JPS6029755A - Photoconductive member - Google Patents

Photoconductive member

Info

Publication number
JPS6029755A
JPS6029755A JP13875883A JP13875883A JPS6029755A JP S6029755 A JPS6029755 A JP S6029755A JP 13875883 A JP13875883 A JP 13875883A JP 13875883 A JP13875883 A JP 13875883A JP S6029755 A JPS6029755 A JP S6029755A
Authority
JP
Japan
Prior art keywords
layer
photoconductive
gas
smoothed
conductive substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13875883A
Other languages
Japanese (ja)
Inventor
Mutsuki Yamazaki
六月 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13875883A priority Critical patent/JPS6029755A/en
Publication of JPS6029755A publication Critical patent/JPS6029755A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To prevent deterioration of photosensitive characteristics and filming of a developer by laminating a blocking layer, a photoconductive layer composed essentially of silicon and contg. H on a conductive substrate and having a smooth surface, and a surface coating layer in succession to form a photoconductive member. CONSTITUTION:A blocking layer 2 for preventing injection of charge from a conductive substrate 1, a photoconductive layer 3 composed essentially of silicon and contg. H and having a smoothed surface, and a surface coating layer 4 are laminated in succession on the conductive substrate 1 to form a photoconductive member. The layers 2, 3 are each composed essentially of silicon and contg. H, and the layer 3 is smoothed on the surface by glow discharging a material gas contg. at least F in the process of forming the layer 3. Or before the layer 4 is laminated, the layer 3 is smoothed on the surface by mechanical polishing. As a result, the protuberances of a-Si generated once is etched with F radicals and smoothed, and further polished by mechanical working. Since the layer 4 is finished smoothly, it can prevent deterioration of photosensitive characteristics caused by repeated uses, and also filming of a developer.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は電子写真感光体などに適用される光導電部材に
、関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a photoconductive member applied to electrophotographic photoreceptors and the like.

[発明の技術卿背甲とその問題点] 電子写真感光体1.一固体W1a素子などに適用される
光導電部材に関しては、長野命感光波長域がセレンなど
と比較して長波長まで延び、しかも無公害で回収不要で
あって大面積化が容易である非晶質シリコン(以下アモ
ルファスシリコン又はa −8iとも称する)が注目さ
れている。
[Technical backbone of the invention and its problems] Electrophotographic photoreceptor 1. Regarding photoconductive materials used in solid-state W1a elements, Nagano Mei is an amorphous material that has a photosensitive wavelength range extending to longer wavelengths than selenium, etc., and is non-polluting, does not require recovery, and can easily be made into a large area. Amorphous silicon (hereinafter also referred to as amorphous silicon or a-8i) is attracting attention.

a−8iはシリコン多結晶をターゲットに用いてのスパ
ッタリングでも製造することができるが、通常はSi 
Haなどの、シリコン原子を含む原料ガスをグロー放電
分解するグロー放電法により製造されている。このよう
にして製造されたアモルファスシリコンはシリコンネッ
トワーク中に多量の水素を含み、この水素がシリコンの
未結合手(dungling bond)を補償するの
に役立っている。しかし、それでも?Ii償しきれなか
ったり或いは5IH2等の結合の存在などによってバン
ドギャップ(band gap)中にかなり密度が高く
単位が存在しているので、暗中での比抵抗が小さい。す
なわち、伝導帯(conduction bancl)
中に熱的に励起された電子が多く存在する。このような
ものを電子写真感光体などに適用して使用した場合には
、コロナfi電などによって帯電された表面の電荷は上
記の励起された電子によって相殺されて現像まで保持さ
れないという問題がありk。
A-8i can also be manufactured by sputtering using polycrystalline silicon as a target, but usually Si
It is manufactured by a glow discharge method in which raw material gas containing silicon atoms, such as Ha, is decomposed by glow discharge. The amorphous silicon produced in this way contains a large amount of hydrogen in the silicon network, and this hydrogen serves to compensate for the dangling bonds of the silicon. But still? Since units exist at a fairly high density in the band gap due to the inability to compensate for Ii or the presence of bonds such as 5IH2, the specific resistance in the dark is small. That is, the conduction band
There are many thermally excited electrons inside. When such a device is used in an electrophotographic photoreceptor, etc., there is a problem that the surface charge generated by corona fi-electricity is canceled out by the excited electrons and is not retained until development. k.

このため従来にあっては、導電性基体から光導電性口た
るアモルファスシリコン厄への電子あるいは正孔の注入
を防ぐためにブロッキング唐を両者間に設けていた。こ
のブロッキング店は非常に高抵抗であり、電荷の流れを
抑止するもの、又はP型、n型といわれる半導体すなわ
ちギャップ中に多くのアクセプタ単位、ドナー準位を有
しここで電子又は正孔を捕17M (trap)するも
のによって形成されている。さらに光導電性層の安定化
のためにその表面には表面被覆層が段けられている。
For this reason, in the past, a blocking layer was provided between the conductive substrate and the amorphous silicon layer to prevent injection of electrons or holes from the photoconductive substrate. This blocking store has a very high resistance and inhibits the flow of charges, or is a semiconductor called P-type or N-type, which has many acceptor units and donor levels in the gap and allows electrons or holes to flow. It is formed by something that traps 17M. Furthermore, in order to stabilize the photoconductive layer, a surface coating layer is provided on its surface.

この表面被TR層は比抵抗が高く光の透過率の高い材質
が良いが、浮くすると電荷の扱けが悪くなったり、光を
吸収してしまうなどの理由により残留電位が高くなった
り光感度が低くなるため、表面P1覆層の厚さは通常数
百h〜数千A程度とされていた。
This surface TR layer should be made of a material with high resistivity and high light transmittance, but if it floats, it will have difficulty handling charges and absorb light, resulting in a high residual potential and poor photosensitivity. Therefore, the thickness of the surface P1 covering layer was usually about several hundred h to several thousand amps.

ところで前記グロー放電法によって製造されるa−3i
は心電性基体表面の凹凸、序などによって異常成長し、
光導電性層の表面には半球状の突起ができてしまう。し
かしながらこの突起は通常0.5μIIl〜5μ蒙程度
であり、前記表面被覆層のn厚はこれよりも酵い。この
ため、光導電性層は均一に?l!!iされず繰返し使用
に対して感光特性が劣化し、しかも表面被覆層の欠陥部
分には余分な現像剤が付着して現像剤のフィルミング現
象を生じ易くなるという問題があった。
By the way, a-3i manufactured by the glow discharge method
grows abnormally due to irregularities and irregularities on the surface of the electrocardial substrate,
Hemispherical protrusions are formed on the surface of the photoconductive layer. However, these protrusions are usually about 0.5 .mu.II to 5 .mu.m thick, and the thickness of the surface coating layer is larger than this. Because of this, is the photoconductive layer uniform? l! ! There is a problem in that the photosensitive characteristics deteriorate with repeated use without proper cleaning, and additionally, excess developer adheres to defective portions of the surface coating layer, making it easy to cause developer filming.

[発明の目的] 本発明は上記事情に基づいてなされたものであり、その
目的とするところは、繰返し使用に対する感光特性の劣
化を防止することができるとともに、現像剤のフィルミ
ング現象が容易に生じてしまうことを防止することので
きる光導電部材を提供することである。
[Object of the Invention] The present invention has been made based on the above-mentioned circumstances, and its purpose is to prevent the deterioration of photosensitive characteristics due to repeated use, and to easily prevent the filming phenomenon of the developer. It is an object of the present invention to provide a photoconductive member that can prevent this from occurring.

[発明の概要] 本発明は上記目的を達成するために、導電性基体上に設
けられかつこの導電性基体からの電荷の注入を防止する
ブロッキングnと、シリコン原子を母体として水素を含
み表面が平滑化された光導電性層と、表面被覆層とを順
次積層して光導電部材を借成したものである。
[Summary of the Invention] In order to achieve the above object, the present invention includes a blocking n that is provided on a conductive substrate and prevents charge injection from the conductive substrate, and a silicon atom containing hydrogen as a base material and having a surface containing hydrogen. A photoconductive member is obtained by sequentially laminating a smoothed photoconductive layer and a surface coating layer.

