JPS6029728B2 - Method for producing cured novolac fiber reinforced epoxy resin composite - Google Patents

Method for producing cured novolac fiber reinforced epoxy resin composite

Info

Publication number
JPS6029728B2
JPS6029728B2 JP2349177A JP2349177A JPS6029728B2 JP S6029728 B2 JPS6029728 B2 JP S6029728B2 JP 2349177 A JP2349177 A JP 2349177A JP 2349177 A JP2349177 A JP 2349177A JP S6029728 B2 JPS6029728 B2 JP S6029728B2
Authority
JP
Japan
Prior art keywords
cured
fiber
fibers
epoxy resin
noporac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2349177A
Other languages
Japanese (ja)
Other versions
JPS53108153A (en
Inventor
健 杉田
宏典 松居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP2349177A priority Critical patent/JPS6029728B2/en
Publication of JPS53108153A publication Critical patent/JPS53108153A/en
Publication of JPS6029728B2 publication Critical patent/JPS6029728B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】 本発明は硬化ノポラック繊維強化ェポキシ樹脂複合体の
製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for making cured nopolac fiber reinforced epoxy resin composites.

従来ェポキシ樹脂は硬化の際水その他揮発物を副生せず
体積収縮も少ないので電気絶縁性や寸法安定性も良い為
、コンデンサー.コイル埋込、あるいはプリント回路積
層品、スイッチギャー等の電気部品や工具類、浩臭類あ
るいはパイプ類やタンク類等の機械部品から化学工場で
の備品等に幅広く用いられているが、まだまだ耐熱性が
高くて実用的に長時間の熱耐久性のあるものではなく、
一般に実用便用温度が高いものは成形加工性が悪くまた
強度も弱く、逆に成形性が良く強度も実用的なものは、
その実用便用温度がせいぜい12000と低いのである
Conventional epoxy resins do not produce water or other volatile substances as by-products during curing and have little volume shrinkage, so they have good electrical insulation and dimensional stability, so they are used for capacitors. It is widely used in electrical parts and tools such as embedded coils, printed circuit laminates, switch gears, mechanical parts such as pipes and tanks, and fixtures in chemical factories, but there is still a lack of heat resistance. It is not something that is highly durable and has long-term heat durability for practical use.
In general, materials that have a high temperature for practical use have poor moldability and low strength; conversely, materials that have good moldability and strength for practical use are
Its temperature for practical use is as low as 12,000 degrees.

また強化材に関しても安全規制や公害防止対策が強化さ
れるにつれて、天然繊維や合成繊維等で騒然性及び耐熱
性も悪く、しかも従来耐熱用や不燃用に用いられてきた
アスベストやガラスの場合には粉塵規制が8ibeね/
CCから2i皮rs/CCに変更強化されており、また
アスベストの場合は作業者等がけい肺病になる可能性が
あり、一方ガラスでは作業者の皮膚傷害があることから
工場生産での取扱いに問題があり、しかも両者とも樹脂
との界面における濡れが極めて悪く、通常ガラスには化
学的な表面処理を施してはいるが、その成形複合体は加
熱状態において樹脂とガラスとの界面で層間剥離が生じ
、「ガスぶくれ」などの問題ともなっている。
In addition, as safety regulations and pollution prevention measures have been strengthened regarding reinforcing materials, natural fibers and synthetic fibers have poor noise and heat resistance, and in the case of asbestos and glass, which have traditionally been used for heat-resistant and non-combustible materials, The dust regulation is 8ibe/
CC has been changed from CC to 2i skin RS/CC, and asbestos may cause silicosis to workers, while glass may cause skin damage to workers, so it is not handled in factory production. Moreover, both types have extremely poor wetting at the interface with the resin, and although glass is usually treated with chemical surface treatments, the molded composites tend to delaminate at the interface between the resin and glass when heated. This has caused problems such as ``gas bulges.''

この為かかる両者の強化複合体は加熱エージングに対し
て徐々に強度が劣化したり絶縁抵抗値が急激に低下する
傾向にあるので実用上問題が多い。例えば各種繊維強化
複合体が使用されているカラーテレビの高圧部の部品の
場合、その複雑な形状の為に成形性の良好なェポキシ樹
脂、あるいは繊維強化ェポキシ樹脂複合体が広く用いら
れている。
For this reason, such a reinforced composite of the two tends to gradually deteriorate in strength and rapidly decrease in insulation resistance value due to heat aging, which poses many practical problems. For example, in the case of high-voltage parts of color televisions in which various fiber-reinforced composites are used, epoxy resins with good moldability or fiber-reinforced epoxy resin composites are widely used because of their complex shapes.

しかしながら近年テレビ業界の趨勢は小型化軽量化の傾
向にあり、よりコンパクト化され小型部品に高圧電流が
オン、オフされることにより部品の温度が相当上昇し、
その周囲の温度は部品自体よりも更に高くなったり、ま
たアメリカではテレビの発火による火災発生事故があり
消費者がより安全性の高いものを求めているために、こ
れらの部品は耐熱性及び熱耐久性の高いものであること
が要望されている。ところが通常の繊維強化ェポキシ樹
脂の場合、短時間の耐熱温度は200午0と比較的良好
であるが長時間の高温使用に対する耐久性はかなり低い
のである。例えば150℃の温度で10日加熱エージン
グした場合い重量減少率は約10%、30日間で約30
%、100日間では約40%となり150ooの加熱エ
ージングでさえも、もはや10日以上の高温に於ける連
続使用に耐えない状態にあるなど、熱耐久性に乏しいも
のである。(尚この場合の試験片4×10×18仇吻、
硬化条件140qo×紬rsである。)それ故現在更に
熱耐久性の大中な向上が望まれている。尚250o○以
上の耐熱性を有し熱耐久性も良好な樹脂としてはテフロ
ン樹脂、ポリィミド類等の特殊樹脂があるが、かかる樹
脂は成形性が非常に劣るために成形物に複雑な形状が求
められる用途には通さないのである。本発明の目的は、
従来の繊維強化ェポキシ樹脂複合体の優れた諸特性を低
下せしめることなく前記諸欠陥を改善し、従来品の一時
的耐熱温度である200ooに於いて熱耐久性1.00
独特間以上を有する高温での熱耐久性に優れた硬化ノポ
ラック繊維強化ェポキシ樹脂複合体を提供するにあり、
他の目的はかかる懐れた特性を有する硬化ノポラック繊
維強化ェポキシ樹脂複合体を工業的容易且つ安価に製造
する方法を提供するにある。
However, in recent years, the trend in the television industry has been toward miniaturization and weight reduction, and as high-voltage current is turned on and off to smaller and more compact components, the temperature of the components increases considerably.
The surrounding temperature is even higher than the parts themselves, and in the United States, there have been fires caused by TVs catching fire, and consumers are demanding higher safety, so these parts have to be heat-resistant and heat-resistant. It is desired that it be highly durable. However, in the case of ordinary fiber-reinforced epoxy resins, although their short-term heat resistance is relatively good at 200:00, their durability against long-term high-temperature use is quite low. For example, if heat aged for 10 days at a temperature of 150°C, the weight loss rate will be approximately 10%, and in 30 days the weight loss rate will be approximately 30%.
%, it becomes about 40% in 100 days, and even after heat aging of 150 oo, it is in a state where it can no longer withstand continuous use at high temperatures for 10 days or more, and has poor thermal durability. (In this case, the test piece is 4 x 10 x 18 pieces,
The curing conditions were 140 qo x Tsumugi rs. ) Therefore, it is currently desired to further improve thermal durability. In addition, special resins such as Teflon resin and polyimides are available as resins that have a heat resistance of 250o○ or more and have good heat durability, but such resins have very poor moldability and cannot be molded into complex shapes. It cannot be used for the desired purpose. The purpose of the present invention is to
The above-mentioned defects have been improved without reducing the excellent properties of the conventional fiber-reinforced epoxy resin composite, and the thermal durability has been improved to 1.00 at 200 oo, which is the temporary heat resistance temperature of the conventional product.
To provide a cured noporac fiber-reinforced epoxy resin composite which has excellent thermal durability at high temperatures and has a unique thermal resistance.
Another object of the present invention is to provide a method for industrially easily and inexpensively producing a cured noporac fiber-reinforced epoxy resin composite having such excellent properties.

