JPS6030067B2 - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS6030067B2
JPS6030067B2 JP55040234A JP4023480A JPS6030067B2 JP S6030067 B2 JPS6030067 B2 JP S6030067B2 JP 55040234 A JP55040234 A JP 55040234A JP 4023480 A JP4023480 A JP 4023480A JP S6030067 B2 JPS6030067 B2 JP S6030067B2
Authority
JP
Japan
Prior art keywords
electrolyte
gas
electrode
fuel cell
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55040234A
Other languages
Japanese (ja)
Other versions
JPS56138876A (en
Inventor
三司 上野
篤夫 宗内
謙二 村田
保 城上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP55040234A priority Critical patent/JPS6030067B2/en
Publication of JPS56138876A publication Critical patent/JPS56138876A/en
Publication of JPS6030067B2 publication Critical patent/JPS6030067B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 本発明は、双極性隔離板を改良した燃料電池に関する。[Detailed description of the invention] The present invention relates to fuel cells with improved bipolar separators.

従来、リン酸を電解質とする燃料電池において、溝加工
を施した双極性隔離板は、電池の電極に近接した部位に
燃料ガス及び酸化剤ガスを供給する為のガス供給通路を
構成する目的で使用されて来た。この双極性隔離板の上
記の他に具備すべき機能として以下のことが挙げられる
。燃料ガスと酸化剤ガスの拡散、透過を防止する為に繊
密度の高い材料を使用することが必要である。
Conventionally, in fuel cells that use phosphoric acid as an electrolyte, grooved bipolar separators are used to form gas supply passages for supplying fuel gas and oxidant gas to areas close to the electrodes of the cell. has been used. In addition to the above-mentioned functions, this bipolar separator should have the following functions. It is necessary to use a material with high densities to prevent diffusion and permeation of fuel gas and oxidant gas.

多数の単位電池を積層した電池体の構造を総持する構造
材料であるので機械的強度が十分でなければならない。
又、燃料極及び酸化剤極と接して、電極反応に伴う電流
通過の媒体となるので、電気導電性が高いことが必要と
される。電池作動時に発生する生成熱を効率よく除去す
る為に、冷却媒体(例えば空冷孔、放熱フィン、冷却材
)に熱を伝導させる為に、高熱伝導度が必要である。以
上のように、双極性隔離板は反応ガス供給性、繊密度、
機械的強度、電気導電性、熱伝導性、その他耐熱性、耐
薬品性、及び製造コストの要因も加味して総合的観点よ
り選定される必要がある。このような特性を有する材料
として従来たとえば特公昭50一11355号明細書に
示されるように焼結グラフアィト、又はグラフアィトに
熱硬化性のフェノール樹脂をバインダーとして加えた材
料が使用されている。
Since it is a structural material that supports the overall structure of a battery body made up of a number of stacked unit cells, it must have sufficient mechanical strength.
In addition, since it is in contact with the fuel electrode and the oxidizer electrode and serves as a medium for passing current associated with electrode reactions, it is required to have high electrical conductivity. In order to efficiently remove the generated heat generated during battery operation, high thermal conductivity is required to conduct heat to a cooling medium (eg, air cooling holes, radiating fins, coolant). As mentioned above, the bipolar separator has a high reaction gas supply property, fineness,
It is necessary to select from a comprehensive viewpoint, taking into consideration factors such as mechanical strength, electrical conductivity, thermal conductivity, other heat resistance, chemical resistance, and manufacturing cost. As a material having such characteristics, sintered graphite or a material prepared by adding a thermosetting phenol resin to graphite as a binder has been used, as disclosed in Japanese Patent Publication No. 50-111355.

これらは、高級密度、高強度、電気伝導度であることが
知られており、燃料電池用双極性隔離板の材料として用
いられている。
These are known to have high density, high strength, and electrical conductivity, and are used as materials for bipolar separators for fuel cells.

このような双極性隔離板を用いた燃料電池は、例えば、
第1図に示すような単位電池が図示しない容器内に積層
されて構成されている。第1図で、1は燃料極触媒層、
2はその触媒層を担持する支持体で例えば炭素繊維を抄
紙した炭素繊維紙が用いられている。
A fuel cell using such a bipolar separator is, for example,
Unit batteries as shown in FIG. 1 are stacked in a container (not shown). In Fig. 1, 1 is a fuel electrode catalyst layer;
Reference numeral 2 denotes a support supporting the catalyst layer, and carbon fiber paper made from carbon fibers is used, for example.

