi○. Moreover, when ordinary ferritic stainless steel sheets are heated to a temperature exceeding 850°C and then air cooled, the carbon that dissolves during heating and concentrates at the grain boundaries combines with Cr during the air cooling process, precipitating chromium carbide at the grain boundaries and forming grains. Since Cr near the boundaries is consumed, the Cr content near the grain boundaries decreases, and as a result, the grain boundaries are selectively dissolved during pickling after anchor sintering, resulting in intergranular corrosion. This has been one of the reasons why it has not been possible to achieve continuous production of ferritic stainless steel thermoformed steel plates in the past. The inventors of the present invention have investigated various methods for preventing intergranular corrosion, and have found that AI is extremely effective against intergranular corrosion that occurs during annealing of hot-rolled ferritic stainless steel sheets. Figure 1 shows the results.
The presence or absence of intergranular corrosion due to pickling after air cooling was investigated on ferritic stainless steel sheets with various amounts of N added.

第1図からN添加量を0.07wt%以上にすると粒界
腐食の暁錨温度依存性が改善され、特に釘添加量を0.
10%超とすると暁錨温度を900℃以上1050qo
未満にまで上げることが可能である。一方通常のボック
ス競錨サイクルである800〜850qo騎鈍材を2回
冷延工程によって製造した最終製品のリジング高さは2
5〜3坪である。この従釆法によって製造した製品と同
等のIJジング高さを得るには、第6図の実施例結果か
らも明らかなように熱延板競錨温度は90000で十分
である。図中斜線で示したのは従来法による水準である
。さらに熱延板焼鎚温度を上げれば一層リジング性が良
好な製品をICR工程で製造可能であることは第6図あ
るいは後述するように明白である。しかしながら熱延板
焼鈍温度を1050oo以上にするとIJジング性は極
めて良好になるが、この温度城での暁錨は第1.図から
釘添加量を増しても粒界腐食が発生し、最終製品の表面
特性を損うため暁鈍温度の上限は粒界腐食の点から10
50qo未満とする必要がある。次に、最終製品の材質
を確保する上から熱延板の燐鈍および玲延工程は極めて
重要である。
From FIG. 1, when the amount of N added is 0.07 wt% or more, the dependence of intergranular corrosion on the dawn anchor temperature is improved, and especially when the amount of nail added is increased to 0.07 wt% or more, the dependence of intergranular corrosion on the dawn anchor temperature is improved.
If it exceeds 10%, the dawn anchor temperature will be 900℃ or higher and 1050qo.
It is possible to increase it to below. On the other hand, the ridging height of the final product manufactured by cold rolling twice from 800 to 850 qo steel material, which is a normal box racing cycle, is 2.
It is 5 to 3 tsubo. In order to obtain an IJ jing height equivalent to that of a product manufactured by this secondary method, a hot-rolled plate competitive anchor temperature of 90,000 is sufficient, as is clear from the results of the example shown in FIG. The shaded area in the figure is the level according to the conventional method. It is clear as shown in FIG. 6 or as will be described later that if the temperature of the hot-rolled sheet hammer is further increased, a product with even better ridging properties can be manufactured by the ICR process. However, when the hot-rolled sheet annealing temperature is set to 1050 oo or higher, the IJ jingability becomes extremely good, but the Akatsuki Anchor at this temperature range is the first. As shown in the figure, even if the amount of nail added is increased, intergranular corrosion will occur and the surface properties of the final product will be damaged.
It must be less than 50 qo. Next, the annealing and rolling processes of hot-rolled sheets are extremely important to ensure the quality of the final product.