更に他の目的は以下の記載より明らかとなろう。即ち本
発明はノポラック樹脂を溶融級糸して得た未硬化ノポラ
ック繊維をアルデヒド類で硬化処理した繊維径5〜50
一、繊維長1〜2仇肋で且つ該硬化処理による重量増加
率が前記未硬化ノポラック繊維重量の5〜20%である
硬化/ポラック繊維をェポキシ樹脂に条件(1)、15
SMミ90.300ミD.Mミ3600…(1)を満足
するように配合漉練後成形し、続いて後硬化する、20
0qoの温度で1.00斑時間の加熱ェ−ジングに対し
得られるヱポキシ樹脂複合体が式(0)0.$o−SS
O…(ロ)の熱耐久性を有する硬化ノポラック繊維強化
ェポキシ樹脂複合体の製造法にある。
Still other objects will become apparent from the description below. That is, the present invention provides fiber diameters of 5 to 50, which are obtained by curing uncured Nopolac fibers obtained by melt-grading Nopolac resin with aldehydes.
1. Conditions (1) for using epoxy resin with cured/polac fibers having a fiber length of 1 to 2 and a weight increase rate of 5 to 20% of the uncured nopolac fiber weight due to the curing treatment, conditions (1), 15
SM Mi 90.300 Mi D. M Mi 3600...Mold after blending and kneading to satisfy (1), followed by post-curing, 20
The epoxy resin composite obtained by heat aging for 1.00 hours at a temperature of 0qo has the formula (0) 0. $o-SS
O... (b) A method for producing a cured nopolac fiber-reinforced epoxy resin composite having thermal durability.

尚本発明に於て「熱耐久性がある」ということは高温、
長時間の加熱エージング後でも複合体が実用上支障のな
い強度を保持していることを意味する。
In the present invention, "having heat durability" means high temperature,
This means that the composite maintains strength sufficient for practical use even after long-term heat aging.

本発明に適用されるェポキシ樹脂は1分子中に2個以上
のェポキシ基を有するもので、例えばビスフエノールA
、力デコール、レゾルシノールのような多価フェノール
、フェノール、クレゾール等のノポラック型の多価フェ
ノール、グリセリン、エチレングリコールのような多価
アルコール、シュウ酸、コハク酸、アジピン酸、二量化
または三量化リレノン酸のような脂肪族多価カルボン酸
、フタル酸、ィソフタル酸、テレフタル酸のような芳香
族多価カルボン酸及びアニリン、トルイジン、ビス(4
ーアミノフエニル)メタン、ビス(4−メチルアミノフ
エニル)メタンのような多価アミンとェピクロルヒドリ
ンとを塩基性触媒の存在下で反応せしめて得られるポリ
グリシジルェーテル、ポリグリシジルヱステル及びポリ
グリシジルアミン、過酸法でェポキシ化したピニルシク
ロヘキセンジオキサイド、リモネンジオキサイド、ジシ
クロベンタジエンジオキサイド、3,4ーエポキシ−6
ーメチルシクロヘキシルーメチルー3,4ーエポキシー
6ーメチルシクロヘキサンカルボキシレート、ヱポキシ
化ポリプタジヱンのようなェポキシ化ポリオレフィン及
びェポキシ化植物油等が挙げられるが、中でもビスフェ
ノールAとェピクロルヒドリンの縮合反応によって生成
したポリグリシジルェーテルが好ましいェポキシ樹脂で
ある。
The epoxy resin applied to the present invention has two or more epoxy groups in one molecule, such as bisphenol A
, polyhydric phenols such as Decol, resorcinol, phenol, polyhydric phenols of noporac type such as cresol, polyhydric alcohols such as glycerin, ethylene glycol, oxalic acid, succinic acid, adipic acid, dimerized or trimerized relenone. Aliphatic polycarboxylic acids such as acids, aromatic polycarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, and aniline, toluidine, bis(4
Polyglycidyl ethers and polyglycidyl esters obtained by reacting polyvalent amines such as -aminophenyl)methane and bis(4-methylaminophenyl)methane with epichlorohydrin in the presence of a basic catalyst. and polyglycidylamine, pinylcyclohexene dioxide epoxidized by peracid method, limonene dioxide, dicyclobentadiene dioxide, 3,4-epoxy-6
-Methylcyclohexy-methyl-3,4-epoxy 6-methylcyclohexanecarboxylate, epoxidized polyolefins such as epoxidized polyptadiene, and epoxidized vegetable oils, among others, produced by the condensation reaction of bisphenol A and epichlorohydrin. Polyglycidyl ethers are preferred epoxy resins.

本発明の未硬化ノボラック繊維としてはフェノール類、
例えばフェノール、クレゾール、キシレノール、レゾル
シンあるいはこれらの譲導体とアルデヒド類、例えばホ
ルムアルデヒド、アセトアルデヒドあるいはフルフラー
ルを酸触媒下で反応せしめて得る初期重合物である主と
してメチレン結合からなるノボラック樹脂を不活性気体
、例えば二酸化炭素や窒素等の存在下に加熱して流動し
やすい溶融液にし、これを所望の太さのノズルを持つ紡
糸口金を通じて不活性冷却媒体、例えば空気、窒素ある
いは水等に中に押し出すか又は引き出して冷却固化せし
め捲き取ったものである。
The uncured novolac fiber of the present invention includes phenols,
For example, a novolac resin consisting mainly of methylene bonds, which is an initial polymer obtained by reacting phenol, cresol, xylenol, resorcin, or a derivative thereof, with an aldehyde, such as formaldehyde, acetaldehyde, or furfural under an acid catalyst, is heated with an inert gas, e.g. Heating in the presence of carbon dioxide, nitrogen, etc. to give a free-flowing melt, which is then forced into an inert cooling medium, such as air, nitrogen or water, through a spinneret with a nozzle of the desired diameter; It was pulled out, cooled and solidified, and then rolled up.

