JP3728828B2 - Manufacturing method of ferritic stainless steel with excellent surface quality and deep drawability - Google Patents
Manufacturing method of ferritic stainless steel with excellent surface quality and deep drawability Download PDFInfo
- Publication number
- JP3728828B2 JP3728828B2 JP25967696A JP25967696A JP3728828B2 JP 3728828 B2 JP3728828 B2 JP 3728828B2 JP 25967696 A JP25967696 A JP 25967696A JP 25967696 A JP25967696 A JP 25967696A JP 3728828 B2 JP3728828 B2 JP 3728828B2
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- ferritic stainless
- surface quality
- temperature
- slab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、従来法よりも、より経済的かつ能率的で、しかも表面品質および深絞り性に優れたフェライト系ステンレス鋼の製造方法に関するものである。
【0002】
【従来の技術】
連続鋳造−熱間圧延により製造されるステンレス鋼製造プロセスにおいては、連鋳スラブは一旦常温まで冷却されてスラブ手入れが行われ、その後に加熱炉にて1150〜1250℃の温度に加熱されたのち、熱間圧延に供されていた。
従って、このような連続鋳造−熱間圧延工程では、多大な熱エネルギーと処理時間を必要とした。
【0003】
これに対し、特開昭57−152420号公報では、ステンレス鋼のCC−DR(Direct Rolling)またはDHCR(Direct Hot Charge Rolling) に関する技術として、「10〜20%Crを含有したフェライト系ステンレス鋼を連続鋳造した後、直接熱間圧延するか、あるいは 400℃以下に温度降下せしめることなく保熱もしくは加熱して熱間圧延するに際し、連続鋳造スラブが(α+γ)域に置かれる時間が3時間を超えないように保熱あるいは加熱した後、熱間圧延する」ことからなる加工性の優れたフェライト系ステンレス鋼板の省工程製造法が提案されている。
【0004】
また、フェライト系ステンレス鋼は、SUS 304 に代表されるオーステナイト系ステンレス鋼に比べて、安価なだけでなく、耐応力腐食割れ性(耐SCC 性)に優れていることから、多岐にわたって使用されているが、加工性とくに深絞り性や耐リジング性の点では劣っている。
従って、加工性や耐リジング性を向上させるための様々な技術が提案されている。
【0005】
例えば特開平4-99151号公報には、フェライト系ステンレス鋼に関して、Al, Ti, Nb, B, CおよびN量を規定すると共に、さらに熱間圧延時の 900℃以下での圧下率を50%以上、仕上げ圧延温度を 800℃以下とし、コイル巻き取り温度を600 ℃以上とすることにより、プレス成形加工性と表面品質を兼備したフェライト系ステンレス鋼の製造方法が提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記した従来技術においてはそれぞれ、次に述べるような問題を残していた。
すなわち、特開昭57−152420号公報では、成形加工性の指標である平均r値の著しい向上は期待できず、また、特開平4-99151号公報では、熱間圧延時に、素材自身の変形抵抗が大きい低温域で圧下しなければならないため、表面に熱延肌荒れ性欠陥が多発するという問題があったのである。
【0007】
上述したとおり、従来の技術では、
1) 経済的かつ能率的に、
2) 表面品質と加工性に優れるものを、
製造するという2つの目的を同時に達成することができず、その解決が強く望まれていた。
そこで、本発明は、上記した2つの目的を同時に達成することができるフェライト系ステンレス鋼の新規な製造方法を提案することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、Crを11.0wt%以上含有するフェライト系ステンレス鋼を、連続鋳造−熱間圧延によって製造するに当たり、連続鋳造速度を 1.2 m/min以上にすると共に、連続鋳造スラブを、その表面温度が 400℃以下に降温する前に、加熱炉に装入し、1200℃以下の温度まで加熱後、熱間圧延に供することを特徴とする、表面品質と深絞り性に優れたフェライト系ステンレス鋼の製造方法(第1発明)である。
【0009】
