JPS6029867B2 - Solar heat selective absorption material and its manufacturing method - Google Patents

Solar heat selective absorption material and its manufacturing method

Info

Publication number
JPS6029867B2
JPS6029867B2 JP57173718A JP17371882A JPS6029867B2 JP S6029867 B2 JPS6029867 B2 JP S6029867B2 JP 57173718 A JP57173718 A JP 57173718A JP 17371882 A JP17371882 A JP 17371882A JP S6029867 B2 JPS6029867 B2 JP S6029867B2
Authority
JP
Japan
Prior art keywords
film
solar heat
stage
treatment
selective absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57173718A
Other languages
Japanese (ja)
Other versions
JPS5963456A (en
Inventor
隆雄 小橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP57173718A priority Critical patent/JPS6029867B2/en
Publication of JPS5963456A publication Critical patent/JPS5963456A/en
Publication of JPS6029867B2 publication Critical patent/JPS6029867B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/25Coatings made of metallic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Description

【発明の詳細な説明】 この発明は太陽熱選択吸収材、特にアルミニウムを基体
としてその表面に電解着色法による太陽熱選択吸収膜が
形成された太陽熱選択吸収材、及びその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a selective solar heat absorbing material, and particularly to a selective solar heat absorbing material having an aluminum base material on which a selective solar heat absorbing film is formed by electrolytic coloring, and a method for producing the same.

なお、この明細書において「アルミニウム」の語は、ア
ルミニウム基合金を含む意味において用いるものとする
In this specification, the term "aluminum" is used to include aluminum-based alloys.

アルミニウム材の表面に選択吸収特性及び耐久性の良好
な選択吸収膜を形成する最も一般的な方法として、電解
着色法が知られており、近時多く用いられている。
Electrolytic coloring is known as the most common method for forming a selective absorption film with good selective absorption characteristics and durability on the surface of an aluminum material, and has been widely used in recent years.

この方法は、アルミニウム材を硫酸、リン酸、シュウ酸
等の酸性浴中で陽極酸化処理することによりその表面に
多孔性の陽極酸化皮膜を生成させ、次いでこれをニッケ
ル塩、コバルト塩等の金属塩を含む水溶液中で電解処理
して、前記酸化皮膜の微細孔中に金属塩を還元析出させ
て黒色化し、所期する選択吸収膜を得るものである。と
ころで、選択吸収膜の性能の評価は、一般的に太陽光波
長範囲における吸収率Qと長波長領域における放射率ご
との相対的関係で評価され、Q/ごが可久的大でかつQ
が1に近いほど良好なものとされる。
This method involves anodizing aluminum material in an acidic bath such as sulfuric acid, phosphoric acid, or oxalic acid to form a porous anodic oxide film on its surface, which is then coated with metal such as nickel salt or cobalt salt. Electrolytic treatment is performed in an aqueous solution containing a salt to reduce and precipitate the metal salt in the fine pores of the oxide film to turn it black, thereby obtaining the desired selective absorption film. By the way, the performance of a selective absorption film is generally evaluated based on the relative relationship between the absorption rate Q in the sunlight wavelength range and the emissivity in the long wavelength range.
The closer to 1, the better the quality.

ここに、吸収率Qを向上するためには、皮膜の着色性を
良好なものとすることが必要であり、一方において放射
率ごを低くするためには皮膜の厚さを可久的薄いものと
することが必要である。ところが、上記電解着色法にお
いて、着色性の良好な皮膜を得るために、陽極酸化皮膜
の膜厚を厚いものとして析出金属量を増大せしめると、
吸収率Qとともに放射率ども増大する傾向を示す。そこ
で逆に陽極酸化皮膜の膜厚を薄くすると、放射率ごは小
さくなるが該皮膜への金属塩の還元析出反応が生りこく
し、ものとなり、着色性が悪化して吸収率Qの良好なも
のが得られないというジレンマがある。このように電解
着色法による太陽熱選択吸収膜の選択吸収性能は、陽極
酸化処理による皮膜構造に大きな影響を受けるものであ
ることに鑑み、この発明は、該皮膜構造を、■できるだ
け薄い皮膜厚で金属が正常に還元析出し、かつ■できる
だけ少ない析出金属量で吸収率以が高くなるように改善
することを意図してなされたものである。
Here, in order to improve the absorption rate Q, it is necessary to make the film good in colorability, and on the other hand, in order to lower the emissivity, it is necessary to make the film thickness permanently thin. It is necessary to do so. However, in the above electrolytic coloring method, in order to obtain a film with good colorability, if the thickness of the anodic oxide film is increased to increase the amount of precipitated metal,
The emissivity tends to increase with the absorption rate Q. On the other hand, if the thickness of the anodic oxide film is made thinner, the emissivity decreases, but the reduction and precipitation reaction of metal salts on the film increases, resulting in poor coloration and poor absorption Q. There is a dilemma of not being able to get something. In view of the fact that the selective absorption performance of solar heat selective absorption films made by electrolytic coloring is greatly influenced by the film structure produced by anodizing treatment, this invention aims to: This was done with the intention of improving the normal reduction and precipitation of metals and (2) increasing the absorption rate with as little amount of precipitated metal as possible.