[発明の実施例] 以下図面を参照しながら本発明の実施例について説明す
る。
[Embodiments of the Invention] Examples of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例である光導電部材を示す
断面図である。図において1で示すものは6911性基
体であり、例えばアルミニウム製の平板やアルミニウム
製のドラムなどによって形成されている。そしてこの導
電性基体1の表面にはこの1s電性基体1からの電荷の
注入を防止するためのブロッキング!!!2が設けられ
、例えばB2Heガスと5iHiガスとを混合した原料
ガスがグロー放電分解されることにより又はy9電性基
体1が酸化されること(よって形成されている。さらに
ブロッキング居2の表面にはシリコン原子を母体として
水素を含み表面が平滑化された光導電@層3が設けられ
、例えばB21−16ガスと、5iHaガスとを混合し
た原料ガスがグロー放電分解されることによって形成さ
れた第1光尋電性F?3’Aと少なくともフッ素原子を
含む原料ガスとしてSiH4ガスと81 F4ガスとを
混合した原料ガスがグロー放電分解されることによって
前記第1光導電性口3Aに積層形成された第2光亦電性
11!43Bとによって形成されている。またこの光導
電性層3の表面には例えば透光性の表面被覆層4が設け
られ、例えば5iHaガスとCHaガスとを混合した原
料ガスがグロー放電分解されることによって形成されて
いる。
FIG. 1 is a sectional view showing a photoconductive member according to a first embodiment of the present invention. In the figure, the reference numeral 1 is a 6911 base, which is formed of, for example, an aluminum flat plate or an aluminum drum. The surface of this conductive substrate 1 is provided with blocking to prevent charge injection from this 1s conductive substrate 1! ! ! 2 is provided, for example, by glow discharge decomposition of a raw material gas that is a mixture of B2He gas and 5iHi gas, or by oxidation of the y9 conductive substrate 1 (thus, it is formed. Furthermore, on the surface of the blocking layer 2, is provided with a photoconductive@layer 3 whose surface is smooth and contains hydrogen using silicon atoms as a matrix, and is formed by glow discharge decomposition of a raw material gas that is a mixture of B21-16 gas and 5iHa gas, for example. The first photoconductive F?3'A and a raw material gas containing at least a fluorine atom, which is a mixture of SiH4 gas and 81F4 gas, are decomposed by glow discharge and are then deposited on the first photoconductive opening 3A. For example, a transparent surface coating layer 4 is provided on the surface of the photoconductive layer 3, and a transparent surface coating layer 4 is formed by, for example, 5iHa gas and CHa gas. It is formed by glow discharge decomposition of a mixed raw material gas.

上記光導電部材は例えば第2図に示す製造装置によって
製造することができる。この製造装置は、反応容器12
とガス供給部14と図示しない排気装置とを有する。反
応容器12内には、導電性基体1(例えば鏡面研摩した
1 50+nmx 200mmのアルミニウム板)を装
着することができると共に前記導電性基体1を所定温度
たとえG;I” 100〜400℃に加熱するためのヒ
ータ18を有する支持体20が設けられ、また、支持体
20の上方にこれと対向配置されると共に多数のガス吹
出孔22を有する電極24が設けられている。電極24
と支持体20とには、これら両者の間に高周波電界を生
ずることができるように、自助整合装膜26を介して高
周波電源28(たとえば13.56MH2)が電気的に
接続されている。また、電極24は、全体としてガス吹
出装置ともなっていて、ガス供給部14より供給される
ガスを電極24と導電性基体1との間に吹き出すことが
できる。したがって、?!!極2極上4ガスを吹き出し
ながら電極24と導電性基体1との間に高周波電界を印
加すると、グロー放電により励起されてなるプラズマガ
スを発生させることができる。なお、電極24は、反応
容器12およびガス供給部14に対し、絶縁体30.3
2により電気的に絶縁されている。
The photoconductive member described above can be manufactured, for example, by a manufacturing apparatus shown in FIG. This manufacturing apparatus includes a reaction vessel 12
It has a gas supply section 14 and an exhaust device (not shown). A conductive substrate 1 (for example, a mirror-polished 150+ nm x 200 mm aluminum plate) can be placed inside the reaction vessel 12, and the conductive substrate 1 is heated to a predetermined temperature, for example, 100 to 400°C. A support body 20 having a heater 18 is provided, and an electrode 24 is provided above and facing the support body 20 and having a large number of gas blowing holes 22. Electrode 24
A high frequency power source 28 (for example, 13.56 MH2) is electrically connected to the support member 20 and the support body 20 via a self-help matching membrane 26 so that a high frequency electric field can be generated between the two. Further, the electrode 24 as a whole also serves as a gas blowing device, and can blow out the gas supplied from the gas supply section 14 between the electrode 24 and the conductive substrate 1 . therefore,? ! ! When a high frequency electric field is applied between the electrode 24 and the conductive substrate 1 while blowing out the gas, plasma gas excited by glow discharge can be generated. Note that the electrode 24 is provided with an insulator 30.3 with respect to the reaction vessel 12 and the gas supply section 14.
It is electrically insulated by 2.