また、本発明は、上記第1発明において、フェライト系ステンレス鋼が、Cr:11.0wt%以上の他、Ti,Nb,V,Zr,TaおよびWのうちから選んだ1種または2種以上を{4×(C+N)}wt%以上、0.5 wt%以下の範囲で含有することを特徴とする、表面品質と深絞り性に優れたフェライト系ステンレス鋼の製造方法(第2発明)である。
【0010】
【発明の実施の形態】
以下、本発明を完成するに至った実験結果について説明する。
実験1
C:0.058 wt%, Si:0.37wt%, Mn:0.46wt%, Cr:16.2wt%, S:0.005 wt%, P:0.026 wt%およびN:0.031 wt%を含み、残部は実質的にFeの組成になるSUS430を溶製し、厚さ:200 mm、幅:1260mmの連鋳モールドに連続鋳造した。この時、連鋳速度は 1.3 m/minとした。
ついで、得られた連鋳スラブを、種々の温度まで冷却した後、熱間圧延用加熱炉に装入した。この時、加熱温度を種々に変化させ、熱延時のスラブ抽出温度を変化させた。また、加熱炉内でのスラブ均熱時間は2時間以内とした。
上記加熱処理の後、3段からなる粗圧延機と7段よりなる連続式仕上げ圧延機を用いて、板厚:4mmまで熱間圧延を行った。
得られた熱延板を再結晶焼鈍後、酸洗により表面の酸化スケールを除去した後の、焼鈍・酸洗板の表面品質について調査した結果を、図1に示す。
【0011】
同図から明らかなように、連鋳スラブの加熱炉への装入温度が、スラブ表面温度で 400℃以上でかつ、熱延時のスラブ加熱温度が1200℃以下の場合には、ヘゲ状欠陥や肌荒れ欠陥が全くない、表面品質に優れた熱延板が得られた。
これに対し、装入温度が 400℃未満かまたはスラブ加熱温度が1200℃より高い場合には、ヘゲ状欠陥が生じ、熱延板の表面品質が悪化することが判明した。
【0012】
この原因について、ヘゲ状欠陥部を調査したところ、スラブ加熱時に、スラブ表面で局所的な異常酸化が生じることに起因するものであることが判明した。
すなわち、連鋳スラブに生成したスケールは 400℃以下に冷却されると熱応力によりクラックを発生し、その後の熱延加熱時に局所的に異常酸化が生じるものと考えられる。また、熱延加熱温度が1200℃を超えると、たとえスケールにクラックが生じていない状態でも、酸化が著しく促進されて局所的な異常酸化が生じ易くなるものと考えられる。
従って、本発明では、加熱炉へのスラブ装入温度はスラブ表面温度で 400℃以上で、かつ加熱温度は1200℃以下の範囲に限定したのである。なお、加熱温度が1050℃より低くなると熱延温度が低下し、結果的に肌荒れが発生し易くなるので、加熱温度は1050℃以上とすることが好ましい。
【0013】
実験2
C:0.007 wt%, Si:0.19wt%, Mn:0.30wt%, Cr:16.4wt%, S:0.003 wt%, P:0.029 wt%, N:0.008 wt%およびTi:0.17wt%を含み、残部は実質的にFeの組成になるSUS430LXを溶製し、厚さ:200 mm、幅:1260mmの連鋳モールドにて連続鋳造した。この時、連鋳速度は 1.3 m/minとした。
ついで、得られた連鋳スラブを、表面温度が 500〜600 ℃のとき、加熱炉に装入し、加熱炉の温度を種々に変化させてスラブを加熱してから、加熱炉から抽出し、その後、3段からなる粗圧延機と7段よりなる連続式仕上げ圧延機により板厚:4mmまで熱間圧延を行った。
得られた熱延板を、930 ℃で連続焼鈍し、酸洗後、冷間圧延により 0.7mmの板厚に仕上げたのち、910 ℃での連続焼鈍−酸洗処理により、2B仕上げの冷延・焼鈍板とした。
【0014】
図2に、L,D,C方向から採取したサンプルのr値を測定し、平均化した値を示す。同図から明らかなように、平均r値を高くし、深絞り性を改善する上でも、熱延時のスラブ加熱温度を1200℃以下にすることが有効であることが判る。
【0015】
また、同様に連鋳時の鋳込み速度を 0.7 m/minから 1.4 m/minまで変化させ、熱延時の加熱温度は1170℃一定として製造した冷延・焼鈍板の平均r値について調べた結果を、図3に示す。
同図から明らかなように、平均r値は、連鋳時の鋳込み速度が 1.2 m/min以上になると著しく向上することが判る。
従って、本発明では、連鋳時の鋳込み速度は 1.2 m/min以上で、かつ熱延時のスラブ加熱温度は1200℃以下に限定したのである。
このように、鋳込み速度を 1.2 m/min以上にすることにより、r値が向上する理由は、鋳造組織が微細化あるいは柱状晶率が低下したことにより、熱延・焼鈍後の組織が均一化したことによるものであると思われる。
【0016】
本発明で対象とするフェライト系ステンレス鋼としては、特に限定されることはなく、Crを11.0wt%以上含有するものであればいずれもが適合する。また、深絞り性や溶接性を向上させることを目的として添加される、Ti,Nb,V,Zr,TaおよびW等の元素については、単独使用または併用いずれの場合においても、含有量は{4×(C+N)}wt%以上、0.5 wt%以下とする必要がある。というのは、含有量が{4×(C+N)}wt%に満たないと深絞り性や溶接性の改善効果が十分には認められず、一方、0.5 wt%を超えると生成する炭窒化物が粗大化し易くなり、靱性の低下や耐孔食性の低下が生じやすくなるという不利が生じるからである。