本発明者は、上記の技術課題の克服を目的として鋭意研
究した結果、陽極酸化皮膜を生成せしめる1次電解処理
に電流回復法を用いることにより、上記■,■の要請を
満たした理想的な皮膜生成を行いうるという知見を得、
この発明を完成した。而して、この発明の1つは上記陽
極酸化皮膜構造の改善された太陽熱選択吸収材を提供す
るものであって、アルミニウム材の表面に陽極酸化皮膜
と、その微細孔内に電気化学的に析出充填された金属粒
子とからなる太陽熱選択吸収膜が形成されたものにおい
て、前記陽極酸化皮膜が、微細孔の分布配置の粗な上層
皮膜と同じくその密な下層皮膜との二層に形成されてな
ることを特徴とするものである。
As a result of intensive research aimed at overcoming the above technical problems, the present inventor has developed an ideal solution that satisfies the above requirements Obtained the knowledge that it is possible to form a film,
completed this invention. One aspect of the present invention is to provide a selective solar heat absorbing material having the above-mentioned anodic oxide film structure, which includes an anodic oxide film on the surface of an aluminum material and an electrochemical absorber in the micropores of the anodic oxide film. In a solar heat selective absorption film formed with precipitated and filled metal particles, the anodic oxide film is formed in two layers: an upper layer film with a coarse distribution of micropores and a similarly dense lower layer film. It is characterized by the fact that

また、この発明の他の一つは、上記の如き太陽熱選択吸
収材の製造方法に係るものであって、アルミニウム材を
陽極酸化処理したのち金属塩を含む水溶液中で電解処理
して太陽熱選択吸収膜を形成する太陽熱選択吸収材の製
造方法において、前記陽極酸化処理を第1および第2の
2段階に分けて行うものとし、かつその第2段目の処理
時の化成電圧を第1段目の処理時の化成電圧より急激に
降下せしめて行うことを特徴するものである。
Another aspect of the present invention relates to a method for producing a selective solar heat absorbing material as described above, which selectively absorbs solar heat by anodizing an aluminum material and then electrolytically treating it in an aqueous solution containing a metal salt. In the method for manufacturing a solar heat selective absorber that forms a film, the anodizing treatment is performed in two stages, a first and a second stage, and the anodizing voltage during the second stage treatment is equal to that of the first stage. This method is characterized in that the chemical formation voltage is lowered more rapidly than the chemical formation voltage during the treatment.

このように化成電圧を第1段目と第2段目との間で急激
に下げて行う2段階の陽極酸化処理により、アルミニウ
ム材表面に、前記のような相互に皮膜組織を異にする上
下2層からなる陽極酸化皮膜が生成され、この皮膜構造
によって所期する吸収率ばの増大、放射率どの低減の効
果を実現しうるものである。陽極酸化処理を行う処理格
の種類は第1段目及び第2段目ともに特に限定されるも
のではなく、30〜300夕/そのリン酸、硫酸、シュ
ウ酸等の水溶液を使用できる。
Through this two-stage anodizing process, in which the anodizing voltage is rapidly lowered between the first stage and the second stage, the upper and lower layers with different film structures are formed on the aluminum material surface. A two-layer anodic oxide film is produced, and this film structure can achieve the desired effect of increasing absorption rate and reducing emissivity. The type of treatment stage in which the anodizing treatment is performed is not particularly limited in both the first stage and the second stage, and an aqueous solution of phosphoric acid, sulfuric acid, oxalic acid, etc. can be used for 30 to 300 minutes.