また、反応容器12は、反応容112内より排気するガ
スの流量を1g節する流百円S装匠33を介して図示し
ない排気装置を結合する。ガス供給部14は、たとえば
少なくともシリコン原子を母体として水素を含むガス例
えばSi Heガス(又は5i21−1sガス)が充電
された5iHaガスボンベ34と、Bz Heガスが充
填されたB2 H6ガスボンベ35と、CHeガスが充
填されたCHeガスボンベ36と、少なくともフッ素原
子を含むガス例えば5iFaガスが充填された3i F
4ガスボンベ37と、同様に少なくともフッ素原子を含
むガス例えばCF4ガスが充填されたCF4ガスボンベ
38と、各ガスボンベに取付けられたバルブ39などを
有し、各種ガスを任意に反応容器12内に供給すること
ができるように1成されている。
Further, the reaction vessel 12 is connected to an exhaust device (not shown) via a gas flow fitting 33 that controls the flow rate of gas exhausted from the reaction vessel 112 by 1 g. The gas supply unit 14 includes, for example, a 5iHa gas cylinder 34 charged with a gas containing hydrogen using at least silicon atoms as a host, such as Si He gas (or 5i21-1s gas), and a B2 H6 gas cylinder 35 filled with Bz He gas. A CHe gas cylinder 36 filled with CHe gas and a 3i F gas filled with a gas containing at least fluorine atoms, for example, 5iFa gas.
4 gas cylinder 37, a CF4 gas cylinder 38 filled with a gas containing at least fluorine atoms, for example, CF4 gas, and a valve 39 attached to each gas cylinder, and supplies various gases arbitrarily into the reaction vessel 12. It is designed so that you can

そして第2図に示す製造装置を使用して第1図に示す光
wj電部材を製造するときには、先ず流量n節装訂33
と図示しない排気装置とを使用して前記反応容器12内
を10゛3〜10−’ torrの真空にし、かつ前記
導電性基体1の温度を前記ヒータ18により100〜4
00℃に保持する。モしてBz Heガスボンベ35内
のB2 Heガスを81H4ガスボンベ34内の5iH
aガスに対して流指比で10−4〜10′2程度混合し
て反応容器12内に供給し、n厚0.2〜2.5μI1
1程度のブロッキング門をグロー放電分解によって形成
する。
When manufacturing the optical wj electrical member shown in FIG. 1 using the manufacturing apparatus shown in FIG.
The inside of the reaction vessel 12 is made into a vacuum of 10'3 to 10' torr using
Maintain at 00°C. Convert the B2 He gas in the Bz He gas cylinder 35 to the 5iH gas in the 81H4 gas cylinder 34.
The mixture is mixed with a gas at a flow rate of about 10-4 to 10'2 and supplied into the reaction vessel 12, and the n thickness is 0.2 to 2.5 μI1.
A blocking gate of about 1 is formed by glow discharge decomposition.