【0017】
【実施例】
表1に示す成分組成になる鋼を転炉溶製し、VOD脱ガス後、短辺が 200mm、長辺が1260mmの鋳型で連続鋳造を行った。得られた連鋳スラブを、熱間圧延のための加熱炉に装入し、表2に示す種々の温度に加熱した後、3段からなる粗圧延機と7段よりなる連続式仕上げ圧延機で仕上げ圧延を行い、板厚:4mmの熱延板とした。この時の仕上げ圧延温度(FDT)は 820〜860 ℃とした。また一部のスラブについては、従来、冷延・焼鈍板の深絞り性が向上するとされている低FDT(750℃,740℃)とした。ついで、得られた熱延板に、再結晶焼鈍ついでショットブラストおよび酸洗を施したのち、冷間圧延により板厚:0.7 mmとし、再結晶焼鈍−酸洗後、表面仕上げが2Dの冷延・焼鈍板を作製した。このようにして得られた製品板の、(1) 熱延−焼鈍−ショットブラスト・酸洗後の鋼板表面品質および(2) 冷延・焼鈍板の平均r値について調べた結果を、表2に併記する。
【0018】
【表1】
【0019】
【表2】
【0020】
表2から明らかなように、本発明に従い製造した場合には、表面品質および深絞り性に優れたフェライト系ステンレス鋼を得ることができた。これに対し、本発明の構成要件が1つでも欠けた場合には、両者を同時に満足させることはできなかった。また、従来、深絞り性の面で良好とされた低FDTでは、表面品質の著しい劣化を招いた。
【0021】
【発明の効果】
以上説明したように、本発明に従い、フェライト系ステンレス鋼の製造に際して、(1) 連続鋳造時における鋳造速度、(2) 連鋳後、加熱炉へスラブを装入する時のスラブ表面温度および(3) 熱延時の加熱温度を、それぞれ適正化することにより、DHCR(CC−DR)化を利用して表面品質および深絞り性に優れたフェライト系ステンレス鋼を安定して得ることができる。
【図面の簡単な説明】
【図1】焼鈍・酸洗板の表面品質に及ぼす、スラブの加熱炉装入温度およびスラブ加熱温度の影響を示したグラフである。
【図2】スラブ加熱温度と平均r値との関係を示したグラフである。
【図3】連続鋳造における鋳込み速度と平均r値との関係を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a ferritic stainless steel that is more economical and efficient than conventional methods, and that is superior in surface quality and deep drawability .
[0002]
[Prior art]
In a stainless steel manufacturing process manufactured by continuous casting and hot rolling, the continuous cast slab is once cooled to room temperature, slab-cleaned, and then heated to a temperature of 1150 to 1250 ° C in a heating furnace. Was subjected to hot rolling.
Accordingly, such a continuous casting-hot rolling process requires a great deal of heat energy and processing time.
[0003]
On the other hand, in Japanese Patent Application Laid-Open No. 57-152420, as a technique related to stainless steel CC-DR (Direct Rolling) or DHCR (Direct Hot Charge Rolling), “ferritic stainless steel containing 10 to 20% Cr is used. After continuous casting, when hot rolling is performed directly or hot rolling is performed without keeping the temperature below 400 ° C, it takes 3 hours for the continuous casting slab to be placed in the (α + γ) region. There has been proposed a process for producing a ferritic stainless steel sheet having excellent workability, which includes heat holding or heating so as not to exceed, and then hot rolling.