また、その処理俗の液温は15〜35qo程度にするの
が望ましい。陽極酸化処理における第1段目の電解処理
は、3〜30Vの電圧を印加して、化成時間2〜10分
程度で行うのが望ましい。
Further, it is desirable that the temperature of the liquid for the treatment is about 15 to 35 qo. The first stage electrolytic treatment in the anodizing treatment is preferably performed by applying a voltage of 3 to 30 V and for a formation time of about 2 to 10 minutes.

これらがそれぞれ3V未満、2分未満であるときは、金
属の還元析出反応の良好な皮膜を得ることが難かしい。
逆に電圧が30Vを超え、化成時間が10分を超えると
きは、上層皮膜の厚さが厚くなって放射率どの増大を招
く。上記第1段目の処理後に行う第2段目の電解処理は
、第1段目の化成電圧から急激に電圧を降下させて行う
ものであり、これによって電流回復現象、即ち、第1図
に示すように電流が即座には流通せず、数秒〜数分経過
後に徐々に流れ始め、さらにいまらくして定常状態に達
する現象が起こり、第1段目の処理によって生成された
皮膜の下に、更に微細孔の密度の大な下層皮膜を生成さ
せるものである。
When these are less than 3 V and less than 2 minutes, respectively, it is difficult to obtain a film with good metal reduction and precipitation reaction.
On the other hand, when the voltage exceeds 30 V and the formation time exceeds 10 minutes, the thickness of the upper layer film increases, leading to an increase in emissivity. The second electrolytic treatment performed after the first stage treatment is performed by rapidly dropping the voltage from the first stage formation voltage, and this causes the current recovery phenomenon, that is, as shown in Figure 1. As shown, the current does not flow immediately, but begins to flow gradually after several seconds to several minutes, and reaches a steady state even more slowly. , which also produces a lower layer film with a higher density of micropores.

ここに、この2段目の化成電圧E2は1〜20Vの範囲
で、しかも第1段目の化成電圧E,に対する電圧降下比
(E2/E,)が2/3以下、・特に1/3〜2′3の
範囲の値になるように設定するのが望ましい。この電圧
降下比が、1′3より小さいと、吸収率Qが低くなり、
また逆に2/3より高くなるとこの発明の所期する効果
の実現に乏しいものとなる。また、第2段目の電解処理
の化成時間は、5〜20分程度とするのが望ましい。選
択吸収膜の性能には、この第2段目の化成時間の、特に
電流回復後の化成時間が大きな影響を与えるものであり
、これが2分以内では吸収率Qが低くなり、また10分
以上になると皮膜が厚くなって放射率どの増大する結果
を招来する。上記のような2段階で行う陽極酸化処理に
より、第2図に示すようにアルミニウム材1の表面には
、第1段目の電解処理によって化成された微細孔の比較
的粗な分布の上層皮膜2aの下に、第2段目の電解処理
によって微細孔の配置分布の相対的に密な下層皮膜2b
が生成され、これらの2層構造からなる陽極酸化皮膜2
が得られる。
Here, the second stage formation voltage E2 is in the range of 1 to 20 V, and the voltage drop ratio (E2/E,) with respect to the first stage formation voltage E, is 2/3 or less, especially 1/3. It is desirable to set the value to a value in the range of ~2'3. If this voltage drop ratio is smaller than 1'3, the absorption rate Q will be low,
On the other hand, if it is higher than 2/3, it will be difficult to achieve the desired effect of the present invention. Further, the formation time of the second stage electrolytic treatment is preferably about 5 to 20 minutes. The performance of the selective absorption membrane is greatly influenced by the formation time of this second stage, especially the formation time after current recovery.If this is less than 2 minutes, the absorption rate Q will be low, and if it is more than 10 minutes, the formation time will be significantly affected. When this happens, the film becomes thicker, resulting in an increase in emissivity. As a result of the two-stage anodic oxidation treatment described above, as shown in Figure 2, the surface of the aluminum material 1 is coated with an upper layer film with a relatively coarse distribution of fine pores chemically formed in the first stage electrolytic treatment. Underneath 2a, a lower layer film 2b with a relatively dense distribution of micropores is formed by the second-stage electrolytic treatment.
is generated, and an anodic oxide film 2 consisting of these two layers is formed.
is obtained.

そして、この皮膜2の2層構造により、放射率どを高め
ることなく吸収率Qを増大した理想的な太陽熱選択吸収
膜の形成が可能となる。この理由を第3図に示すような
従来の単一層構造の陽極酸化皮膜3をもった選択吸収膜
と対比して考察すると、この従来品の場合、皮膜3に入
射した太陽光Aが皮膜表面と、皮膜・基材界面とで反射
して干渉し合うにすぎないのに対し、この発明による第
2図に示すような2層皮膜の場合には、各層2a,2b
の皮膜構造が異なるため、おのずと各層の光学特性に差
異が生じ、上層皮膜2aで吸収されなかった光が下層皮
膜2bでは吸収される機会が生じ、結果として全体とし
ての太陽光Aの吸収率Qが高まるものと考えられる。な
お、上記の陽極酸化処理後に行う金属塩を含む水溶液中
での着色電解処理条件は、この発明において何ら限定さ
れるものではなく、従来の常法処理を採用すれば良い。
The two-layer structure of the film 2 makes it possible to form an ideal solar heat selective absorption film that increases the absorption rate Q without increasing the emissivity. When considering the reason for this in comparison with a conventional selective absorption film having a single-layer structure anodic oxide film 3 as shown in Fig. 3, in the case of this conventional product, sunlight A incident on the film 3 is In contrast, in the case of a two-layer film as shown in FIG. 2 according to the present invention, each layer 2a, 2b
Since the film structures of the layers are different, differences naturally arise in the optical properties of each layer, and there is an opportunity for light that is not absorbed by the upper layer film 2a to be absorbed by the lower layer film 2b, resulting in an overall absorption rate Q of sunlight A. is expected to increase. Note that the conditions of the electrolytic coloring treatment in an aqueous solution containing a metal salt performed after the above-mentioned anodic oxidation treatment are not limited in any way in the present invention, and any conventional conventional treatment may be employed.

たとえばニッケル塩、コバルト塩、銅塩、錫塩等の金属
塩を含む水溶液中で、電圧10〜3帆、電流密度o.5
〜2.弘/d力程度の直流、交流またはそれらに準ずる
波形等の電流を印加して電解処理することにより、前記
陽極酸化皮膜の微細孔に金属粒子を析出充填せしめて所
期する皮膜の黒色化を達成する。この発明は上述の次第
で、アルミニウム材表面の選択吸収膜が、比較的薄い腰
厚で、従って放射率ごを増大せしめることなく、しかも
少ない金属析出量のもとで高い吸収率Qを示すものとな
るため、太陽熱の選択吸収特性において卓越した性能を
有する太陽熱選択吸収材を得ることができるものである
For example, in an aqueous solution containing metal salts such as nickel salts, cobalt salts, copper salts, tin salts, etc., at a voltage of 10 to 3 volts and a current density of o. 5
~2. Electrolytic treatment is performed by applying a current such as direct current, alternating current, or a waveform similar to the above, to precipitate and fill the fine pores of the anodic oxide film, thereby achieving the desired blackening of the film. achieve. In accordance with the above, the present invention has a selective absorption film on the surface of an aluminum material, which has a relatively thin thickness, does not increase the emissivity, and exhibits a high absorption rate Q with a small amount of metal precipitation. Therefore, it is possible to obtain a solar heat selective absorption material that has excellent performance in terms of solar heat selective absorption characteristics.

次に、この発明の具体的な実施例を比較例との対照にお
いて示す。
Next, specific examples of the present invention will be shown in comparison with comparative examples.

実施例 JIS・AI050の純度を有する厚さ1.5側のアル
ミニウム材を用い、通常の前処理を施したのち、リン酸
50夕/そを含む液温200Cの電解液中で、それぞれ
第1表に示す電解条件により、第1段目と第2段目の2
段階に分けて直流電解による陽極酸化処理を施した。
Example: Aluminum materials with a thickness of 1.5 and having a purity of JIS AI 050 were used, and after being subjected to the usual pretreatment, each of the first According to the electrolytic conditions shown in the table, two
Anodization treatment using direct current electrolysis was performed in stages.

これによってアルミニウム材の表面に形成された陽極酸
化皮膜は、微細孔の粗な上層皮膜と密な下層皮膜との二
層構造を有するものであった。そこで次いでこの陽極酸
化処理後のアルミニウム材を、硫酸ニッケル30夕/そ
及びホゥ酸30夕/Zを含む液温3000の水溶液中で
それぞれ第1表に示す電解条件で交流により着色電解処
理を施し、アルミニウム材の表面に所期する太陽熱エネ
ルギーの選択吸収膜を有する太陽熱選択吸収材を得た。
比較例 上記実施例と同じアルミニウム材を用い、かつ同じ電解
液を用いて、それぞれ第1表に示す電解条件により、単
一工程のみからなる陽極酸化処理と、次いで交流による
着色電解処理とを順次施してアルミニウム材の表面に太
陽熱エネルギーの選択吸収膜を形成した。
The anodic oxide film thus formed on the surface of the aluminum material had a two-layer structure consisting of a coarse upper layer film with fine pores and a dense lower layer film. Then, this aluminum material after the anodizing treatment was subjected to a coloring electrolytic treatment using alternating current in an aqueous solution containing nickel sulfate 30 t/Z and boric acid 30 t/Z under the electrolytic conditions shown in Table 1. A solar heat selective absorbing material having the desired solar heat energy selective absorption film on the surface of an aluminum material was obtained.
Comparative Example Using the same aluminum material and the same electrolytic solution as in the above example, an anodizing treatment consisting of only a single step and then a coloring electrolytic treatment using alternating current were performed sequentially under the electrolytic conditions shown in Table 1. A selective solar energy absorption film was formed on the surface of the aluminum material.

なお、比較例1および2は陽極酸化処理を直流電解によ
り、また同3および4は交流電解により行った。第1表 上記実施例および比較例によって得た太陽熱選択吸収材
における選択吸収膜の吸収率Qおよび放射率ごを測定し
たところ、第2表に示すような結果が得られた。
In Comparative Examples 1 and 2, the anodic oxidation treatment was performed by DC electrolysis, and in Comparative Examples 3 and 4, AC electrolysis was performed. Table 1 When the absorption coefficient Q and emissivity of the selective absorption film of the solar heat selective absorption materials obtained in the above Examples and Comparative Examples were measured, the results shown in Table 2 were obtained.

第2表Table 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明における陽極酸化処理による電解電圧
と電流の経時変化を示すグラフ、第2図はこの発明によ
る陽極酸化皮膜の状態を略示する断面図、第3図は従来
の太陽熱選択吸収膜における陽極酸化皮膜の状態を略示
する断面図である。 1……アルミニウム材、2……陽極酸化皮膜、2a・・
・・・・上層皮膜、2b・・…・下層皮膜。 第1図第2図 第3図
Fig. 1 is a graph showing changes in electrolytic voltage and current over time due to anodizing treatment in this invention, Fig. 2 is a cross-sectional view schematically showing the state of the anodic oxide film according to this invention, and Fig. 3 is a graph showing a conventional solar heat selective absorption method. FIG. 3 is a cross-sectional view schematically showing the state of the anodic oxide film in the film. 1... Aluminum material, 2... Anodic oxide film, 2a...
... Upper layer film, 2b... Lower layer film. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 アルミニウム材の表面に、陽極酸化皮膜と、その微
細孔内に電気化学的に析出充填された金属粒子とからな
る太陽熱選択吸収膜が形成されてなるものにおいて、前
記陽極酸化皮膜が、微細孔の粗な上層皮膜と、同じくそ
の密な下層皮膜との二層に形成されていることを特徴と
する太陽熱選択吸収材。 2 アルミニウム材を陽極酸化処理したのち金属塩を含
む水溶液中で電解処理して太陽熱選択吸収膜を形成する
太陽熱選択吸収材の製造方法において、前記陽極酸化処
理を第1および第2の2段階に分けて行うものとし、か
つその第2段目の処理時の化成電圧を第1段目の処理時
の化成電圧より急激に降下せしめて行うことを特徴とす
る太陽熱選択吸収材の製造方法。 3 陽極酸化処理における第1段目の処理時の化成電圧
を3〜30Vとし、第2段目の処理時の化成電圧を1〜
20Vとし、かつその電圧降下比を2/3以下に設定し
て行うことを特徴とする特許請求の範囲第2項記載の太
陽熱選択吸収材の製造方法。
[Scope of Claims] 1. A solar heat selective absorption film comprising an anodic oxide film and metal particles electrochemically deposited and filled in the micropores of the aluminum material is formed on the surface of the aluminum material, wherein the anode A solar heat selective absorption material characterized in that an oxide film is formed in two layers: an upper film with coarse micropores and a lower film with dense pores. 2. In a method for producing a solar heat selective absorption material in which an aluminum material is anodized and then subjected to electrolytic treatment in an aqueous solution containing a metal salt to form a solar heat selective absorption film, the anodization treatment is performed in two stages, a first and a second stage. A method for producing a selective solar heat absorbing material, characterized in that the formation voltage in the second stage of treatment is lowered more rapidly than the formation voltage in the first stage of treatment. 3 The formation voltage during the first stage of anodizing treatment is 3 to 30V, and the formation voltage during the second stage is 1 to 30V.
3. The method for manufacturing a solar heat selective absorber according to claim 2, wherein the method is carried out at a voltage of 20 V and a voltage drop ratio of 2/3 or less.
JP57173718A 1982-10-01 1982-10-01 Solar heat selective absorption material and its manufacturing method Expired JPS6029867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57173718A JPS6029867B2 (en) 1982-10-01 1982-10-01 Solar heat selective absorption material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57173718A JPS6029867B2 (en) 1982-10-01 1982-10-01 Solar heat selective absorption material and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5963456A JPS5963456A (en) 1984-04-11
JPS6029867B2 true JPS6029867B2 (en) 1985-07-12