すなわち器物等の深絞り‘こ用いる最終冷延焼鎚製品に
要求されるリジング性およびr値は所定の値確保するた
め、通常は■熱延板暁錨を十分に行う、■冷延工程は2
回冷延、2回暁錨(次R)の2点によって製造している
。すなわち熱延板焼錨が不十分であるとりジング性が悪
くなり、冷延工程を1回冷延、1回焼雛にするとIJジ
ング性およびr値ともに低下するため材質の面からの熱
延板の暁鎚およびICR化は困難であった。本発明者等
は、このリジング性およびr値に及ぼす製造条件の影響
を分離して考慮し次のことを明らかにした。
In other words, in order to ensure the required ridging properties and r-values for the final cold-rolled hammered products used for deep drawing of utensils, etc., the following steps are usually taken: ■ Thoroughly perform hot-rolling and ■ Cold-rolling process is carried out in two steps.
It is produced by two processes: double cold rolling and double Akatsuki Anchor (next R). In other words, the hot-rolled sheet sintered anchor is insufficient, resulting in poor rolling properties, and if the cold rolling process is made once cold rolling and once sintered, both the IJ jingability and r value will decrease, so hot rolling is difficult from the material standpoint. It was difficult to make the board into Akatsuki and ICR. The present inventors separately considered the influence of manufacturing conditions on the ridging property and r value and clarified the following.

すなわち、リジング性は熱延板焼純工程および冷延工程
が極めて大きな影響を与えていることである。熱延板の
焼銘温度を850ooよりも更に上げれば、リジング性
が著しく改善され、ICR工程によっても材質的に十分
満足出来る最終製品を製造することが可能であるが、従
釆のボックス暁鈍では炉の構造上850qoよりも高温
での暁鈍は炉の損傷が著しく実用にはならない。さらに
また、暁錨のこの欠点をカバーすべく連続塚鈍炉によっ
て100000まで暁錨温度を上げ短時間で暁鎚を完了
する方法も知られているが、従来の成分系では変態点が
低くこのような高温では7相を生じ、冷却過程でマルテ
ンザィトに変態し、1000℃加熱のままでは次工程で
の冷間圧延時に袷延割れを生ずるため1000午0での
熱処理後800℃前後で長時間の焼戻し処理を行わなけ
ればならず、いずれも実用化し得ない方法である。本発
明は、高温焼鈍によるリジング性の改善効果を得、かつ
高温焼鈍時に生ずる7相を抑制するものである。
That is, the ridging property is greatly influenced by the hot-rolled sheet sintering process and the cold rolling process. If the branding temperature of the hot-rolled sheet is further raised above 850 oo, the ridging property will be significantly improved, and it will be possible to produce a final product that is fully satisfactory in terms of material quality even through the ICR process. However, due to the structure of the furnace, sluggishing at a temperature higher than 850 qo would cause severe damage to the furnace, making it impractical. Furthermore, in order to overcome this drawback of the Akatsuki Anchor, a method is known in which the Akatsuki Anchor temperature is raised to 100,000 ℃ using a continuous mound blunt furnace and the Akatsuki Hammer is completed in a short time, but the transformation point of the conventional component system is low and this At such high temperatures, 7 phases are formed, which transforms into martenzite during the cooling process, and if left heated to 1000°C, stretch cracks will occur during cold rolling in the next process. However, these methods cannot be put to practical use. The present invention aims to obtain the effect of improving ridging property by high-temperature annealing, and to suppress seven phases generated during high-temperature annealing.

すなわちフェライト系ステンレス鋼中へ0.10%超〜
0.25%のAIを添加することによって変態点を上げ
るとともに焼銘に際して900qo以上105000未
満の高温城での保持時間を20分以下と短かく、7相が
生成しないうちに冷却し、7相の生成を抑制するもので
ある。このため900qo以上1050qo未満という
高温暁錨でありながら従来のボックス焼鈍と同様の冷延
性を得るとともに、成形性ならびにリジング性の良好な
素材を得ることが可能となり、1回冷延によっても成形
性、リジング性が優れた最終製品の製造を可能にしたも
のである。次に成形性のパラメーターである最終製品の
r値に及ぼす製造条件の影響を検討した。
That is, more than 0.10% in ferritic stainless steel
By adding 0.25% AI, the transformation point is raised, and the holding time at a high temperature of 900 qo or more and less than 105,000 qo during burning is as short as 20 minutes or less, and the 7-phase is cooled before the 7-phase is formed. This suppresses the formation of For this reason, although it is a high-temperature dawn anchor of 900 qo or more and less than 1050 qo, it is possible to obtain a cold rollability similar to that of conventional box annealing, and to obtain a material with good formability and ridging property. This makes it possible to manufacture final products with excellent ridging properties. Next, we investigated the influence of manufacturing conditions on the r value of the final product, which is a moldability parameter.