3は空気触媒層、4はその支持体で例えば2と同様の炭
素繊維が用いられている。
3 is an air catalyst layer, and 4 is its support, for example, the same carbon fiber as in 2 is used.

5は電解液保持層で、耐リン酸、耐熱性、水素イオン導
電性の高い高分子不織布又は無機不織布より構成されて
いる。
Reference numeral 5 denotes an electrolyte holding layer, which is made of a polymeric nonwoven fabric or an inorganic nonwoven fabric with high phosphoric acid resistance, heat resistance, and hydrogen ion conductivity.

6は双極性隔離板で、両面に図面しない各供給源から供
給される燃料ガスと空気等の酸化剤ガスを供給する為の
溝7,8を、互いに直交方向に設けたもので隣接する各
単位電池は、これを介して積層される。
Reference numeral 6 denotes a bipolar separator plate, which has grooves 7 and 8 perpendicular to each other for supplying fuel gas and oxidizer gas such as air supplied from respective supply sources (not shown) on both sides. Unit batteries are stacked via this.

上記のような単位電池が積層されて構成される燃料電池
を高濃度のリン酸を使用し、15000〜190℃で長
期間作動させると、燃料電池の作動特性は徐々に低下し
てゆくことが知られている。例えば、第2図にその作動
特性の一例を示す。
When a fuel cell constructed by stacking unit cells as described above is operated for a long period of time at 15,000 to 190°C using highly concentrated phosphoric acid, the operating characteristics of the fuel cell may gradually deteriorate. Are known. For example, FIG. 2 shows an example of its operating characteristics.

図は、単位面積当り150のA′ので放電を行った時の
単位電池の電圧の変化を比較例としして点線で示してあ
る。図より明らかな如く、単位電池の電圧は、時間の経
過につれて減少している。因みに100畑時間当りの電
圧減少は約30のVに相当する。従来、このような燃料
電池の出力低下の主要な原因としては、【1} 触媒粒
子の魂集、再結晶化による触媒の有効反応面積の減少■
電極液又は、反応生成水によるガス電極反応に活性な
三相帯の濡れによる減少‘3} 電極、電解液保持層を
通しての燃料ガス、酸化剤ガスの相互拡散などが挙げら
れる。
In the figure, the change in voltage of a unit cell when discharging at 150 A' per unit area is shown by a dotted line as a comparative example. As is clear from the figure, the voltage of the unit battery decreases over time. Incidentally, the voltage decrease per 100 field hours corresponds to about 30 V. Conventionally, the main causes of such a decrease in fuel cell output are: [1] Decrease in the effective reaction area of the catalyst due to agglomeration of catalyst particles and recrystallization.
Reduction due to wetting of the three-phase zone active in the gas electrode reaction by the electrode solution or water produced by the reaction '3] Mutual diffusion of fuel gas and oxidant gas through the electrode and the electrolyte holding layer.

従来、燃料電池の高性能化、長寿命への試みは、主に、
上記の障害への対策であり、これまでにもある程度の成
果を得ている。
Traditionally, attempts to improve the performance and extend the lifespan of fuel cells have mainly focused on
This is a countermeasure to the above-mentioned obstacles, and has achieved some results so far.

一方、本発明者らは、双極性隔離板が電解液に濡れ、そ
の結果引き起こされる種々の弊害が、電池性能低下、寿
命低下の主要な一因であることを見し、出した。
On the other hand, the present inventors have discovered that the bipolar separator gets wet with the electrolyte and various adverse effects caused as a result are a major cause of deterioration in battery performance and life span.

通常、電解液は電解液保持層から、電極を通して惨出し
、徐々に双極性隔離板の溝部に溜まる。このようにして
溜った電解液は、反応ガスの流れを妨げたり、閉塞する
ことなどにより、電極への反応ガスの供給不足をもたら
して、電池性能を低下せしめる。又、双極性隔離板の露
解液に濡れた部分が、長期間、高温度、高濃度のリン酸
に曝されている間に溶出したり膨潤したりすることによ
り電極触媒が被毒したり、双極性隔離板と電極あるいは
シール部との密着性が不良となり、反応ガスの漏れや、
反応ガス相互の拡散などの現象が生じ、徐々に電池性能
が低下する。本発明者らは、このような弊害を防止する
ために、双極性隔離板に溌水処理を施すことにより、電
解液による濡れを防止出来ることを見し、出した。本発
明によれば、電解液に対する溌水剤を高級密度の双極性
隔離板の表面に施すことにより、鯵出した電解液は双極
性隔離板の面で広がったり、濡れたりすることなく水玉
状となる。
Normally, the electrolyte drains from the electrolyte retaining layer through the electrodes and gradually collects in the grooves of the bipolar separator. The electrolyte that accumulates in this way obstructs or blocks the flow of the reactive gas, resulting in insufficient supply of the reactive gas to the electrodes and deteriorating battery performance. In addition, the electrode catalyst may be poisoned if the part of the bipolar separator that is wet with the decomposition solution dissolves or swells while being exposed to high temperature and high concentration phosphoric acid for a long period of time. , the adhesion between the bipolar separator and the electrode or seal may be poor, resulting in leakage of reaction gas or
Phenomena such as mutual diffusion of reactant gases occur, and battery performance gradually deteriorates. In order to prevent such adverse effects, the present inventors have discovered that wetting by the electrolyte can be prevented by subjecting the bipolar separator to water repellent treatment. According to the present invention, by applying a water repellent agent for the electrolytic solution to the surface of the high-density bipolar separator, the electrolyte that has been drained out does not spread or get wet on the surface of the bipolar separator, but instead forms water beads. becomes.