次に82 H1lガスボンベ35内のB2 Heガスを
5IHaガスボンベ34内のSi Heガスに対して流
青比で104〜10−2程度混合して反応容器12内に
供給しながらグロー放電□分解し、」I2μm程度の第
1光導電性層3八を形成する。尚a−3iから成るこの
第1の光導電性ff13Aは導電性基体1などの表面の
凹凸、聾などによって異常成長し、その第1光導電性l
N5Aの表面には半球状の突起が生ずることになる。そ
のl5iFaガスボンベ37内のSi FaガスをSt
 Heガスボンベ34内の5iHaガスに対して10%
混合して反応容器12内に供給しながら5〜10分程度
グロー放電分解し、!!厚が0.5〜1.0μm程度の
jff2光導電性n3Bを形成する。この第2光専電性
WJ3Bが形成されるときには、前記第1光心電性門3
Aの表面が凹凸であっても逐次その上にa−8iが堆積
されると同時にHI稍されたa−81の表面の突起がエ
ツチングされるので、第2光轡電性鼎3Bの表面は平滑
化され、第1光尋電性1ffi3Aと第2光sti性f
f13Bとから成る光導電性W33の表面は結果的に平
滑化されることになる。このような表面平滑化のメカニ
ズムは、一般にa−3iの堆積メカニズムは成膜された
貌の表面近傍にあるシリコンと結合する水素をグロー放
電によって生じた水素ラジカルがはぎとり次の堆積が起
るということであるので、水素ラジカルよけもはるかに
活性なフッ素ラジカルが存在すればこの反応はさらに促
進され、かつフッ素ラジカルはシリコンをもエツチング
することがらa −8iの成膜時には堆積とエツチング
とが同時に生ずるというものである。したがって5iH
aガス(又は3128sガス)にフッ素を含むガスを混
入して成膜した場合には堆積したi表面の突起がエツチ
ングされるとともにエツチングされた表面にはさらにa
−8iが堆積し、結果的には表面の平滑性に骨れた光導
電性βが得られることになる。なおこの第2光導電性層
3BのIl!厚は前述のごとく0.5〜1.0μm程度
が最も良好であり、浮過ぎると感光特性が悪化すること
になる。このようにして光導電性1!J3が形成された
後には3i Haガスボンベ34内の5iHaガスに対
してCHaガスボンベ36内のCF−Itガスをその3
倍混合して反応容器12内に供恰しながらグロー放電分
解し、a/!iIが数百へ〜数千へ程度の表面?!!!
覆屈4を形成する。この表面波m Fff 4は炭素を
含むa−8i口となる。なお、上記ブロッキング唐2、
光導電住居3及び表面波I?JFl!14を反応容器1
2内で形成するときには、反応容器12内の圧力を0.
1〜1.0torr程度になるように排気系の排気速度
を調整して定常状態を保持しておいた。
Next, the B2 He gas in the 82 H1l gas cylinder 35 is mixed with the Si He gas in the 5IHa gas cylinder 34 at a flow blue ratio of about 104 to 10-2, and the mixture is decomposed by glow discharge while being supplied into the reaction vessel 12. ''A first photoconductive layer 38 having a thickness of about I2 μm is formed. Note that this first photoconductive ff13A consisting of a-3i grows abnormally due to irregularities, deafness, etc. on the surface of the conductive substrate 1, etc., and the first photoconductive l
A hemispherical protrusion will be formed on the surface of N5A. The Si Fa gas in the l5iFa gas cylinder 37 is
10% for 5iHa gas in He gas cylinder 34
While mixing and supplying the mixture into the reaction vessel 12, glow discharge decomposition takes place for about 5 to 10 minutes. ! A jff2 photoconductive n3B having a thickness of about 0.5 to 1.0 μm is formed. When this second photocardiographic gate 3B is formed, the first photocardiographic gate 3
Even if the surface of A is uneven, a-8i is deposited on it one after another, and at the same time, the protrusions on the surface of a-81 that have undergone HI are etched, so that the surface of the second photoconductor 3B is Smoothed, the first photoelectric property 1ffi3A and the second photopolytic property f
As a result, the surface of the photoconductive W33 consisting of f13B is smoothed. Generally speaking, the mechanism of surface smoothing is that the deposition mechanism of a-3i is that hydrogen radicals generated by glow discharge strip off hydrogen bonded to silicon near the surface of the formed film, and the next deposition occurs. Therefore, if fluorine radicals, which are much more active in repelling hydrogen radicals, exist, this reaction will be further promoted, and since fluorine radicals also etch silicon, deposition and etching will occur when forming the a-8i film. They occur at the same time. Therefore 5iH
When a film is formed by mixing a gas containing fluorine into a gas (or 3128s gas), the deposited protrusions on the i surface are etched, and the etched surface is further etched with a.
-8i is deposited, resulting in a photoconductive β with a smooth surface. Note that Il! of this second photoconductive layer 3B! As mentioned above, the best thickness is about 0.5 to 1.0 μm, and if it is too loose, the photosensitivity will deteriorate. In this way, the photoconductivity is 1! After J3 is formed, the CF-It gas in the CHa gas cylinder 36 is mixed with the 5iHa gas in the 3i Ha gas cylinder 34.
Mix twice and leave in the reaction vessel 12 for glow discharge decomposition, a/! Is the iI on the order of hundreds to thousands? ! ! !
Overturning 4 is formed. This surface wave mFff4 becomes an a-8i port containing carbon. In addition, the above blocking tang 2,
Photoconductive housing 3 and surface wave I? JFl! 14 to reaction vessel 1
2, the pressure inside the reaction vessel 12 is set to 0.
The exhaust speed of the exhaust system was adjusted to about 1 to 1.0 torr to maintain a steady state.