その結果r値が冷延前の固溶N(〔鋼板中の全N−Na
sNN〕を仮りに固溶Nと呼ぶ)量によって大きく影響
されることがわかった。
As a result, the r value was increased from the solid solute N before cold rolling ([total N-Na in the steel sheet
sNN] (tentatively referred to as solid solution N) was found to be greatly influenced by the amount.

この関係を第2図に示す。第2図は、冷延前固溶NとI
CR材のr値を示したものであるが、固溶Nの減少とと
もにr値が上昇している。従来のボックス蛾鈍一次R工
程による製造法では二次冷延前の固溶Nはボックス焼鈍
温度が800〜850午0と窒素の析出促進城であるこ
と、ボックス焼錨における冷却速度が遅いこと、中間焼
鈍時にさらに析出が促進されること等によって極めて低
減されるものであるが、熱延板焼鈍を連続化した場合に
は、前述の短時間焼銘に伴なう高温焼鈍化により、鋼板
中の固溶Nが増加し、さらに蓮続焼錨では冷却速度が遠
く冷却過程でのNの析出がほとんどないため、冷延前固
溶Nが増大している。冷延工程が本R工程であれば、中
間暁鎚時に大部分の固溶Nを析出することができ、2次
冷延前の園溶Nを低減してr値を高〈することができる
が、ICR工程では冷延前に固溶Nを低減する工程がな
いためr値は低くなり材質的に不満足なものとなる。本
発明は、蓮続焼鈍−ICR工程によって十分高いr値を
得るものであり、通常の熱間圧延板中の固溶Nは、加熱
炉内での平衡値と殆んど変らず、加熱炉を出てから熱延
板になるまでの熱延過程では、固港Nの析出は起きてい
ないことの発見による。
This relationship is shown in FIG. Figure 2 shows solid solution N and I before cold rolling.
This figure shows the r value of the CR material, and the r value increases as solid solution N decreases. In the conventional manufacturing method using the box annealing primary R process, the solid solution N before the secondary cold rolling is such that the box annealing temperature is 800 to 850 pm, which promotes the precipitation of nitrogen, and the cooling rate in box annealing is slow. However, when hot-rolled sheet annealing is continued, the high-temperature annealing associated with the short-time branding described above causes the steel sheet to deteriorate. Furthermore, since the cooling rate of the Rentsugi sintered anchor is slow and there is almost no precipitation of N during the cooling process, the solid solute N before cold rolling increases. If the cold rolling process is the main R process, most of the solid solute N can be precipitated during intermediate rolling, reducing the solute N before the secondary cold rolling and increasing the r value. However, in the ICR process, since there is no process to reduce solid solution N before cold rolling, the r value becomes low and the material is unsatisfactory. The present invention obtains a sufficiently high r value through the Rentsugi annealing-ICR process, and the solid solution N in a normal hot-rolled plate is almost the same as the equilibrium value in the heating furnace. This is based on the discovery that precipitation of hardened N does not occur during the hot rolling process from when the sheet is rolled out to when it is turned into a hot-rolled sheet.

したがって熱延板中の圃綾Nを低減させるには、熱延以
前の加熱炉内での固溶Nの平衡値を十分下げておく必要
がある。このためには、AI添加および加熱温度コント
ロールが極めて重要である。一般にNを添加した鋼の鋼
中NとAINの平衡析出量(固溶N)はAI添加量と鋼
中N、温度の関数であることが知られているが、フェラ
イト系ステンレス鋼に関してのこれら3者間の関係式は
未だ確定していない。本発明者等は繰返し実験を重ねた
結果、普通鋼で良く用いられるいわゆる下記のDark
enの式が実験データと比較的良く一致することを見出
した。〔N〕〔N〕=exp(1.95−7400/T
)〔N〕:鋼中N(M%)〔N〕:鋼中AI(wt%) T:温度(K) さらに、通常の市販のフェライト系ステンレス鋼板のr
値が1.0〜1.5であること、および第2図から冷延
前の固溶Nが8帆似下であれ‘ま、r値は1.0以上で
あることが明らかであるため、加熱炉内で固溶Nを8の
風以下に抑えれば良いことがわかる。
Therefore, in order to reduce the field twill N in the hot rolled sheet, it is necessary to sufficiently lower the equilibrium value of solid solution N in the heating furnace before hot rolling. For this purpose, AI addition and heating temperature control are extremely important. It is generally known that the equilibrium precipitation amount of N and AIN (solid solution N) in N-added steel is a function of the amount of AI added, N in the steel, and temperature. The relational expression between the three parties has not yet been determined. As a result of repeated experiments, the present inventors found that the following so-called Dark
We found that the formula for en was in relatively good agreement with experimental data. [N] [N] = exp (1.95-7400/T
) [N]: N in steel (M%) [N]: AI in steel (wt%) T: Temperature (K) Furthermore, the r of ordinary commercially available ferritic stainless steel sheet
It is clear that the value is 1.0 to 1.5, and from Figure 2 that even if the solid solute N before cold rolling is less than 8, the r value is 1.0 or more. , it can be seen that it is sufficient to suppress the solid solution N in the heating furnace to less than 8 degrees.