このような水玉状となった電解液は、反応ガス流によっ
て容易に吹き飛ばされる。それ故、反応ガスの流れが妨
げられたり、閉塞されることはない。又、双極性隔離板
は高電気伝導度を保持したままで電解液による溶出、膨
潤、も生じないので、長期に亘つて安定な電池性能を得
ることが出釆る。
Such a droplet-shaped electrolyte is easily blown away by the reaction gas flow. Therefore, the flow of reactant gas is not obstructed or blocked. In addition, the bipolar separator maintains high electrical conductivity and does not elute or swell due to electrolyte, making it possible to obtain stable battery performance over a long period of time.

次に本発明の一実施例を第3図により説明する。Next, one embodiment of the present invention will be explained with reference to FIG.

図は本発明の構成の要部である双極性隔離板16の一部
を示した断面図で、両表面にガス通路を形成する溝17
,18が設けられており、全表面には電解液に対する溌
水性被覆20を有する。
The figure is a sectional view showing a part of the bipolar separator 16, which is the main part of the structure of the present invention, and shows grooves 17 forming gas passages on both surfaces.
, 18 are provided, and the entire surface has a water-repellent coating 20 against the electrolyte.

被覆2川ま作動温度における熱的・化学的に安定な材質
から選ばれる。上記双極性隔離板16は下記の過程で形
成される。双極性隔離板の材料として、グラフアィト8
0%、フェノール樹脂20%、比重1.85の成型材料
を用いた。隔離板の大きさは30伽x30弧、厚さ6柵
、両面に凸の幅2柳、凹の幅2肋、深さ2肌の溝を成型
あるいは切削加工により設けた。この双極性隔離板を6
wt%のフツ化エチレンプロピレン溶液に2分間浸潰し
、引き上げ、空気乾燥後、窒素雰囲気中で300℃にて
10分間焼成し溌水性を有する被覆を表面に形成した。
なお双極性隔離板に形成された溌水性被覆は稀釈した6
wt%のフツ化エチレンプロピレン溶液を使用している
為、粒子が繊密に配置された被覆でなく、粒子が点在し
て形成されたもので、電解液に対して充分な溌水性を有
するとともに、炭素繊維紙でなる電極との接触部分では
充分な導電性を有する。又、燃料極及び空気極として、
活性炭に白金を添加したものを炭素繊維紙に塗布後焼成
して、第1図に示したように、双極性隔離板を介してI
N圏の単位電池を積層した。
The coating material is selected from materials that are thermally and chemically stable at the operating temperature. The bipolar separator 16 is formed by the following process. Graphite 8 as a material for bipolar separators
0%, phenol resin 20%, and a specific gravity of 1.85. The size of the separator is 30 x 30 arcs, 6 fences thick, 2 convex ribs in width, 2 concave ribs in width, and 2 grooves in depth on both sides by molding or cutting. This bipolar separator
It was immersed in a wt% fluorinated ethylene propylene solution for 2 minutes, pulled up, air-dried, and then baked in a nitrogen atmosphere at 300°C for 10 minutes to form a water-repellent coating on the surface.
The water-repellent coating formed on the bipolar separator was diluted with 6
Since a wt% fluorinated ethylene propylene solution is used, the coating is not a densely arranged coating, but is formed by scattered particles, and has sufficient water repellency to the electrolyte. At the same time, the contact portion with the electrode made of carbon fiber paper has sufficient conductivity. Also, as a fuel electrode and air electrode,
Activated carbon with platinum added is coated on carbon fiber paper and then fired, and as shown in FIG.
N area unit batteries were stacked.