このようにして製造された光導電部材は上述のごとく光
導電性豹3の表面が平滑であるので、その上に形成され
る表面?LMlffi 4は感光特性を良好に保持する
ことのできる数百へ〜数千へ程度の膜厚であってもその
表面は均一である。
In the photoconductive member manufactured in this manner, since the surface of the photoconductive layer 3 is smooth as described above, the surface formed thereon is smooth. LMlffi 4 can maintain good photosensitivity and its surface is uniform even when the film thickness is from several hundred to several thousand.

このような平滑化処理が行われた光導電部材を用いて帯
電、露光、現像のサイクルを春返しその特性の変化を調
べた結果、平滑化処理を行わなかった光導電部材につい
ては初期帯電能力が0.4μC/c1の電荷邑で500
Vの表面電位が青られたものが50回程度の桿返しでそ
の表面電位が300V程度にまで減少してしまったのに
対し、平滑化処理を行った光導電部材については初WJ
表面電位が550vとややQれ、かつ10万回の帯電、
露光、現像サイクルの緑返しにも感光特性の劣化は何ら
生じず、しかも現像剤のフィルミング現像も起こりにく
く10万回のii!ii像形成後像形雨後の良好な画像
を得ることができた。
Using a photoconductive member that had been subjected to such smoothing treatment, the charging, exposure, and development cycles were repeated and the changes in its properties were investigated. As a result, the initial charging capacity of the photoconductive member that had not been subjected to the smoothing treatment was 500 at a charge of 0.4μC/c1
The surface potential of the photoconductive material that had been smoothed decreased to about 300 V after turning the rod about 50 times, whereas the surface potential of the photoconductive material that had been smoothed decreased to about 300 V.
The surface potential is 550V, which is slightly Q, and it can be charged 100,000 times.
There is no deterioration of the photosensitive characteristics even during the green cycle of exposure and development cycles, and developer filming development is less likely to occur even after 100,000 cycles of II! ii. After image formation, a good image after image formation could be obtained.

次に他の実施例について説明する。第3図は本発明の第
2の実施例である光導電部材を示す断面図である。第1
図に示すものと同一のものには同符号を付してその詳細
な説明を省略するつ異なる構成は前記ブロッキング門2
の表面に形成されていてシリコン原子を母体として水素
を含み表面が平滑化された光導電性53を次のようにb
で構成したことである。即ち82F−1sガスと5IH
tガスとを混合した原料ガスをグロー放電分mしてa−
81の門を形成し、その後Si Fa又はCFlなどの
ようにフッ素を含むガスを使用してグロー放電を起しa
−3iの前の表面の突起をこのグロー放電で生じたフッ
素ラジカルによりエツチングして表面が平滑な一層から
成る光導電性唐3を構成したものである。
Next, other embodiments will be described. FIG. 3 is a sectional view showing a photoconductive member according to a second embodiment of the present invention. 1st
Components that are the same as those shown in the figures are designated by the same reference numerals, and detailed explanation thereof will be omitted.
The photoconductive material 53 formed on the surface of , which contains hydrogen and has a smoothed surface using silicon atoms as the host, is treated as follows.
It was composed of That is, 82F-1s gas and 5IH
The raw material gas mixed with t gas is glow discharged m and a-
81 gates are formed, and then a glow discharge is generated using a gas containing fluorine such as SiFa or CFL.
The protrusions on the front surface of -3i are etched by the fluorine radicals generated by this glow discharge to form a photoconductive layer 3 with a smooth surface.