第3図イ,口に上記のarkenの式によって岡溶Nの
加熱順一内での平衡値を各加熱温度で計算したものを示
した。
Figure 3A shows the equilibrium value calculated at each heating temperature for Okayuri N within the heating sequence using the Arken equation described above.

これらの図から加熱炉内での固溶Nを80脚に押えるた
めには、AI添加量を増せば、1300℃加熱において
も固溶Nを8■肌以下とすることが可能であるが、AI
添加によるコストアップを考えればAIの添加量は0.
25%が限度である。このことから加熱温度は125び
0以下とするのが工業的には有利である。また上記の見
地からすれば加熱温度は低い方が固溶Nを押えるために
は好ましいが、あまり加熱温度を下げると熱間圧延時の
負荷が急激に増大すること、熱延板の表面性状が極度に
劣化することなどから、加熱温度の下限は105ぴ○と
することが工業上望ましい。このように、AI添加量と
加熱条件とのバランスをとって製造した熱延板中の固漆
Nの一例を第4図に示した。第4図および、第3図イ,
口から推定される様に、加熱温度が1250qo以下で
あれば熱延板中の間溶Nは十分に減少しておりICR材
のr値は1.の潅保することが可能である。また、熱延
板の連続競鈍温度の上限を加熱炉加熱温度よりも低く設
定することによりAINの再固溶はなく、むしろNNの
析出が促進される温度城となる。以上のAI添加による
固溶Nの固定の考察およ会妻鹿鎧雲善男迄尭季題き誓費
奉書霊≧秦さ;守なわち、蓮続焼錨工程中の冷却時間は
、冷却を自然放冷とすると第5図に示した様に500q
o以下の温度城での冷却速度が急激に遅くなり、室温に
達するまでに10分以上を要する。この時間は従来のボ
ックス焼錨における冷却時間と比較すれば大中に短縮さ
れてはいるが、連続焼鎚設備としては極めて長い時間で
あり、室温まで自然放冷とするには、かなり長い冷却ゾ
ーンを連続焼雛設備内に設直しなければならない。連続
競錨工程の大気中目然放冷による冷却過程において、鋼
板の温度が、100000,900℃,700℃,60
ぴ○,500qoになった時点でそれぞれ水中急冷を行
った鋼板をICR工程で最終冷延焼鎚板となし、r値の
測定を行った。その結果を第8図に示す。第8図から1
000qo,900℃から水中冷却してもr値1.0以
上は確保でき従来材と何ら変らない材質が得られるが、
水中冷却開始温度を850oo以下とすることによりr
値は1.2以上となりより優れたr値を得ることが可能
となる。以上述べた様に、蓮続焼錨工程の冷却過程で8
50qo以下の温度城から室温までを急冷すれば極めて
優れた材質を得ることができるとともに、冷却時間の短
縮、冷却設備長の短縮等工業的に極めて有利な設備とす
ることが可能である。
From these figures, in order to suppress the solid solution N in the heating furnace to 80 feet, it is possible to reduce the solid solution N to 8 cm or less even when heated to 1300°C by increasing the amount of AI added. AI
Considering the cost increase due to addition, the amount of AI added should be 0.
The limit is 25%. For this reason, it is industrially advantageous to set the heating temperature to 125°C or less. Also, from the above point of view, a lower heating temperature is preferable in order to suppress solid solution N, but if the heating temperature is lowered too much, the load during hot rolling will increase rapidly, and the surface properties of the hot rolled sheet will deteriorate. It is industrially desirable to set the lower limit of the heating temperature to 105 pi because of the possibility of extreme deterioration. FIG. 4 shows an example of hard lacquer N in a hot rolled sheet produced by balancing the amount of AI added and the heating conditions. Figure 4 and Figure 3 A,
As can be inferred, if the heating temperature is 1250 qo or less, the intermolten N in the hot rolled sheet is sufficiently reduced, and the r value of the ICR material is 1. It is possible to irrigate the area. In addition, by setting the upper limit of the continuous competitive annealing temperature of the hot rolled sheet to be lower than the heating temperature in the heating furnace, the re-solid solution of AIN does not occur, but rather a temperature range is created in which precipitation of NN is promoted. The above consideration of the fixation of solid solution N by the addition of AI and the observation that the cooling time during the Rentsugi sintered anchor process allows for natural cooling. If left to cool, 500q as shown in Figure 5
The cooling rate at a temperature below 0.0°C decreases rapidly, and it takes 10 minutes or more to reach room temperature. Although this time is shorter than the cooling time for conventional box scorching anchors, it is an extremely long time for continuous scorching equipment, and it takes quite a long time to cool down naturally to room temperature. The zone must be re-established within the continuous broiling equipment. During the cooling process of the continuous anchoring process, the temperature of the steel plate was 100,000, 900℃, 700℃, 60℃.
At the time when the steel sheets reached 500 qo, the steel sheets were rapidly cooled in water, and the final cold-rolled steel sheets were obtained through an ICR process, and the r value was measured. The results are shown in FIG. From Figure 8 1
Even when cooled in water from 000qo and 900°C, an r value of 1.0 or more can be maintained and a material no different from conventional materials can be obtained.
By setting the underwater cooling start temperature to 850 oo or less, r
The value becomes 1.2 or more, making it possible to obtain a more excellent r value. As mentioned above, in the cooling process of the Rentsugi sintered anchor process, the
If the material is rapidly cooled from a temperature range of 50 qo or less to room temperature, it is possible to obtain an extremely excellent material, and it is also possible to make equipment extremely advantageous industrially, such as shortening the cooling time and shortening the length of the cooling equipment.