Family

ID=15965850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57173718A Expired JPS6029867B2 (en) 1982-10-01 1982-10-01 Solar heat selective absorption material and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6029867B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5303108B2 (en) * 2006-09-29 2013-10-02 京セラ株式会社 Photovoltaic power generation device and building including the same
DE102010012573B4 (en) * 2010-03-23 2012-05-24 Odb-Tec Gmbh & Co. Kg Method and device for producing a highly selective absorbing coating on a solar absorber component
CN109208055B (en) * 2017-06-30 2021-01-01 比亚迪股份有限公司 Aluminum alloy, preparation method thereof and mobile phone shell

Also Published As

Publication number Publication date
JPS5963456A (en) 1984-04-11

Similar Documents

Publication Publication Date Title
JPS6014983B2 (en) Selective solar absorption coating on aluminum
CA1131160A (en) Electrolytic colouring of anodised aluminium by means of optical interference effects
US4111763A (en) Process for improving corrosion resistant characteristics of chrome plated aluminum and aluminum alloys
US4042468A (en) Process for electrolytically coloring aluminum and aluminum alloys
US4442829A (en) Material for selective absorption of solar energy and production thereof
EP0605354B1 (en) A process for obtaining a range of colours of the visible spectrum using electrolysis on anodized aluminium
JPH0347994A (en) Method for coloring titanium or alloy thereof by controlling quantity of supplied electric current
JPS6029867B2 (en) Solar heat selective absorption material and its manufacturing method
US4440606A (en) Method for producing a solar selective coating on aluminum
JP2569422B2 (en) Aluminum oxide laminated structure film and method for producing the same
US2917419A (en) Method of forming an adherent oxide film on tantalum and niobium foil
RU2471020C1 (en) Application method of electrolytic copper coating to parts from aluminium and its alloys
US4904353A (en) Optically black cobalt surface
JPS6138783B2 (en)
JPS5939666B2 (en) Method for forming solar energy selective absorption film
JPS63160322A (en) Aluminum electrode material for electrolytic capacitor
JPS58187755A (en) Manufacture of solar heat selective absorber
JPS5986863A (en) Manufacture of selective absorption film for solar heat energy
JPH08246190A (en) Anodically oxidized film and its formation
JPS6051020B2 (en) Method for forming solar heat selective absorption film
JPS6124945A (en) Selective absorption film for solar heat energy
JPS6152901B2 (en)
JPS6029493A (en) Manufacture of aluminum or aluminum alloy substrate having oxide film
JPH08158095A (en) Aluminum material and aluminum alloy material having linear pattern and production thereof
JPS584263B2 (en) Method of manufacturing solar heat selective absorption surface