燃料として水素ガスを酸化剤ガスとして、空気を使用し
95%のリン酸電解液を、フェノール樹脂不織布より成
る電解液保持層に合浸した。
A 95% phosphoric acid electrolyte was co-immersed into an electrolyte holding layer made of a phenol resin non-woven fabric using hydrogen gas as a fuel and air as an oxidant gas.

このように構成された本発明の燃料電池を、温度170
q○、単位面積当り150mAで長期に亘つて放電した
際の単位電池当りの電圧の変化を第2図に実線で示す。
The fuel cell of the present invention constructed in this manner was heated to a temperature of 170°C.
q○, the change in voltage per unit cell when discharged at 150 mA per unit area over a long period of time is shown by a solid line in FIG.

なお比較例として点線で示した電圧の変化は前記の通り
双極性隔離板に膝水処理を施さない場合の例である。図
より明らかな如く、溌水処理を施さない燃料電池では1
00畑時間当りの電圧降下が約30mVであるのに対し
て、本発明の燃料電池では10餌時間当り15肌Vの電
圧降下であり、本発明が電池性能低下の抑制に有効であ
ることを示している。
As a comparative example, the voltage change shown by the dotted line is an example in which the bipolar separator was not subjected to knee water treatment as described above. As is clear from the figure, in a fuel cell without water repellent treatment, 1
The voltage drop per 10 feed hours is approximately 30 mV, whereas the voltage drop in the fuel cell of the present invention is 15 skin V per 10 feed hours, demonstrating that the present invention is effective in suppressing the deterioration of battery performance. It shows.

又、次に示す表に同様な条件で並行して試験を行った燃
料電池の100餌時間、200加持間、300脚時間経
過後に双極性隔離板の分離調査を行った際の観察結果を
示す。
In addition, the following table shows the observation results when the bipolar separator was separated and investigated after 100 feeding hours, 200 loading hours, and 300 leg hours of the fuel cell, which was tested in parallel under the same conditions. .

なお表中の各符号は −:変化なし 十:わずかに認められる 十十:明らかに認められる 十十十:十十より程度のひどいもの をそれぞれ示すものである。Each code in the table is -: No change 10: Slightly recognized Ten: clearly recognized 110: something worse than 10 are shown respectively.

この表より明らかな如く、比較例で示した燃料電池では
時間の経過につれて、惨出した電解液によるガス流通溝
の閉塞、溝部の溶出、膨潤及び密閉不良等の障害が生じ
てくる。
As is clear from this table, in the fuel cell shown in the comparative example, as time passes, problems such as clogging of the gas flow grooves due to the electrolyte spilled out, elution of the grooves, swelling, and poor sealing occur.

これに対して、本発明に係る双極性隔離板では、上記の
障害は殆んど防止され、長期間に亘つて安定であること
を示している。又、上記実施例では、溌水剤として、フ
ッ化エチレンプロピレン樹脂を用いたが、他に4フッ化
エチレン樹脂、三フッ化塩化エチレン樹脂、フッ化ビニ
リデン、6フッ化プロピレン樹脂など、リン酸に対して
表面張力が大きく、電池作動温度が安定な樹脂を使用す
ることが出来る。
In contrast, in the bipolar separator according to the present invention, the above-mentioned failures are almost prevented, indicating that the bipolar separator is stable over a long period of time. In the above examples, fluorinated ethylene propylene resin was used as the water repellent, but other phosphoric acid resins such as tetrafluorinated ethylene resin, trifluorochlorinated ethylene resin, vinylidene fluoride, hexafluorinated propylene resin, etc. It is possible to use a resin that has a high surface tension and a stable battery operating temperature.

以上のように、双極性隔離板に電解液たとえばリン酸溶
液に対して、表面張力の大きい樹脂を被覆することによ
り惨出した電解液による反応ガス流路の閉塞、溝部の熔
出、膨潤、及び密閉不良等の障害を防止して電池性能を
長期に亘つて、安定化させることが出来る。
As described above, when a bipolar separator is coated with a resin having a high surface tension for an electrolytic solution such as a phosphoric acid solution, the reaction gas flow path is blocked by the electrolytic solution, melting of the groove, swelling, etc. Moreover, it is possible to prevent problems such as poor sealing and to stabilize battery performance over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料電池の構成を一部を切欠いて示す斜視図、
第2図は燃料電池の電圧変化を示す特性図、第3図は本
発明の要部を構成する双極性隔離板の一部を示す断面図
である。 16・・・・・・双極性隔離板、20・・・・・・被覆
。 第1図第2図 第3図
FIG. 1 is a partially cutaway perspective view showing the structure of a fuel cell;
FIG. 2 is a characteristic diagram showing the voltage change of the fuel cell, and FIG. 3 is a sectional view showing a part of the bipolar separator that constitutes the main part of the present invention. 16...Bipolar separator, 20...Coating. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 燃料極と酸化剤極との間に電解液保持層を設けて成
る単位電池と、この単位電池を前記各極に燃料ガス及び
酸化剤ガスを供給する通路を表面に形成した高緻密度、
高電気伝導度を有する双極性隔離板を介して複数個積層
して構成された燃料電池において、前記双極性隔離板の
少なくともガス供給通路の表面に前記電解液に対して撥
水性を有する被覆を形成したことを特徴とする燃料電池
1. A unit cell comprising an electrolyte retaining layer between a fuel electrode and an oxidizer electrode, and a high-density unit cell in which a passageway for supplying fuel gas and oxidizer gas to each electrode is formed on the surface of the unit cell;
In a fuel cell configured by stacking a plurality of bipolar separators with high electrical conductivity interposed therebetween, at least the surface of the gas supply passage of the bipolar separators is provided with a coating that is water repellent to the electrolyte. A fuel cell characterized by forming.
JP55040234A 1980-03-31 1980-03-31 Fuel cell Expired JPS6030067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55040234A JPS6030067B2 (en) 1980-03-31 1980-03-31 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55040234A JPS6030067B2 (en) 1980-03-31 1980-03-31 Fuel cell

Publications (2)

Publication Number Publication Date
JPS56138876A JPS56138876A (en) 1981-10-29
JPS6030067B2 true JPS6030067B2 (en) 1985-07-13

Family

ID=12575026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55040234A Expired JPS6030067B2 (en) 1980-03-31 1980-03-31 Fuel cell

Country Status (1)

Country Link
JP (1) JPS6030067B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956365A (en) * 1982-09-24 1984-03-31 Mitsubishi Electric Corp Fuel cell
JPS59146168A (en) * 1983-02-08 1984-08-21 Mitsubishi Electric Corp Layer built type fuel cell
JPS628458A (en) * 1985-07-05 1987-01-16 Hitachi Ltd Fuel cell
JP4656683B2 (en) * 1999-09-02 2011-03-23 パナソニック株式会社 Polymer electrolyte fuel cell
US6864007B1 (en) 1999-10-08 2005-03-08 Hybrid Power Generation Systems, Llc Corrosion resistant coated fuel cell plate with graphite protective barrier and method of making the same
JP3706784B2 (en) * 2000-01-11 2005-10-19 日本ピラー工業株式会社 Manufacturing method of fuel cell separator
JP4068344B2 (en) * 2001-12-27 2008-03-26 本田技研工業株式会社 Fuel cell and manufacturing method thereof

Also Published As

Publication number Publication date
JPS56138876A (en) 1981-10-29

Similar Documents

Publication Publication Date Title
US6756149B2 (en) Electrochemical fuel cell with non-uniform fluid flow design
JP2003505851A (en) Direct antifreeze cooled fuel cell
JPH0696782A (en) Internal reforming type fuel cell device and its operating method
KR20210058269A (en) Electrode for fuel cell, membrane electrode assembly for fuel cell comprising the same and prefaration method thereof
CA1197555A (en) Electrochemical power generator
JPS6030067B2 (en) Fuel cell
CA2693522C (en) Fuel cell with non-uniform catalyst
JP2000123848A (en) Fuel cell
EP0235948B1 (en) Fuel cell
JP3454837B2 (en) How to install a fuel cell
CA1182520A (en) Electrochemical power generator
JPH07201346A (en) Fuel cell and its solid high molecular electrolytic film and electrode
JP4850844B2 (en) Fuel cell with electrolyte condensation zone
EP0262961B1 (en) Fuel cell with electrolyte matrix assembly
JP2006147506A (en) Fuel cell stack
US8318362B2 (en) Fuel cell with electrolyte condensation zone
JP3838403B2 (en) Phosphoric acid fuel cell
JP2892679B2 (en) Electrodes for fuel cells
JPS5927466A (en) Fuel cell
JP2633522B2 (en) Fuel cell
JP2002270197A (en) High molecular electrolyte type fuel cull
JPH08287924A (en) Solid high polymer fuel cell
KR0123735B1 (en) Fuel cell with phosphate electrolyte
JP2003331857A (en) Method for manufacturing separator for fuel cell
JPH08130024A (en) Fuel cell