ここで85ぴ0以下の冷却速度は大気中自然放冷以上で
良いが、50qo/sec以上とするのが良い。以下実
施例によって本発明を説明する。実施例 第1表に示す成分を有するスラブを1200℃加熱によ
って板厚3.仇舷の熱延板を製造した。
Here, the cooling rate of 85 qo/sec or less may be higher than natural cooling in the atmosphere, but is preferably 50 qo/sec or higher. The present invention will be explained below with reference to Examples. Example A slab having the components shown in Table 1 was heated to 1200°C to a thickness of 3. Manufactured hot-rolled plates for the deck.

第1表(wt亀)全鋼種について90ぴC〜1050℃
の温度城に公hin保持後、800℃まで空冷し、その
後50℃/sec以上の冷却速度で冷却する連続燐鈍を
施した後、ICR工程によって0.5側の冷延焼雛板を
得た。
Table 1 (wt turtle) 90piC to 1050℃ for all steel types
After being kept at a temperature of 100°C, it was air-cooled to 800°C, and then subjected to continuous phosphorous annealing by cooling at a cooling rate of 50°C/sec or more, and then a 0.5 side cold-rolled chick plate was obtained by an ICR process. .

なお、このときの連続膝鈍曲線を第9図に示した。この
工程で、蓮続焼錨後の酸洗時における粒界腐食の有無を
走査型電子顕微鏡にて観察した結果を第2表に示した。
第2表 注)0は粒界腐食存し ×は粒界腐食あり なお、リジング性の燐鈍温度依存性を第6図に示し、ま
たr値の暁錨温度依存性を第7図に熱延板中の固溶N量
と合せて示した。
In addition, the continuous knee obtuse curve at this time is shown in FIG. In this process, the presence or absence of intergranular corrosion during pickling after Rentsugi sintered anchor was observed using a scanning electron microscope, and the results are shown in Table 2.
Table 2 Note: 0 means intergranular corrosion exists, It is shown together with the amount of solid solution N in the rolled sheet.