溶融紡糸した未硬化ノボラック繊維の硬化は酸性触媒と
アルデヒド類の混合水溶液中で、又は酸性触媒とアルデ
ヒド類の混合水溶液中で予備硬化したものを更に塩基性
触媒とアルヂヒド類の混合水溶液中で適当な加温下で行
なう。また前記禾硬化ノボラック繊維を硬化するアルデ
ヒド類とは、例えばホルムアルデヒド、アセトアルデヒ
ドあるいはフルフラール等が挙げられる。斯くして得ら
れる硬化ノボラック繊維は繊維径が通常5〜50山、好
ましくは10〜40仏、より好ましくは12〜30仏で
あり、また繊維長は通常1〜20欄、好ましくは3〜1
5肌、より好ましくは5〜10側である。
Melt-spun uncured novolac fibers can be cured in an aqueous mixed solution of an acidic catalyst and aldehydes, or precured in an aqueous mixed solution of an acidic catalyst and aldehydes, and then further cured in a mixed aqueous solution of a basic catalyst and aldehydes. Do this under proper heating. Examples of the aldehydes for curing the hardened novolac fibers include formaldehyde, acetaldehyde, and furfural. The cured novolac fiber thus obtained has a fiber diameter of usually 5 to 50 mm, preferably 10 to 40 mm, more preferably 12 to 30 mm, and a fiber length of usually 1 to 20 mm, preferably 3 to 1 mm.
5 skin, more preferably 5 to 10 skin.

さらに該硬化ノボラツク繊維は硬化処理により前記未硬
化/ボラツク繊維重量に対し通常5〜20%、好ましく
は7〜17%、より好ましくは10〜15%重量増加し
たものである。本発明では該硬化ノボラック繊維を前記
ヱポキシ樹脂に通常得られるェポキシ樹脂複合体に於け
る含有率が15〜9の重量%、好ましくは30〜85重
量%、より好ましくは50〜8の重量%となるように配
合し、例えばへンシェル、ニーダ−、ミキサーあるいは
熱ロール等で硬化剤、例えば各種の有機ポリアミン、有
機酸無水物等と、あるいはフェノ−ル樹脂、メラミン樹
脂、尿素樹脂などのメチルロ−ルを有する樹脂類や潜在
性硬化剤、例えばBF3ーアミン鎧塩、DICY等と濃
練し、該硬化ノボラック繊維をェポキシ樹脂中に十分分
散させた後、光、熱、放射線、あるいは適当な架橋剤の
併用の下で硬化せしめて成形する。
Furthermore, the cured novolac fibers have an increase in weight by usually 5 to 20%, preferably 7 to 17%, more preferably 10 to 15%, based on the weight of the uncured/volatile fibers. In the present invention, the content of the cured novolak fiber in the epoxy resin in the epoxy resin composite that is usually obtained is 15 to 9% by weight, preferably 30 to 85% by weight, more preferably 50 to 8% by weight. For example, blend it with a hardening agent such as various organic polyamines, organic acid anhydrides, etc. using a Henschel, kneader, mixer, or hot roll, or methyl resin such as phenolic resin, melamine resin, urea resin, etc. After thoroughly dispersing the cured novolac fibers in the epoxy resin, the cured novolak fibers are thickened with resins having a epoxy resin and a latent curing agent such as BF3-amine armor salt, DICY, etc., and then treated with light, heat, radiation, or a suitable cross-linking agent. It is cured and molded under the combined use of

尚該硬化ノボラック繊維と他の有機繊維あるいは無機繊
維例えばガラスあるいはアスベスト等とを該硬化ノボラ
ック繊維が用いる総繊維重量の5の重量%下回らない範
囲で混合して用いても良い。本発明により得られる複合
体の補強材である該硬化ノポラック繊維の繊維長が1側
禾満の場合は複合体に外部応力が加わった時に繊維が短
いために複合体中での応力分散が十分でなく、強度向上
効果に乏しい。
The cured novolac fibers may be mixed with other organic fibers or inorganic fibers such as glass or asbestos in an amount not less than 5% by weight of the total weight of the cured novolac fibers. When the fiber length of the cured noporac fiber, which is the reinforcing material of the composite obtained by the present invention, is one-sided, when external stress is applied to the composite, the stress is sufficiently dispersed in the composite because the fibers are short. However, the effect of improving strength is poor.

また逆に繊維長が2仇奴を越えると樹脂との配合混練で
繊維同志が絡み合い、フロック状となって強度の向上が
期待できない。また該硬化ノポラック繊維の未硬化ノボ
ラック繊維に対する前記重量増加率が5重量%未満では
硬化ノポラック繊維の分子架橋度が小さく、その為繊維
自体の強度が乏しいために複合体の強度向上が期待でき
ない。
On the other hand, if the fiber length exceeds 2 lenghts, the fibers will become entangled with each other when mixed with the resin, resulting in a flock-like structure, and no improvement in strength can be expected. Further, if the weight increase rate of the cured nopolac fibers relative to the uncured novolac fibers is less than 5% by weight, the degree of molecular crosslinking of the cured nopolac fibers is small, and therefore, the strength of the fibers themselves is poor, so improvement in the strength of the composite cannot be expected.

逆に該重量増加率が2の重量%を越えると禾硬化ノボラ
ック繊維を硬化せしぬる際、極めて長時間の処理が必要
で工業生産上有利でなく、また得られる硬化ノボラック
繊維は脆くェポキシ樹脂との接着性、反応性も劣り、そ
の為に複合体の熱耐久性は実用的でなく、電気特性、耐
熱性も低下する傾向にある。本発明に於いては、硬化ノ
ボラック繊維の繊維径と繊維の含有率の関係は極めて重
量なものであって、まず繊維蓬についてみれば、5山未
満では繊維表面積が大であるので複合体中での樹脂との
界要接点が多く、後述の反応性に富むが、繊維同志がフ
ロック状になり易く分散性が悪いので、成形時の障害と
なり好ましくない。
On the other hand, if the weight increase rate exceeds 2% by weight, the cured novolac fibers require a very long treatment time and are not advantageous for industrial production, and the resulting cured novolac fibers are brittle and cannot be used with epoxy resin. The adhesion and reactivity with other materials are also poor, and as a result, the thermal durability of the composite is impractical, and its electrical properties and heat resistance also tend to decrease. In the present invention, the relationship between the fiber diameter of the cured novolac fiber and the fiber content is extremely important, and first of all, if we look at the fibers less than 5 peaks, the fiber surface area is large, so it is difficult to The fibers have many contact points with the resin, and are highly reactive as described below, but the fibers tend to form flocks and have poor dispersibility, which is undesirable as it becomes an obstacle during molding.