[0004]
Ferritic stainless steel is not only cheaper than austenitic stainless steel represented by SUS 304, but also has excellent stress corrosion cracking resistance (SCC resistance), so it is widely used. However, it is inferior in terms of workability, particularly deep drawability and ridging resistance.
Therefore, various techniques for improving processability and ridging resistance have been proposed.
[0005]
For example, JP-A-4-99151 specifies the amount of Al, Ti, Nb, B, C and N for ferritic stainless steel and further reduces the rolling reduction at 900 ° C. or lower during hot rolling to 50%. As described above, a method for producing a ferritic stainless steel having both press formability and surface quality has been proposed by setting the finish rolling temperature to 800 ° C. or lower and the coil winding temperature to 600 ° C. or higher.
[0006]
[Problems to be solved by the invention]
However, each of the conventional techniques described above has left the following problems.
That is, in Japanese Patent Laid-Open No. 57-152420, a significant improvement in the average r value, which is an index of forming processability, cannot be expected, and in Japanese Patent Laid-Open No. 4-99151, deformation of the material itself during hot rolling. Since it must be rolled down in a low temperature region where the resistance is large, there has been a problem that hot-rolled rough surface defects frequently occur on the surface.
[0007]
As mentioned above, in the conventional technology,
1) Economically and efficiently,
2) What has excellent surface quality and workability
The two purposes of manufacturing cannot be achieved at the same time, and the solution has been strongly desired.
Accordingly, an object of the present invention is to propose a novel manufacturing method of ferritic stainless steel that can simultaneously achieve the above-described two objects.
[0008]
[Means for Solving the Problems]
In producing ferritic stainless steel containing 11.0 wt% or more of Cr by continuous casting-hot rolling, the present invention sets the continuous casting speed to 1.2 m / min or more, and the continuous casting slab with its surface temperature. Ferritic stainless steel with excellent surface quality and deep drawability, which is charged in a heating furnace before being cooled to 400 ° C or lower, heated to a temperature of 1200 ° C or lower, and then subjected to hot rolling. This is a manufacturing method (first invention).
[0009]
In the first invention, the ferritic stainless steel is Cr: 11.0 wt% or more, and one or more selected from Ti, Nb, V, Zr, Ta and W. A method for producing ferritic stainless steel excellent in surface quality and deep drawability (second invention), characterized by containing in a range of {4 × (C + N)} wt% or more and 0.5 wt% or less.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the experimental results that led to the completion of the present invention will be described.
Experiment 1
C: 0.058 wt%, Si: 0.37 wt%, Mn: 0.46 wt%, Cr: 16.2 wt%, S: 0.005 wt%, P: 0.026 wt% and N: 0.031 wt%, the balance being substantially Fe SUS430 having the following composition was melted and continuously cast into a continuous casting mold having a thickness of 200 mm and a width of 1260 mm. At this time, the continuous casting speed was 1.3 m / min.
Subsequently, the obtained continuous cast slab was cooled to various temperatures and then charged into a hot rolling furnace. At this time, the heating temperature was changed variously, and the slab extraction temperature during hot rolling was changed. The slab soaking time in the heating furnace was set to be within 2 hours.
After the heat treatment, hot rolling was performed to a plate thickness of 4 mm using a rough rolling mill having three stages and a continuous finish rolling mill having seven stages.
The result of investigating the surface quality of the annealed / pickled plate after removing the oxidized scale on the surface after recrystallization annealing of the obtained hot-rolled sheet is shown in FIG.
[0011]
As can be seen from the figure, when the temperature of the continuous cast slab into the furnace is 400 ° C or higher at the surface temperature of the slab and the slab heating temperature during hot rolling is 1200 ° C or lower, the bald defects A hot-rolled sheet with no surface roughness defects and excellent surface quality was obtained.
On the other hand, when the charging temperature is less than 400 ° C. or the slab heating temperature is higher than 1200 ° C., it has been found that heavier defects occur and the surface quality of the hot rolled sheet deteriorates.
[0012]
About this cause, when the bald defect part was investigated, it turned out that it originates in local abnormal oxidation occurring on the slab surface at the time of slab heating.
That is, it is considered that when the scale formed in the continuous cast slab is cooled to 400 ° C. or less, cracks are generated due to thermal stress, and abnormal oxidation occurs locally during subsequent hot rolling. Further, if the hot rolling heating temperature exceeds 1200 ° C., it is considered that even if the scale is not cracked, the oxidation is remarkably promoted and local abnormal oxidation is likely to occur.