このような光り電部材も第2図に示す製造@訂によって
製造することができ、光導電性−3の表面をエツチング
して平滑化する場合にはSi F!ガスタンク37内の
St Faガス又はc F aガスタンク38内のCF
&ガスを使用することになる。
Such a photoelectric member can also be manufactured by the manufacturing method shown in FIG. StFa gas in the gas tank 37 or CF in the cFa gas tank 38
& Gas will be used.

なお本実施例の1合には第1の実M例の場合と異なり、
Si F4ガス又はCFaF2ガス3i)inガスを混
合しないのでa−8i表面の突起がエツチングされるだ
けで新たなa−3iの堆積は生じない。
Note that in the first case of this embodiment, unlike the case of the first actual M example,
Since SiF4 gas or CFaF2 gas 3i)in gas is not mixed, only the protrusions on the a-8i surface are etched, and no new a-3i is deposited.

このようにして製造された光導電部材も光1717性1
!t3が平滑化されているので、第1の実施例で説明し
た光導電部材と同様の実験結果を得ることができた。
The photoconductive member manufactured in this way also exhibits optical 1717 properties.
! Since t3 was smoothed, it was possible to obtain the same experimental results as with the photoconductive member described in the first example.

なお上記実施例は一例であり本発明の要旨の範囲内にお
いて種々の変形実施ができること1ま言うまでもない。
It goes without saying that the above-mentioned embodiment is merely an example, and that various modifications can be made within the scope of the gist of the present invention.

例えば両実施例においてはプロ・ンキング廐、光尋電性
居及び表面被覆層をa−3iをペニスにして構成したが
少な(とも光導m牲層のみがSi原子を母体としていれ
ばよい、また光導電性n表面の平滑化は上記実施例で説
明したフッ素ラジカルによるエツチング作用によるもの
のみに限定されるものではなく、ラップ剤を使用したラ
ッピング仕上げ又はその個の秤々の研摩材を使用した研
摩仕上げなどのようにn械的研摩によって平滑化された
ものであっても良い。なお、放電加工は逆に表面が荒れ
てしまうので応用することはできない。
For example, in both embodiments, the photoconductor layer, the photoconductor layer, and the surface coating layer were constructed using a-3i as a penis, but the number of layers is small (it is only necessary that only the photoconductor layer has Si atoms as its matrix), and Smoothening of the photoconductive surface is not limited to the etching effect of fluorine radicals as explained in the above examples, but can also be achieved by lapping with a lapping agent or by using a special abrasive. The surface may be smoothed by mechanical polishing, such as polishing. However, electric discharge machining cannot be used because the surface becomes rough.

[発明の効果] 以上の説明から明らかなように本発明の光導電部材にあ
っては、表面が平滑な光導電性層上に表面71覆層が積
府されているのでその外表面は平滑かつ均一であり、繰
返し使用に対する感光特性の劣化を防止することができ
、しかも現像剤のフィルミング現象が容易に生じてしま
うことを防止することができるなどの優れた効果を有J
るものである。
[Effects of the Invention] As is clear from the above description, in the photoconductive member of the present invention, since the surface 71 covering layer is stacked on the photoconductive layer having a smooth surface, its outer surface is smooth. It has excellent effects such as being uniform, preventing deterioration of photosensitive characteristics due to repeated use, and preventing developer filming from easily occurring.
It is something that

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例である光導電部材を示す断
面図、第2図は光導電部材の製造装置の一例を示す概略
説明図、第3図は本発明の第2の実施例である光導電部
材を示す断面図である。 1・・・・・・導電性基体、2・・・・・・10ッキン
グ層、3・・・・・・光導電性層、4・・・・・・表面
被引り第1図 第3図
FIG. 1 is a sectional view showing a photoconductive member according to a first embodiment of the present invention, FIG. 2 is a schematic explanatory diagram showing an example of a photoconductive member manufacturing apparatus, and FIG. 3 is a second embodiment of the present invention. FIG. 2 is a cross-sectional view of an example photoconductive member. DESCRIPTION OF SYMBOLS 1... Conductive substrate, 2... 10 packing layer, 3... Photoconductive layer, 4... Surface pull-back Figure 1, Figure 3 figure

Claims (1)

【特許請求の範囲】 (1)導電性基体上に設けられかつこの導電性基体から
の電荷の注入を防止するブロッキング層と、シリコン原
子を母体として水素を含み表面が平滑化された光導電性
層と、表面波W1nとが順次ff1li( されて成ることを特徴とする光導電部材。 (′2J 前記ブロッキング艷よ、シリコン原子を母体
として水素を含む特許請求の範囲第1項に記載の光導電
部材。 (3)前記表面被覆層は、シリコン原子を母体として水
素を含む特許請求の範囲第1項又は第2項に(4)前記
光導電性層は、光導電性n形成途上において少なくとも
フッ素原子を含む原料ガスがグロー放電分解されること
によってその表面が平滑化されている特許請求の範囲第
1項に記載の光導電部材。 (5)前記光導電性層は、表面被覆層積層前にその表面
が機婢的研摩により平滑化されている特許請求の範囲第
1項に記載の光導電部材。
[Claims] (1) A blocking layer that is provided on a conductive substrate and prevents charge injection from the conductive substrate, and a photoconductive layer that is made of silicon atoms and contains hydrogen and has a smooth surface. A photoconductive member characterized in that the layer and the surface wave W1n are successively ff1li(). Electrically conductive member. (3) The surface coating layer includes silicon atoms as a host and contains hydrogen. (4) The photoconductive layer includes at least The photoconductive member according to claim 1, wherein the surface of the photoconductive member is smoothed by glow discharge decomposition of a raw material gas containing fluorine atoms. (5) The photoconductive layer is formed by laminating a surface coating layer. 2. A photoconductive member as claimed in claim 1, wherein the surface has previously been smoothed by mechanical polishing.
JP13875883A 1983-07-28 1983-07-28 Photoconductive member Pending JPS6029755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13875883A JPS6029755A (en) 1983-07-28 1983-07-28 Photoconductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13875883A JPS6029755A (en) 1983-07-28 1983-07-28 Photoconductive member

Publications (1)

Publication Number Publication Date
JPS6029755A true JPS6029755A (en) 1985-02-15

Family

ID=15229492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13875883A Pending JPS6029755A (en) 1983-07-28 1983-07-28 Photoconductive member

Country Status (1)

Country Link
JP (1) JPS6029755A (en)

Similar Documents

Publication Publication Date Title
US4572881A (en) Printing member for electrostatic photocopying
JP2003092200A (en) Method and apparatus for vacuum treatment, semiconductor apparatus and production method for semiconductor apparatus
JPS639219B2 (en)
US6410102B1 (en) Plasma process method
JP2003027246A (en) Plasma treatment method, semiconductor device manufacturing method, and semiconductor device
JPS649623B2 (en)
US5465137A (en) Printing member for electrostatic photocopying
US4889782A (en) Electrostatic photocopying machine
JPS6029755A (en) Photoconductive member
JPS639217B2 (en)
US5103262A (en) Printing member for electrostatic photocopying
JPS639218B2 (en)
US4724193A (en) Photoconductive membrane for exhibiting photoconductivity upon illumination by electromagnetic light in the visible to ultraviolet range
US5070364A (en) Printing member for electrostatic photocopying
US4999270A (en) Printing member for electrostatic photocopying
US5008171A (en) Printing member for electrostatic photocopying
US5545503A (en) Method of making printing member for electrostatic photocopying
JPS6029756A (en) Photoconductive member
US4971872A (en) Electrostatic photocopying machine
JPH0535425B2 (en)
US5144367A (en) Printing member for electrostatic photocopying
JPH0810332B2 (en) Method for manufacturing electrophotographic photoreceptor
US5143808A (en) Printing member for electrostatic photocopying
Yamazaki et al. Member for electrostatic photocopying with Si 3 N 4-x (0< x< 4)
JPS6161386B2 (en)