第2表に示すように、蓮続焼錨後の酸洗時における粒界
腐食は、暁錨温度850qoの場合は比較例、本発明共
満足な値を示すが、暁銘温度900℃以上では比較例(
鋼番A,B)は、粒界腐食が大となる。
As shown in Table 2, grain boundary corrosion during pickling after Rentsugi sintered anchor shows satisfactory values for both the comparative example and the present invention when the Akimei temperature is 850 qo, but when the Akimei temperature is 900°C or higher, Comparative example (
Steel numbers A and B) suffer from severe intergranular corrosion.

しかしながら本発明の鋼番C〜FはAI含有量が大な程
900oo以上の高温暁錨によっても粒界腐食が生ぜず
、なかでも鋼番D,E,Fは1000qoの高温暁錨を
行っても粒界腐食は満足な値を示した。しかしながら焼
錨温度が1050つ0では粒界腐食が生じるので、焼錨
温度は粒界腐食の点からは1050qo未満とすべきで
ある。第6図は本発明に係る暁雛温度とIJジング高さ
の関係を示したものであり、この図から競錨温度を90
0午0以上とするとりジング高さを従来法による水準(
斜線の範囲)以下にすることが可能である。
However, in the steel numbers C to F of the present invention, as the AI content increases, intergranular corrosion does not occur even when subjected to high temperature dawn anchoring of 900 qo or more, and among them, steel numbers D, E, and F do not cause intergranular corrosion even when subjected to high temperature dawn anchoring of 1000 qo or more. Intergranular corrosion also showed satisfactory values. However, if the sintered anchor temperature is 1050 qo, intergranular corrosion will occur, so the sintered anchor temperature should be less than 1050 qo from the viewpoint of intergranular corrosion. Figure 6 shows the relationship between the dawn chick temperature and the IJ ring height according to the present invention, and from this figure, the competitive anchor temperature can be set to 90
If it is 0:0 or more, the sliding height is the same as the standard according to the conventional method (
(shaded range) or less.

また、第7図は暁錨温度とr値との関係を示したもので
ある。
Moreover, FIG. 7 shows the relationship between dawn anchor temperature and r value.

この図から本発明の鋼番C〜Fは焼錨温度が1000℃
以下でr値1.0となり、燐鈍温度が1050qoにな
るとr値は急激に悪化することがわかる。次に、本発明
における競鈍時の冷却速度を特定の範囲で行なうことに
よりr値を1.処〆上に安定して確保することができる
From this figure, the steel numbers C to F of the present invention have a sintering anchor temperature of 1000℃.
It can be seen that the r value is 1.0 below, and the r value deteriorates rapidly when the phosphorous temperature becomes 1050 qo. Next, by controlling the cooling rate during competitive cooling in the present invention within a specific range, the r value can be increased to 1. It can be stably secured on the premises.

このことを連続暁錨後の冷却条件のICR材r値への影
響を鋼番D,Eについて確認した。鋼番D,Eの板厚3
.0側の熱延板を100000に2hin間保持後自然
放冷すろ過程で鋼板の温度が1000午0,900q○
,800q0,700q0,600午○,50ぴ0にな
った時に、それぞれ水中冷却した後、ICR工程によっ
て0.5側の冷延焼錨板を得た。
This was confirmed for Steel No. D and E by examining the effect of cooling conditions after continuous dawn anchoring on the ICR material r value. Steel number D, E plate thickness 3
.. After holding the hot-rolled sheet on the 0 side at 100,000 for 2 hours, the temperature of the steel sheet decreased to 1,000 pm and 0,900 q○ during the natural cooling process.
, 800 q 0, 700 q 0, 600 pm, and 50 pm, respectively, after cooling in water, a 0.5 side cold rolled sintered anchor plate was obtained by an ICR process.

このときの水冷開始から、鋼板の温度が水温(15℃)
になるまでの時間は約2秒であった。上記冷延焼鈍板の
r値を横軸に水冷開始温度を取って第8照に示した。
From the start of water cooling at this time, the temperature of the steel plate becomes the water temperature (15℃)
It took about 2 seconds to reach this point. The r-value of the cold-rolled annealed sheet is plotted on the horizontal axis with the water-cooling start temperature shown in the eighth chart.