Therefore, in the present invention, the slab charging temperature to the heating furnace is limited to the range of 400 ° C. or more at the slab surface temperature, and the heating temperature is limited to 1200 ° C. or less. Note that when the heating temperature is lower than 1050 ° C., the hot rolling temperature is lowered, and as a result, rough skin is likely to occur. Therefore, the heating temperature is preferably 1050 ° C. or higher.
[0013]
Experiment 2
C: 0.007 wt%, Si: 0.19 wt%, Mn: 0.30 wt%, Cr: 16.4 wt%, S: 0.003 wt%, P: 0.029 wt%, N: 0.008 wt% and Ti: 0.17 wt%, The balance was made by melting SUS430LX having a substantially Fe composition and continuously cast in a continuous casting mold having a thickness of 200 mm and a width of 1260 mm. At this time, the continuous casting speed was 1.3 m / min.
Next, when the obtained continuous cast slab was charged at a surface temperature of 500 to 600 ° C., the slab was heated by variously changing the temperature of the heating furnace, and then extracted from the heating furnace. Thereafter, hot rolling was performed to a plate thickness of 4 mm by using a rough rolling mill having three stages and a continuous finish rolling mill having seven stages.
The obtained hot-rolled sheet is continuously annealed at 930 ° C, pickled and finished to a thickness of 0.7mm by cold rolling, and then subjected to continuous annealing at 910 ° C and pickling treatment to achieve 2B finish cold rolling. -Annealed plate.
[0014]
FIG. 2 shows the values obtained by measuring and averaging the r values of samples taken from the L, D, and C directions. As is apparent from the figure, it can be seen that it is effective to increase the average r value and improve the deep drawability by setting the slab heating temperature during hot rolling to 1200 ° C. or lower.
[0015]
Similarly, the average r value of cold-rolled / annealed plates manufactured by changing the casting speed during continuous casting from 0.7 m / min to 1.4 m / min and maintaining the heating temperature during hot rolling at a constant 1170 ° C was obtained. As shown in FIG.
As is clear from the figure, it can be seen that the average r value is remarkably improved when the casting speed during continuous casting is 1.2 m / min or more.
Therefore, in the present invention, the casting speed during continuous casting is 1.2 m / min or more, and the slab heating temperature during hot rolling is limited to 1200 ° C. or less.
The reason why the r value is improved by setting the casting speed to 1.2 m / min or more is that the cast structure is refined or the columnar crystal ratio is reduced, and the structure after hot rolling and annealing is made uniform. It seems that this is due to the fact that
[0016]
The ferritic stainless steel to be used in the present invention is not particularly limited, and any ferritic stainless steel is suitable as long as it contains 11.0 wt% or more of Cr. In addition, for elements such as Ti, Nb, V, Zr, Ta and W, which are added for the purpose of improving deep drawability and weldability, the content is { 4 × (C + N)} wt% or more and 0.5 wt% or less are necessary. This is because if the content is less than {4 × (C + N)} wt%, the effect of improving deep drawability and weldability is not sufficiently observed. On the other hand , if the content exceeds 0.5 wt%, the carbonitride produced This is because there is a disadvantage that it is easy to coarsen and toughness and pitting corrosion resistance are liable to occur.
[0017]
【Example】
Steel having the composition shown in Table 1 was melted in a converter, and after VOD degassing, continuous casting was performed using a mold having a short side of 200 mm and a long side of 1260 mm. The continuous cast slab thus obtained was charged into a heating furnace for hot rolling and heated to various temperatures shown in Table 2, followed by a rough rolling mill having three stages and a continuous finishing rolling mill having seven stages. Then, finish rolling was performed to obtain a hot rolled sheet having a thickness of 4 mm. The finish rolling temperature (FDT) at this time was 820 to 860 ° C. Some slabs have low FDT (750 ° C., 740 ° C.), which is conventionally considered to improve the deep drawability of cold-rolled / annealed plates. Next, the obtained hot-rolled sheet was subjected to recrystallization annealing, shot blasting and pickling, and then cold-rolled to a thickness of 0.7 mm. After recrystallization annealing and pickling, the surface finish was cold rolled 2D. -An annealed plate was produced. Table 2 shows the results obtained by examining (1) hot rolled-annealed-shot blasting and steel plate surface quality after pickling and (2) average r-value of cold-rolled / annealed plates. It is written together.