逆に50仏以上では未硬化/ポラック繊維を硬化処理す
る場合に、繊維表面から徐々に架橋化が進行していくも
のであるので硬化処理に長時間を要し、工業生産上不利
であり、しかも複合体の補強効果においても繊維表面積
が小さく、樹脂との界面機点が少ない為に後述の反応性
に乏しく、耐熱性、熱耐久性も十分でない。また硬化ノ
ボラック繊維の含有率について見ると、含有率が15重
量%禾満では硬化ノポラック繊維配合ェポキシ樹脂中の
樹脂が流動し過ぎて成形性が悪いので工業生産上有利で
ないばかりでなく、複合体の強度、耐熱性、燃焼性ある
いは電気的特性等が実用的でない。逆に9の重量%を越
えると、上記繊総配合樹脂中の成形時に樹脂の流れが悪
くなるので工業生産上有利でない。同時に硬化/ボラッ
ク繊維の繊維径(Dr)と得られる複合体に於ける繊維
含有率(M重量%)との積(D・M)が通常300〜3
600、好ましくは500〜3200、より好ましくは
900〜2400の範囲内にあることが、該複合体が優
れた耐熱性、熱耐久性を保持する上で必要である。DM
値が30氏未満の場合には繊維配合樹脂の加熱成形時に
ェポキシ樹脂が流れ過ぎたり、成形物の硬化時間が長い
などの生産性も悪く、硬化ノボラック繊維とェポキシ樹
脂とのトータル界面接着力が不足し該複合体は耐熱性、
熱耐久性も劣るものである。逆にDM値が3600を越
えると樹脂配合物が嵩高で扱い難く、また成形も極めて
特殊な高圧成形法を用いることが必要で、例え得られた
としても該複合体は熱耐久性、電気特性の劣ったものと
なる。本発明に於える硬化ノボラック繊維とヱポキシ樹
脂の配合、成形法として具体的には公知の繊維強化複合
体、所謂F、R、P、の配合、成形法、例えばハンドレ
ィアップ法、スブレィアップ法、ブリフオーム・マッチ
ドメタルダイ法、ブリミツクス法、フィラメントワイン
ディング法、連続プルトルージョン法、シートモールデ
ィングコンパゥンド法が適用でき、特に固形タイプのェ
ポシキ樹脂では熔触法〔例えばェポキシベレツト法又は
E−Pak法等〕、圧縮形成法〔例えばフェノール樹脂
よりも低圧(一般に50〜300k9/洲)放等〕、あ
るいはトランスファー成形法〔例えばポット式又はプラ
ンジャー式等〕が適用される。
On the other hand, if it is more than 50 French, when uncured/Pollack fiber is cured, crosslinking will gradually proceed from the fiber surface, so the curing process will take a long time, which is disadvantageous in terms of industrial production. Moreover, in terms of the reinforcing effect of the composite, the fiber surface area is small and there are few interface points with the resin, so the reactivity described below is poor, and the heat resistance and heat durability are also insufficient. Regarding the content of cured novolac fibers, if the content is 15% by weight, the resin in the epoxy resin containing cured novolac fibers will flow too much, resulting in poor moldability, which is not only not advantageous in industrial production, but also makes it difficult to form composites. Its strength, heat resistance, combustibility, electrical properties, etc. are not practical. On the other hand, if it exceeds 9% by weight, the resin will not flow well during molding in the fiber blended resin, which is not advantageous in terms of industrial production. Simultaneously cured/The product (D・M) of the fiber diameter (Dr) of the borac fiber and the fiber content (M weight %) in the resulting composite is usually 300 to 3
600, preferably 500 to 3200, more preferably 900 to 2400, in order for the composite to maintain excellent heat resistance and thermal durability. DM
If the value is less than 30 degrees, the epoxy resin may flow too much during heat molding of the fiber compound resin, the curing time of the molded product will be long, and productivity will be poor, and the total interfacial adhesive strength between the cured novolac fiber and the epoxy resin will be poor. The composite is heat resistant,
It also has poor thermal durability. On the other hand, if the DM value exceeds 3600, the resin compound will be bulky and difficult to handle, and molding will require the use of a very special high-pressure molding method, and even if obtained, the composite will have poor thermal durability and electrical properties. becomes inferior. Specifically, the blending and molding method of the cured novolac fiber and the epixy resin in the present invention includes the blending and molding method of known fiber-reinforced composites, so-called F, R, P, such as hand lay-up method, spray-lay-up method, The Briform matched metal die method, the Brimix method, the filament winding method, the continuous pultrusion method, and the sheet molding compound method can be applied, and in particular, for solid type epoxy resins, the melting method [for example, the epoxy beretz method or the E-Pak method], Compression molding methods (for example, lower pressure (generally 50 to 300 k9/s)) than phenol resins, etc., or transfer molding methods (for example, pot type or plunger type) are applied.

更に得られた複合体を成形温度より高い温度(20〜3
0℃高い温度が好ましい)で後硬化後硬化時間は10〜
30分が好適)することが必要である。斯くして得られ
たヱポキシ樹脂複合体は、従来のェポキシ樹脂複合体の
一時的耐熱温度である。
Furthermore, the obtained composite was heated to a temperature higher than the molding temperature (20 to 3
The curing time after post-curing is 10~
30 minutes is preferred). The epoxy resin composite thus obtained has a temporary heat resistance temperature of a conventional epoxy resin composite.

200℃に於ける1.00餌時間の加熱エージングに対
し次の条件を満足するものでは〈ては目的とする耐熱性
、熱耐久性を有するものとはならない。
A product that satisfies the following conditions for heat aging at 200° C. for 1.00 feeding hours will not have the desired heat resistance and heat durability.

即ち本発明に係るェポキシ樹脂複合体は200o01.
000時間の加熱エージング後の曲げ強度(Sk9/側
2:以下Sは全て200oo、1.00凪時間の加熱工
−ジング後の曲げ強度を表わす)が該エージング前の初
期強度(Sok9/肋2:以下Soは全て初期曲げ強度
を表わす)の90%以上なくてはならないのである。以
上の関係は次式0‘こより与えられる。0.$o一Sミ
○…(0) Sの低下の度合がSoの10%を越えるものは高温での
使用に際し複合体物性の経時変化が著しいために該物性
の経時変化を見越した成形品の設計が困難となり実用的
に好ましくない。
That is, the epoxy resin composite according to the present invention is 200o01.
The bending strength after heat aging for 000 hours (Sk9/Side 2: hereinafter S represents the bending strength after heat processing for 200oo and 1.00 hours) is the initial strength before aging (Sok9/Side 2). : Hereinafter, So indicates the initial bending strength). The above relationship is given by the following equation 0'. 0. $o-Smi○...(0) If the degree of decrease in S exceeds 10% of So, the physical properties of the composite will change significantly over time when used at high temperatures, so molded products should be prepared in anticipation of changes in physical properties over time. This makes the design difficult and is not practical.

また例え該経時変化を大きく見越して設計できたとして
も硬化ノポラック繊維の含有率Mや成形品の肉厚を極端
に増加して設計することになり製造工程、製品用途、製
造コストの全ての点で制約を受け決して好ましいものと
はいえない。Sが11.5未満の場合、構造材が折損し
易く補強材として使用できないので他の補助材料を使用
したり、肉厚を増すなどして強力を向上せねばならず、
精密、精巧部品には不向きであるなど、その用途が限定
されるので好ましくない。
Moreover, even if it were possible to design with this temporal change in mind, the content M of cured noporac fibers and the wall thickness of the molded product would have to be extremely increased, which would affect all aspects of the manufacturing process, product application, and manufacturing cost. However, it cannot be said to be desirable due to the limitations imposed by the If S is less than 11.5, the structural material is likely to break and cannot be used as a reinforcing material, so it is necessary to improve the strength by using other auxiliary materials or increasing the wall thickness.
It is undesirable because its uses are limited, such as being unsuitable for precision and sophisticated parts.

従ってSは通常11.5以上、好ましくは12.3以上
、より好ましくは13.5以上であることが望まれる。
本発明における硬化ノボラック繊維は硬化処理によって
メチレン基やメチロール基、ジメチレンェーテル基が生
成されて三次元架橋構造を有し、しかもその分子は炭素
の含有率が高いので炎の中に投入しても熔触することは
なく炭化するだけで分解燃焼することはない。
Therefore, it is desired that S is usually 11.5 or more, preferably 12.3 or more, and more preferably 13.5 or more.
The cured novolac fiber in the present invention has a three-dimensional crosslinked structure due to the generation of methylene groups, methylol groups, and dimethylene ether groups through the curing process, and its molecules have a high carbon content, so they are put into the flame. However, there is no melting, only carbonization, and no decomposition and combustion.

従って本発明の如く硬化ノポラック繊維をェポキシ樹脂
複合体の強化材として用いた場合には複合体自体が鍵燃
化されるばかりでなく、該硬化ノボラツク繊維はBAE
系ェポキシと良く似た化学構造を有し且つ若干の活性基
も有するので非常になじみが良いのである。また該硬化
ノポラック繊維に含まれるメチロール基やジメチレンェ
ーテル基が加燃成形加工時にヱポキシ樹脂と化学的な結
合をするので繊維と樹脂の境界が極めて接着性の良い複
合体が得られる。従って本発明に係るェポキシ樹脂複合
体はマトリックスである樹脂と強化材とが強固に化学的
に結合したものであるので高い耐熱性、熱耐久性を有す
るばかりで驚く、二次効果として優れた絶縁抵抗を示す
上に該硬化ノボラック繊維の比重が小さいので複合体の
軽量化が可能であり、よって高い比強度も得られるので
ある。斯くして本発明に係る硬化/ボラック繊維強化ェ
ポキシ樹脂複合体は従来のヱポキシ樹脂複合体では長期
に亘つて使用し得なかった200qCという高温におい
てすら1.00餌時間以上という優れた熱耐久性を有す
るもので、その出現が望まれていた複雑な形状と高温で
の熱耐久性を有するェポキシ樹脂複合体成形品の製造を
可能ならしめたのである。
Therefore, when cured noporac fibers are used as a reinforcing material for an epoxy resin composite as in the present invention, not only is the composite itself oxidized, but the cured noporac fibers are BAE
It has a chemical structure very similar to that of epoxy, and also has some active groups, so it is very compatible with epoxy. Furthermore, since the methylol groups and dimethylene ether groups contained in the cured noporac fibers chemically bond with the epoxy resin during combustion molding, a composite with extremely good adhesion at the boundary between the fiber and the resin can be obtained. Therefore, since the epoxy resin composite according to the present invention has a strong chemical bond between the matrix resin and the reinforcing material, it has surprisingly high heat resistance and heat durability, and has an excellent secondary effect of insulation. In addition to exhibiting resistance, the specific gravity of the cured novolak fibers is low, making it possible to reduce the weight of the composite, and thus also achieving high specific strength. Thus, the cured/borac fiber-reinforced epoxy resin composite according to the present invention has excellent thermal durability of more than 1.00 feeding hours even at high temperatures of 200 qC, where conventional epoxy resin composites could not be used for long periods of time. This has made it possible to manufacture epoxy resin composite molded products that have the long-awaited complex shapes and thermal durability at high temperatures.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

尚、曲げ強度、体積抵抗、燃焼性、耐熱性、ロックゥェ
ル硬度はJIS−K−6911に準じて測定した。また
実施例中「部」及び「%」とあるは、夫々「重量部」及
び「重量%」を意味する。実施例 1数平均分子量が8
00ノボラック樹脂を口数252、孔径0.2肋?の紡
糸口金を用いて15000で港触紡糸し35肌/伽の速
度で捲き取った。
Incidentally, bending strength, volume resistance, combustibility, heat resistance, and Rockwell hardness were measured according to JIS-K-6911. Furthermore, in the examples, "parts" and "%" mean "parts by weight" and "% by weight," respectively. Example 1 Number average molecular weight is 8
00 novolac resin with 252 holes and 0.2 holes? The yarn was spun using a spinneret at a speed of 15,000 mm and wound at a speed of 35 mm/kg.

ついでこのものを17.5重量%の塩酸と17.5重量
%のホルムアルデヒドとの混合裕中に20qoで浸債し
、3時間かけて聡。
Next, this material was soaked at 20 qo in a mixture of 17.5% by weight of hydrochloric acid and 17.5% by weight of formaldehyde for 3 hours.

Cまで昇温し、5時間保持した後水洗を1時間行なった
。更にこのものを4の重量%のメタノール裕中で温度6
5℃で1時間半の処理を行なった後、水洗乾燥した。得
られた硬化ノボラック繊維は平均繊維径14.6r、硬
化度が未硬化ノボラツク繊維に対して重量増加率で10
.亀重量%のものであった。
The temperature was raised to C and maintained for 5 hours, followed by washing with water for 1 hour. Further, this product was added to a methanol bath containing 4% by weight at a temperature of 6%.
After treatment at 5° C. for 1.5 hours, it was washed with water and dried. The obtained cured novolac fibers had an average fiber diameter of 14.6r and a degree of curing of 10% in weight increase compared to uncured novolak fibers.
.. % by weight of turtle.

次にこのようにして得られた該硬化ノボラツク繊維を第
1表に示した各繊維長にカットした後、それぞれを以下
に示す処法で処理した。
Next, the cured novolak fibers thus obtained were cut into the respective fiber lengths shown in Table 1, and then each was treated using the method shown below.

まず粉末ェポキシ樹脂〔三井ェポキシ■製、R301〕
1.000部、メチルエチルケトン(MEK)40碇部
を3時間かけて蝿拝混合溶液Aとした。
First, powdered epoxy resin [Mitsui Epoxy ■, R301]
1.000 parts of methyl ethyl ketone (MEK) and 40 parts of methyl ethyl ketone (MEK) were mixed together for 3 hours to prepare a mixed solution A.

次にジシアンジアミド(DICY)4碇部、ペンジルジ
メチルアミン(BDMA)2部、メチルセルソルブ40
の部を混合溶解し溶液Bとした。更にA液70碇部、B
液221部の割合で配合し、このものに硬化/ボラック
繊維の含有率が得られるェポキシ樹脂複合体に対して5
の重量%となるように混綾した後脱溶剤した。次いでこ
のものを150ooの乾燥機で7分間処理してプリプレ
グとした後、17ぴ0の金型を用いて最高20k9/地
の圧力で5側/肋の硬化時間でトランスファー成形を行
ない、200o○で30分間の後硬化をして製造とした
Next, 4 parts of dicyandiamide (DICY), 2 parts of penzyldimethylamine (BDMA), 40 parts of methylcellosolve
A solution B was obtained by mixing and dissolving these parts. Furthermore, 70 parts of A liquid, B
5 parts for the epoxy resin composite to obtain a cured/borac fiber content of 221 parts of liquid.
The solvent was removed after mixing to give a weight percent of . Next, this material was treated in a dryer at 150o for 7 minutes to make a prepreg, and then transfer molded using a 17p mold at a maximum pressure of 20k9/base with a curing time of 5 sides/rib to form a prepreg of 200o. After curing for 30 minutes, the product was manufactured.

このようにして得たサンプルについて、硬化/ポラック
繊維のカット長さと成形時の成形性及び加熱エージング
後の曲げ強度について結果を第1表に示した。
Table 1 shows the results of the thus obtained samples regarding the cut length of the cured/Polac fiber, the formability during molding, and the bending strength after heat aging.

第 1 表 実施例 2 実施例1の未硬化ノボラツク繊維を17.5重量%の塩
酸と17.5重量%のホルムアルデヒドとの混合裕中に
2500の温度で浸潰し、3時間かけて98ooまで昇
温して3時間保持した後2時間の水洗を行なつた。
Table 1 Example 2 The uncured novolac fiber of Example 1 was soaked in a mixture of 17.5% by weight hydrochloric acid and 17.5% by weight formaldehyde at a temperature of 2500°C, and the temperature was raised to 98°C over 3 hours. After heating and holding for 3 hours, washing with water was performed for 2 hours.

更にこのものを25重量%のホルムアルデヒド裕中温度
8000で3時間処理した後水洗を1時間行なった。つ
ぎにこのものを1.5重量%のアンモニア裕中温度65
00で3時間処理し水洗・乾燥を行なった。得られた硬
化ノボラック繊維は平均繊維径32.6一で硬化度が未
硬化ノボラック繊維に対する重量増加率で14り重量%
のものであった。これとは別に実施例1に準じて口金径
と捲き取り速度を変えて溶融紙糸を行ない上記した方法
で硬化処理を行なって繊維長5柳で第2表に示した各種
繊維径を持つ激化ノボラック繊維を作り、実*施例1に
準じて繊維含有率が6の重量%となるように配合成形し
製品とした。このようにして得たサンプルについて硬化
ノボラック繊維の直径と成形性、曲げ強度、体積抵抗と
の関係を第2表に示した。第 2 表 繊維径3.2仏及び56.3仏のものは、エージング後
の曲げ強度14.9及び15.0kg/側2 を示すが
初期曲げ強度Soの90%値に達し得ず、熱劣化が激し
いため実用に通さない。
Further, this product was treated in a 25% by weight formaldehyde bath at a temperature of 8,000 for 3 hours, and then washed with water for 1 hour. Next, add this material to 1.5% by weight of ammonia at a temperature of 65%.
00 for 3 hours, followed by washing with water and drying. The obtained cured novolac fibers had an average fiber diameter of 32.6 mm and a degree of cure of 14% by weight compared to the uncured novolac fibers.
It belonged to Separately, according to Example 1, fused paper yarn was prepared by changing the diameter and winding speed, and the curing treatment was performed using the method described above. Novolac fibers were prepared and molded according to Example 1 so that the fiber content was 6% by weight to obtain a product. Table 2 shows the relationship between the diameter of the cured novolac fiber, moldability, bending strength, and volume resistance for the samples thus obtained. Table 2 Fiber diameters of 3.2 mm and 56.3 mm show bending strengths of 14.9 and 15.0 kg/side 2 after aging, but could not reach 90% of the initial bending strength So, and Due to severe deterioration, it cannot be put to practical use.

実施例 3 実施例1の方法で得た未硬化ノボラック繊維を全く同じ
処理液に20ooで浸潰し、3時間で98qoに昇温し
た後0.期時間、1時間、2.虫時間、5時間、1餌時
間、4虫時間と保持時間を変化せしめ、更にこのものを
実施例2に準じて処理した。
Example 3 The uncured novolak fiber obtained by the method of Example 1 was immersed in the same treatment solution at 20 oz, heated to 98 qo in 3 hours, and then 0.0 qo. Duration, 1 hour, 2. The holding time was changed to 5 hours, 1 feeding time, and 4 feeding hours, and this product was further treated according to Example 2.

斯くして樽られた硬化ノポラック繊維の硬化度は重量増
加率で夫々3.鴇重量%、5.2重量%、10.亀重量
%、14.7重量%、19.亀重量%、23.2重量%
、また繊維長は1仇岬、繊維径は23.7仏のものであ
った。これらの硬化ノポラック繊維の含有量が4の重量
%となるように実施例1に準じて成形して製品とした。
この場合の硬化ノポラック繊維の硬化度と強度、燃焼速
度及びロックゥェル硬さの関係についての結果を第3表
に示した。第 3 表 実施例 4 実施例2で得た未硬化ノボラック繊維を実施例2に準じ
て硬化し、硬化度がノボラック繊維に対して重量増加率
で19.亀重量%、繊維長15肌、平均繊維径5.1ム
、10.3仏、14.6仏、23.7r、32.6仏、
48.6〆のものを実施例1.と同じェポキシ樹脂に得
られる樹脂複合体に於ける繊維含有量を種々変化せしめ
て配合し、実施例1.に準じて成形して製品とした。
The degree of hardening of the cured noporac fibers thus barreled is 3. Tow weight %, 5.2 weight %, 10. Tortoise weight %, 14.7 weight %, 19. Turtle weight%, 23.2% by weight
Also, the fiber length was 1 x 1, and the fiber diameter was 23.7 x 1. A product was molded according to Example 1 so that the content of these cured nopolac fibers was 4% by weight.
Table 3 shows the relationship between the degree of hardening, strength, burning rate, and Rockwell hardness of the cured noporac fibers. Table 3 Example 4 The uncured novolac fiber obtained in Example 2 was cured according to Example 2, and the degree of curing was 19.5% in weight increase rate relative to the novolac fiber. Kame weight %, fiber length 15 skin, average fiber diameter 5.1 mm, 10.3 french, 14.6 french, 23.7r, 32.6 french,
Example 1.48.6. The same epoxy resin as in Example 1 was blended with various fiber contents in the resulting resin composite. It was molded into a product according to the following.

但し含有率が9の重量%を越えるものは満足な成形体が
得られなかった。この時のDM値と200oo、1.0
0餌時間の加熱エージング後の曲げ強度(Sk9/肋2
)を第4表に示した。
However, if the content exceeded 9% by weight, a satisfactory molded article could not be obtained. DM value at this time and 200oo, 1.0
Bending strength after heat aging with 0 feeding time (Sk9/rib2
) are shown in Table 4.

またこの時DM値、初期曲げ強度(So)、エージング
後曲げ強度(S)、(0.$o−S)値との関係を繊維
含有率2堰重量%、4の重量%、70重量%、9の雲量
%、繊維径5.1山、146仏、32.6仏、48.6
仏とについて示したのが第5表である。
In addition, at this time, the relationship between the DM value, initial bending strength (So), bending strength after aging (S), and (0.$o-S) value was determined based on the fiber content of 2% by weight, 4% by weight, and 70% by weight. , 9 cloud cover%, fiber diameter 5.1 mountains, 146 Buddhas, 32.6 Buddhas, 48.6
Table 5 shows the relationship between Buddha and Buddha.

尚、第4表、第5表に於て鎖線で囲まれた部分が本発明
例である。
In Tables 4 and 5, the portions surrounded by chain lines are examples of the present invention.

4 表 第 5 表 第5表のうち〔含量20一径5.1〕の例では繊維配合
樹脂の加熱成形時にェポキシ樹脂が流動性に富み、成形
に非常に手間どり、また得られた製品も熱耐久性の劣っ
たものであった。
4 Table 5 In the example of [Content 20 - Diameter 5.1] in Table 5, the epoxy resin has high fluidity during heat molding of the fiber blended resin, making molding very time-consuming and the resulting product also poor. It had poor heat durability.

また〔含量90一径48.6〕の例は成形前配合物が非
常に嵩高で成形もかなり困難であった。更に〔含量20
−径48.6)の例及び〔含量20一径32.6〕の例
(本発明例)の両者につき20000で更にエージング
を続けたところ前者は1.100時間のチェック時に複
合体表面に亀裂が見られたのに対し後者は1.50畑時
間のチェック時にも亀裂等の欠損は全くなかった。実施
例 5実施例2で得られた硬化ノポボック繊維のうち繊
維径10.3山のものを繊維長にカットし、これを用い
て繊維とェポキシ樹脂の配合を30/70、50/50
、90/10として実施例1に準じて成形し製品とした
Further, in the case of [content 90/diameter 48.6], the mixture before molding was very bulky and molding was quite difficult. Furthermore [content 20
- When aging was continued at 20,000 for both the example with diameter 48.6 and the example with content 20 and diameter 32.6 (example of the present invention), the former showed cracks on the composite surface when checked at 1.100 hours. On the other hand, the latter had no defects such as cracks even when checked after 1.50 field hours. Example 5 Among the cured Nopobok fibers obtained in Example 2, those with a fiber diameter of 10.3 mounds were cut into fiber lengths, and the fibers and epoxy resin were mixed in a ratio of 30/70 and 50/50.
, 90/10 and molded according to Example 1 to obtain a product.

この場合、加熱エージング時間を変化せしめ、**DM
値、初期強度(So)、夫々のエージング時間に於ける
エージング強度(St)及び〔0.$o−St〕値を示
したのが第6表である。
In this case, the heating aging time is changed, **DM
value, initial strength (So), aging strength (St) at each aging time, and [0. Table 6 shows the $o-St] values.

第 6 表 実施例 6 実施例1で得た硬化ノボラック繊維(繊維長5肋)、ア
スベスト(R−7)及びガラス繊維(10側)をェポキ
シ樹脂に40/60となるように配合濃練し実施例1に
準じて製品とした。
Table 6 Example 6 The cured novolac fiber (5 fiber length) obtained in Example 1, asbestos (R-7) and glass fiber (10 side) were mixed and thickened in an epoxy resin in a ratio of 40/60. A product was prepared according to Example 1.

この場合加熱エージングしないものと1餌時間、10鼠
時間、1.000時間処理したものの曲げ強度(St)
について示したのが第7表である。第7実施例 7 実施例1で得た硬化ノボラック繊維をェポキシ樹脂(実
施例1で用いたェポキシ樹脂、R301)、キシレン樹
脂(リグナィト欄製、リグノール)及びジアリルフタレ
ート樹脂(住友化学■製、ダポン)に実施例1に準じて
それぞれ35重量%となるように配合せしめて成形加工
製品とした。
In this case, the bending strength (St) of those without heat aging and those treated for 1 feeding time, 10 mouse hours, and 1.000 hours
Table 7 shows this. Seventh Example 7 The cured novolac fiber obtained in Example 1 was mixed with epoxy resin (the epoxy resin used in Example 1, R301), xylene resin (Lignite Co., Ltd., Lignol), and diallylphthalate resin (Sumitomo Chemical Co., Ltd., Dapon). ) were blended in a proportion of 35% by weight according to Example 1 to obtain a molded product.

またこれとは別に、アスベスト(R−7)を同じ処法で
配合混線、成形して製品とした。かくして得た硬化ノボ
ラック繊維及びアスベスト強化熱硬化性樹脂複合体の一
時的耐熱性と比曲げ強度について示したのが第8表であ
る。第8 硬化ノポラック繊維強化複合体に比べァスベスト強化複
合体は比強度に劣り、複合体の軽量化の点における困難
性も類える。
Separately, asbestos (R-7) was mixed, mixed, and molded using the same process to produce a product. Table 8 shows the temporary heat resistance and specific bending strength of the cured novolac fiber and asbestos-reinforced thermosetting resin composite thus obtained. No. 8 Asbestos-reinforced composites have lower specific strength than cured noporac fiber-reinforced composites, and have similar difficulties in reducing the weight of the composites.

Claims (1)

【特許請求の範囲】 1 ノポラツク樹脂を溶融紡糸して得た未硬化ノポラツ
ク繊維をアルデヒド類で硬化処理をした繊維径5〜50
μ、繊維長1〜20mmで且つ該硬化処理による重量増
加率が前記未硬化ノポラツク繊維重量の5〜20%であ
る硬化ノポラツク繊維をエポキシ樹脂に条件(I)15
≦M≦90・300≦D・M≦3600…(1)▲数式
、化学式、表等があります▼を満足するように配合混練
後成形し、続いて後硬化する。 200℃の温度で1.000時間の加熱エージングに対
し徳られるエポキシ樹脂複合体が式(II)0.9So−
S≦…(II)▲数式、化学式、表等があります▼ の熱耐久特性を有する硬化ノポラツク繊維強化エポキシ
樹脂複合体の製造法。 2 硬化ノポラツク繊維を酸性触媒とアルデヒド類の混
合水溶液中で、または該混合水溶液中で予備硬化したも
のを更に塩基性触媒とアルデヒド類の混合水溶液中で硬
化処理する特許請求の範囲第1項記載の製造法。 3 硬化ノポラツク繊維の繊維径が10〜40μである
特許請求の範囲第1項記載の製造法。 4 硬化ノポラツク繊維の繊維長が3〜15mmである
特許請求の範囲第1項記載の製造法。 5 硬化ノポラツク繊維の硬化処理による重量増加率が
未硬化ノポラツク繊維重量の7〜17%である特許請求
の範囲第1項記載の製造法。 6 エポキシ樹脂がビスフエノールAとエピクロルヒド
リンの縮合反応によつて生成したポリグリシジルエーテ
ルである特許請求の範囲第1項記載の製造法。 7 条件(1)に於いてMが30≦M≦85である特許
請求の範囲第1項記載の製造法。 8 条件(1)に於いてD・Mが500≦D・M≦32
00である特許請求の範囲第1項または第6項記載の製
造法。
[Scope of Claims] 1. Fiber diameter 5-50 obtained by curing uncured noporac fibers obtained by melt-spinning a noporac resin with aldehydes.
Condition (I) 15: cured noporac fibers having a fiber length of 1 to 20 mm and a weight increase rate of 5 to 20% of the weight of the uncured noporac fibers due to the curing treatment are used as an epoxy resin.
≦M≦90・300≦D・M≦3600…(1) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ After mixing and kneading, it is molded, and then it is post-cured. The epoxy resin composite obtained by heat aging for 1.000 hours at a temperature of 200°C has the formula (II) 0.9So-
S≦...(II) ▲Mathematical formulas, chemical formulas, tables, etc.▼ A method for producing a cured noporac fiber-reinforced epoxy resin composite having thermal durability properties. 2.Cured noporac fibers are cured in a mixed aqueous solution of an acidic catalyst and an aldehyde, or those precured in the mixed aqueous solution are further cured in a mixed aqueous solution of a basic catalyst and an aldehyde. manufacturing method. 3. The manufacturing method according to claim 1, wherein the cured noporak fiber has a fiber diameter of 10 to 40 μm. 4. The manufacturing method according to claim 1, wherein the cured noporak fiber has a fiber length of 3 to 15 mm. 5. The manufacturing method according to claim 1, wherein the weight increase rate of the cured noporac fibers due to the curing treatment is 7 to 17% of the weight of the uncured noporac fibers. 6. The manufacturing method according to claim 1, wherein the epoxy resin is a polyglycidyl ether produced by a condensation reaction of bisphenol A and epichlorohydrin. 7. The manufacturing method according to claim 1, wherein in condition (1), M is 30≦M≦85. 8 Under condition (1), D・M is 500≦D・M≦32
00. The manufacturing method according to claim 1 or 6.
JP2349177A 1977-03-03 1977-03-03 Method for producing cured novolac fiber reinforced epoxy resin composite Expired JPS6029728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2349177A JPS6029728B2 (en) 1977-03-03 1977-03-03 Method for producing cured novolac fiber reinforced epoxy resin composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2349177A JPS6029728B2 (en) 1977-03-03 1977-03-03 Method for producing cured novolac fiber reinforced epoxy resin composite

Publications (2)

Publication Number Publication Date
JPS53108153A JPS53108153A (en) 1978-09-20
JPS6029728B2 true JPS6029728B2 (en) 1985-07-12

Family

ID=12111969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2349177A Expired JPS6029728B2 (en) 1977-03-03 1977-03-03 Method for producing cured novolac fiber reinforced epoxy resin composite

Country Status (1)

Country Link
JP (1) JPS6029728B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179456A (en) * 1984-02-27 1985-09-13 Toshiba Chem Corp Heat-resistant resin molding composition
CN1073133C (en) * 1994-04-27 2001-10-17 松下电器产业株式会社 Thermosetting composition, molding material, molded structure, and method of decomposing them

Also Published As

Publication number Publication date
JPS53108153A (en) 1978-09-20

Similar Documents

Publication Publication Date Title
JPH11302507A (en) Epoxy resin composition for fiber-reinforced composite material, intermediate substrate for fiber-reinforced composite material and fiber-reinforced composite material
JPH01144462A (en) Blend of polyhydric phenol polycyanate ester and thermoplastic polymer
CN107108827B (en) Benzoxazine and composition containing benzoxazine
CN109929132B (en) High-strength glass fiber composite material and processing technology thereof
CN105754056A (en) Preparation method of carbon fiber modified phenolic resin and phenolic moulding plastic
WO2013027674A1 (en) Carbon fiber composite material
CN102295740A (en) Polyamideimide cured epoxy resin composite material and preparation method thereof
CN108299825B (en) Long-time high-temperature-resistant resin-based composite wave-transmitting material and preparation method thereof
JP5151095B2 (en) Prepreg and fiber reinforced composites
FI78489B (en) FOERFARANDE FOER HAERDNING AV FENOLHARTSER.
JPS6029728B2 (en) Method for producing cured novolac fiber reinforced epoxy resin composite
CN104177827A (en) Polysulfonamide-based carbon fiber reinforced composite material and preparation method thereof
WO2020019546A1 (en) Epoxy resin system used for pultrusion molding and composite material prepared thereby
CN104693691A (en) Halogen-free flame retardant vinyl ester resin compound and preparation method thereof
JP6467864B2 (en) Molding material, method for producing the same, and molded product
JP3498439B2 (en) Curable resin composition, molded article using the same, and method for producing the same
CN105367997A (en) Carbon fiber reinforcement phase epoxy resin based reinforced flame retardant composite material
EP1100674B1 (en) Resin transfer moulding
KR101864552B1 (en) Sizing agent for carbon-fiber, carbon-fiber and carbon-fiber reinforced plastic manufactured by using the same
JPS6315846A (en) Thermosetting resin composition
JPS5892547A (en) Manufacture of electric and electronic components
JPS6050827B2 (en) Heat-resistant phenolic resin composite with excellent heat durability
JPH04263671A (en) Fiber and resin useful as component thereof
JPH0839685A (en) Manufacture of fiber-reinforced film
KR20130094515A (en) Low temperature curing liquid hydroxymethyl thermoset composition and thermoset plastic material