第8図から明らかな様に水冷開始温度が850qo以下
であればr値が1.a〆上を確保できることが明らかで
ある。このときの冷却速度は50午0ノsec以上であ
る。以上述べたように本発明によれば、熱延鋼板の長時
間焼錨を短時間の連続競錨とし、なおかつ中‐間冷延、
中間燐鈍を省いても、得られるステンレス鋼板の粒界腐
食、リジング性、r値は従来法により製造した場合に比
較し優れた値とすることができるという顕著な効果を奏
する。
As is clear from FIG. 8, if the water cooling start temperature is 850 qo or less, the r value is 1. It is clear that it is possible to secure the above a. The cooling rate at this time is 50 seconds or more. As described above, according to the present invention, a long-time sintering anchor of a hot-rolled steel sheet can be changed to a short-time continuous sintering anchor, and furthermore, the intermediate and intermediate cold rolling,
Even if the intermediate phosphorous dulling is omitted, the intergranular corrosion, ridging property, and r value of the resulting stainless steel sheet can be made to values superior to those produced by conventional methods, which is a remarkable effect.

【図面の簡単な説明】[Brief explanation of the drawing]

・第1図はフェライト系ステンレス鋼熱建鋼板の山含有
率と嘘錨温度を変化させた場合の粒界腐食の有無を示す
図、第2図は冷延前のフェライト系ステンレス鋼板の固
溶Nとr値との関係を示す図、第3図イ及び口は加熱炉
における加熱温度と固溶Nの関係をAI含有量を変化さ
せて示した図、第4図は鋼中AI含有量と熱延板中の固
溶Nとの関係を示す図、第5図は本発明に係る蓮続焼鎚
における冷却速度を例示した図、第6図は競銘温度とI
Jジング高さの関係を示す図、第7図は焼錨温度とr値
の関係を示す図、第8図は競錨冷却過程で水冷開始温度
とr値の関係を示す図、第9図は本発明に係る連続燐鈍
における急袷速度を例示した図である。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図
・Figure 1 shows the presence or absence of intergranular corrosion when the mountain content and false anchor temperature of a hot-built ferritic stainless steel sheet are changed. Figure 2 shows the solid solution of a ferritic stainless steel sheet before cold rolling. A diagram showing the relationship between N and r value, Figure 3 A and 3 are diagrams showing the relationship between heating temperature and solid solution N in a heating furnace by changing the AI content, and Figure 4 shows the AI content in steel. 5 is a diagram illustrating the cooling rate in the Rentsugi hammer according to the present invention, and FIG. 6 is a diagram showing the relationship between
Figure 7 shows the relationship between the J-jing height, Figure 7 shows the relationship between anchor temperature and r value, Figure 8 shows the relationship between water cooling start temperature and r value during the competitive anchor cooling process, Figure 9 FIG. 2 is a diagram illustrating the steepening speed in the continuous phosphor dulling according to the present invention. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】 1 AI0.10%超0.25%以下を含有するフエラ
イト系ステンレス鋼スラブを1050〜1250℃の温
度域に加熱後、熱間圧延により鋼帯とし、この熱間圧延
鋼帯を900℃以上1050℃未満の温度域に加熱して
20分以下の短時間保持した後、室温までの冷却過程で
急冷する連続焼鈍を施し、その後最終製品板厚まで中間
焼鈍することなく冷間圧延し、ついで再結晶焼鈍するこ
とを特徴とするフエライト系ステンレス鋼板の製造方法
。 2 AI0.10%超0.25%以下を含有するフエラ
イト系ステンレス鋼スラブを1050〜1250℃の温
度域に加熱後、熱間圧延により鋼帯とし、この熱間圧延
鋼帯を900℃以上1050℃未満の温度域に加熱し、
20分以下の短時間保持した後、室温までの冷却過程で
850℃以下の温度域を50℃/sec以上の冷却速度
で冷却する連続焼鈍を施し、その後最終製品板厚まで中
間焼鈍することなく冷間圧延し、ついで再結晶焼鈍する
ことを特徴とする特許請求の範囲第1項記載のフエライ
ト系ステンレス鋼板の製造方法。
[Scope of Claims] 1 A ferritic stainless steel slab containing more than 0.10% but not more than 0.25% of AI is heated to a temperature range of 1050 to 1250°C and then hot rolled into a steel strip, and this hot rolled steel After heating the strip to a temperature range of 900°C or more and less than 1050°C and holding it for a short time of 20 minutes or less, continuous annealing is performed by rapidly cooling it to room temperature, and then it is cooled to the final product thickness without intermediate annealing. A method for producing a ferritic stainless steel sheet, which comprises rolling and then recrystallizing annealing. 2 A ferritic stainless steel slab containing more than 0.10% of AI and less than or equal to 0.25% is heated to a temperature range of 1050 to 1250°C, then hot rolled into a steel strip, and this hot rolled steel strip is heated to a temperature of 900°C to 1050°C. Heating to a temperature range below ℃,
After holding for a short time of 20 minutes or less, continuous annealing is performed in the cooling process to room temperature in a temperature range of 850°C or less at a cooling rate of 50°C/sec or more, and then the final product thickness is reached without intermediate annealing. 2. The method for producing a ferritic stainless steel sheet according to claim 1, which comprises cold rolling and then recrystallization annealing.
JP13932980A 1980-10-07 1980-10-07 Manufacturing method of ferritic stainless steel sheet Expired JPS6030728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13932980A JPS6030728B2 (en) 1980-10-07 1980-10-07 Manufacturing method of ferritic stainless steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13932980A JPS6030728B2 (en) 1980-10-07 1980-10-07 Manufacturing method of ferritic stainless steel sheet

Publications (2)

Publication Number Publication Date
JPS5763629A JPS5763629A (en) 1982-04-17
JPS6030728B2 true JPS6030728B2 (en) 1985-07-18

Family

ID=15242773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13932980A Expired JPS6030728B2 (en) 1980-10-07 1980-10-07 Manufacturing method of ferritic stainless steel sheet

Country Status (1)

Country Link
JP (1) JPS6030728B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19821299A1 (en) * 1998-05-13 1999-11-18 Abb Patent Gmbh Arrangement and method for producing hot-rolled steel strip
JP2019081916A (en) * 2017-10-27 2019-05-30 Jfeスチール株式会社 Ferritic stainless steel sheet and method for producing the same

Also Published As

Publication number Publication date
JPS5763629A (en) 1982-04-17

Similar Documents

Publication Publication Date Title
JPH0138855B2 (en)
JPH07812B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JPS6030728B2 (en) Manufacturing method of ferritic stainless steel sheet
US4478649A (en) Method for producing a cold-rolled steel sheet having excellent formability
JPS6261646B2 (en)
KR870000703B1 (en) Process for producing strip of corrosion resistant alloy steel
JP2612452B2 (en) Manufacturing method of high ductility and high strength cold rolled steel sheet
JPH0144771B2 (en)
JPS6151611B2 (en)
JPS5841327B2 (en) Manufacturing method of ferritic stainless thin steel sheet with excellent workability
JPH0353026A (en) Manufacture of ferritic stainless steel sheet having excellent heat resistance and corrosion resistance
JPH0160531B2 (en)
JP3728828B2 (en) Manufacturing method of ferritic stainless steel with excellent surface quality and deep drawability
JP3336172B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPH027374B2 (en)
JPS6017004B2 (en) Manufacturing method of cold-rolled steel sheet for drawing with excellent bake hardenability
JPS6111295B2 (en)
JPH0257128B2 (en)
SU1206325A1 (en) Method of heating steel ingots
RU2004132414A (en) METHOD FOR PRODUCING COLD STEEL FOR DEEP DRAWING
JPH0570841A (en) Manufacture of hot rolled steel sheet excellent in deep drawability by using thin slab
JPS5946684B2 (en) Manufacturing method for cold-rolled steel sheets with excellent formability
JP2612453B2 (en) Method for producing hot-rolled mild steel sheet with excellent drawability
JP3061915B2 (en) Manufacturing method of cold rolled steel sheet for processing
JPH075989B2 (en) Manufacturing method of cold-rolled steel sheet with excellent deep drawability