[0018]
[Table 1]
[0019]
[Table 2]
[0020]
As apparent from Table 2, when manufactured according to the present invention, a ferritic stainless steel excellent in surface quality and deep drawability could be obtained. On the other hand, when even one of the constituent requirements of the present invention is lacking, both cannot be satisfied at the same time. Conventionally, the low FDT, which is good in terms of deep drawability, has caused significant deterioration of the surface quality.
[0021]
【The invention's effect】
As described above, according to the present invention, in the production of ferritic stainless steel, (1) the casting speed during continuous casting, (2) the slab surface temperature when the slab is charged into the heating furnace after continuous casting, and ( 3) By optimizing the heating temperature at the time of hot rolling, ferritic stainless steel excellent in surface quality and deep drawability can be stably obtained using DHCR (CC-DR).
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of the slab heating furnace charging temperature and the slab heating temperature on the surface quality of annealed and pickled plates.
FIG. 2 is a graph showing the relationship between slab heating temperature and average r value.
FIG. 3 is a graph showing the relationship between casting speed and average r value in continuous casting.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25967696A JP3728828B2 (en) | 1996-09-30 | 1996-09-30 | Manufacturing method of ferritic stainless steel with excellent surface quality and deep drawability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25967696A JP3728828B2 (en) | 1996-09-30 | 1996-09-30 | Manufacturing method of ferritic stainless steel with excellent surface quality and deep drawability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10102142A JPH10102142A (en) | 1998-04-21 |
JP3728828B2 true JP3728828B2 (en) | 2005-12-21 |
Family
ID=17337366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25967696A Expired - Fee Related JP3728828B2 (en) | 1996-09-30 | 1996-09-30 | Manufacturing method of ferritic stainless steel with excellent surface quality and deep drawability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3728828B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015099459A1 (en) * | 2013-12-24 | 2015-07-02 | (주)포스코 | Ferritic stainless steel with improved formability and ridging resistance, and manufacturing method therefor |
KR101964318B1 (en) * | 2017-08-31 | 2019-04-01 | 주식회사포스코 | Ferritic stainless steel with improved heat dissipation and workability and method of manufacturing the same |
-
1996
- 1996-09-30 JP JP25967696A patent/JP3728828B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10102142A (en) | 1998-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07268461A (en) | Production of ferritic stainless steel strip reduced in inplane anisotropy | |
JPS59140333A (en) | Manufacture of cold rolled steel sheet for deep drawing with superior secondary workability and surface treatability | |
JP4752522B2 (en) | Manufacturing method of high strength cold-rolled steel sheet for deep drawing | |
JPH09111354A (en) | Production of ferritic stainless steel sheet | |
JP3728828B2 (en) | Manufacturing method of ferritic stainless steel with excellent surface quality and deep drawability | |
JP2001089815A (en) | Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance | |
JP2000087185A (en) | Hot rolled steel plate excellent in surface characteristic and scale adhesion, and its manufacture | |
JP2001098328A (en) | Method of producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance | |
JPS62199721A (en) | Production of steel sheet or strip of ferritic stainless steel having good workability | |
JPH07268485A (en) | Production of ferritic stainless steel strip excellent in workability, corrosion resistance, and surface characteristic | |
JP2001207244A (en) | Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method | |
JP3466298B2 (en) | Manufacturing method of cold rolled steel sheet with excellent workability | |
JP2001089814A (en) | Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance | |
JP2001098327A (en) | Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance | |
JP2001107149A (en) | Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance | |
JPH0257128B2 (en) | ||
JPH07173537A (en) | Production of austenitic stainless hot rolled steel strip | |
JP3975689B2 (en) | Slab, thin steel plate, and manufacturing method thereof | |
JP3804169B2 (en) | Method for producing ferritic stainless steel sheet with excellent ridging resistance | |
JP2000178694A (en) | Ferritic stainless steel excellent in surface property and workability and its production | |
JPH0257131B2 (en) | ||
JPH0814013B2 (en) | Copper-plated steel sheet with excellent weld crack resistance and its manufacturing method | |
CN117144256A (en) | Medium Cr ultra-pure ferrite stainless steel thick plate and production method thereof | |
JPH0320407A (en) | Method for preventing oxidation of grain boundary in high strength cold-rolled steel sheet | |
JPH0369967B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041012 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050308 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050428 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050721 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050913 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050926 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091014 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |