JPS6029724A - Progressive multi-focus lens - Google Patents

Progressive multi-focus lens

Info

Publication number
JPS6029724A
JPS6029724A JP13876883A JP13876883A JPS6029724A JP S6029724 A JPS6029724 A JP S6029724A JP 13876883 A JP13876883 A JP 13876883A JP 13876883 A JP13876883 A JP 13876883A JP S6029724 A JPS6029724 A JP S6029724A
Authority
JP
Japan
Prior art keywords
astigmatism
lens
prism
area
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13876883A
Other languages
Japanese (ja)
Inventor
Shunei Shinohara
俊英 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP13876883A priority Critical patent/JPS6029724A/en
Priority to US06/557,978 priority patent/US4606626A/en
Priority to FR8319578A priority patent/FR2545615B1/en
Priority to DE3345076A priority patent/DE3345076C3/en
Publication of JPS6029724A publication Critical patent/JPS6029724A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • G02C7/063Shape of the progressive surface
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power

Abstract

PURPOSE:To easily improve the astigmatism of a progressive multi-focus lens which has a longsighted part area and a shortsighted part area by performing such simple work that a prism with a 90 deg. basic direction which is not for squint correction is added to the progressive multi-focus lens. CONSTITUTION:Prisms for squint corrections are not incorporated like a normal prism formula, and prisms having a 90 deg. basic direction are added equally to both right and left lens; and the astigmatism distribution of a one-side half part obtained by cutting the progressive multi-focus lens having a center A for longsight and a center B for short-sight along its main meridian shows a great decrease in astigmatism, specially, in a shortsighted area by adding the prism having the bases in a 90 deg. direction. The amount of added prisms is preferably set the best prism amount in a range from 1.0 to 6.0 prism diopter.

Description

【発明の詳細な説明】 本発明に、累進多焦点レンズの形状に関する。[Detailed description of the invention] The present invention relates to the shape of a progressive multifocal lens.

本発明の目的は、累進多焦点レンズの非点収差分布の改
善である。
An object of the present invention is to improve the astigmatism distribution of a progressive multifocal lens.

本発明の内容に入る前に累進多焦点レンズの特徴につい
て述べる。累進多焦点レンズは老視、すなわち眼の水晶
体の調節力の低下を補うものであり、レンズの上方半分
に遠くを見るための領域(遠用部領域)があり、レンズ
の下方に近くのものを見るための領域(近用部領域)が
あり、それら値域の間に中間距離のものを見るための領
域(中間部領述)がある。そして各領域は滑らかに連な
って1枚の非球面の゛レンズ屈折面を構成してい石。第
1図に一般的な累進多焦点レンズの構造を示す。この図
は累進多焦点レンズの前方屈折面を示しており、これの
裏側にあって共働して1枚のレンズを構成する後方屈折
面は省略されて−る。
Before entering into the details of the present invention, the characteristics of the progressive multifocal lens will be described. Progressive multifocal lenses compensate for presbyopia, a decline in the accommodative power of the eye's crystalline lens.The upper half of the lens has an area for seeing far away (distance area), and the lower part of the lens has an area for seeing near objects. There is an area for seeing (near area), and between these ranges there is an area for seeing things at intermediate distances (intermediate area). Each region is smoothly connected to form a single aspherical lens refractive surface. FIG. 1 shows the structure of a general progressive multifocal lens. This figure shows the front refractive surface of a progressive multifocal lens, and the rear refractive surface, which is located on the back side and cooperates to form one lens, is omitted.

図中のMはレンズの中央をほぼ垂直にはしる曲線で主子
午線と呼ばれる。この主子午Mixレンズのほぼ中心の
点Aよす上方では、はぼ同一の曲率半径r、を有し、点
Aより10数■下万の点Bより下方ではほぼ一定の曲率
半径rt(rt〈rt)を有し、寸たAからBの間でに
、連続的に変わる曲率半径r(r、<r<r□)′f、
有している。図中の4に、主子午線の曲率中心の位置の
変化を示す曲線、すなわち縮閉線である。このlAより
上方のレンズのほぼ上半分(図中1)が遠用部領域であ
り、Bよジ下方の部分(図中2)が近用部領域であジ、
その間の領域(図中3)が中間部領域である。眼鏡とし
て使用するときには、正面を見たときに視線がAの近傍
のやや遠用部領域の点を通るようにフィッティングされ
る。従って近用部領域ば眼鏡の下方のレンズ周辺部分に
位置する。通常の近視や遠視の矯正に使われる単焦点レ
ンズが遠くを見るときに熱論のこと、近く金兄るときも
レンズの中央部分を使う(読書時でもレンズ中心から5
〜81下7jの位置で見る)のに比べて、このことに累
進多焦点レンズの一つの特徴である。また他の特徴とし
ては、累進多焦点レンズが部分的に屈折力が太き(変わ
ることにより発生する、非点収差と像の歪曲がある。こ
れらはそれぞれ像のボケと視線ヲ動かしたときの像の揺
れとして知覚され、それを如何にして抑制するかが累進
多焦点レンズの課題である。そのために従米多くの研究
開発が行なわれ商品化されている。本発明者は特願昭5
5−171569および特願昭55−.1756011
Cおいて非点収差および像の歪曲を良好に抑制した累進
多焦点レンズ全提起した。それは、レンズ屈折面を遠用
中心ヶ通る曲線および近用中心を通る曲線によって遠用
部領域、中間部領域、近用部領域に分割し、主子午線に
平行に切ったときの任意のレンズ屈折面の断面曲線上で
その曲線上の各点の法線と主子午線を含む平面とのなす
角度が主子午線曲線上での曲率の変化の法則と同じ法則
に従って変化することを特徴としたものであり、それに
より非点収差の分布をなだらかなものとし、像の歪曲も
変化のゆるやかなものとしている。さらに遠用部領域お
よび近用部領域において中央部、主子午線近傍を球面あ
るいにほぼ球面としその外周部において主子午線に直角
な1同の曲率をその中央部よりそれぞれ増大および減少
させてることにより、像の歪曲を抑制し、中間部側方の
非点収差も小さくしている。
M in the figure is a curve that runs almost vertically through the center of the lens and is called the principal meridian. Above point A, which is approximately the center of this principal meridian Mix lens, the radius of curvature r is almost the same, and below point B, which is about 10 mm below point A, the radius of curvature rt (rt 〈rt), and the radius of curvature r(r, <r<r□)'f, which varies continuously between dimensions A and B,
have. 4 in the figure is a curve indicating a change in the position of the center of curvature of the principal meridian, that is, an evolute line. Approximately the upper half of the lens above lA (1 in the figure) is the distance vision area, and the part below B (2 in the figure) is the near vision area.
The area between them (3 in the figure) is the intermediate area. When used as eyeglasses, the glasses are fitted so that when viewed from the front, the line of sight passes through a point in the distance region near point A. Therefore, the near vision area is located at the lower lens periphery of the glasses. Single-focal lenses, which are used to correct myopia and farsightedness, use the central part of the lens when looking far away, and when looking at objects close up (even when reading, the central part of the lens is 5
This is one of the characteristics of a progressive multifocal lens. Other characteristics include astigmatism and image distortion, which occur when the refractive power of a progressive multifocal lens partially changes. It is perceived as image shaking, and how to suppress it is a problem for progressive multifocal lenses.For this purpose, much research and development has been carried out in the United States and commercialized.The inventor of the present invention filed a patent application in
5-171569 and patent application 1982-. 1756011
A progressive multifocal lens that satisfactorily suppresses astigmatism and image distortion has been proposed. It divides the lens refractive surface into a distance area, an intermediate area, and a near area by a curve passing through the center of distance vision and a curve passing through the center of near vision, and calculates the arbitrary lens refraction when cut parallel to the principal meridian. It is characterized in that the angle formed between the normal of each point on the cross-sectional curve of a surface and the plane containing the principal meridian changes according to the same law as the law of change of curvature on the principal meridian curve. This makes the distribution of astigmatism gentle and the distortion of the image changes gradually. Furthermore, in the distance and near vision regions, the central portion and the vicinity of the principal meridian are made spherical or nearly spherical, and the curvature perpendicular to the principal meridian is increased and decreased at the outer periphery, respectively, from the central portion. This suppresses image distortion and reduces lateral astigmatism at the intermediate portion.

さて累進多焦点レンズの形状を決定するものには上述の
ような各領域にわたっての曲面形状の構成の仕方の他に
、ペースカーブがある。累進多焦点レンズの場合ペース
カーブに遠用部領域での主要な部属折力(単位ζデイオ
ブトリー)として定義される。このベースカーブが決ま
れば、近用部領域のカーブがベースカーブvc別人度を
加算することにより自ずと決′119、それに前述のよ
うな水子方向での曲率の変化等を付〃口することにより
最終のレンズ屈折面の曲面形状が決まる。
Now, what determines the shape of a progressive multifocal lens is the pace curve, in addition to the method of configuring the curved surface shape over each region as described above. In the case of progressive multifocal lenses, the pace curve is defined as the main partial optical power (unit: ζ dioptre) in the distance vision region. Once this base curve is determined, the curve of the near vision area is automatically determined by adding the base curve VC's degree of human strength, and by adding the change in curvature in the water direction as described above. The final curved shape of the lens refractive surface is determined.

このペースカーブはレンズの光学特性に関してそのし/
ズの度委又とのIB】に密接な関係がある。すなわちレ
ンズの度数が指定された場合、光学的に最適のペースカ
ーブが限定されてくる。レンズ度数トベースカーブの関
係についてに古くから多くの研究がなされており、有名
なチェルニングの楕円もその1つである。第2図に、単
焦点球面レンズ全装用し、光軸からの角度(以下、視角
と称す)60°の方向を見たときの非点収差を縦l14
iIVCペースカーブ(Dl)、横軸にレンズ度数(p
w)をとって表わしたものである。図中の大線に、遠方
を見たとき(以下遠方視と称す)[非点収差を表わし、
笑線aは非点収差が零となるペースカーブと度数の関係
を表わす。破線は近くを見たとき(以下近万視と称す)
の非点収差全表わし、破線すは非点収差が零である。図
中の+、−の符号は、非点収差を構成する2つの主屈折
力(最大屈折力と最小屈折力。この2つの屈折力の差が
非点収差となる。)の方向を示している。+1J最大屈
折力がレンズの半径方向にあることを意味し、−ニそれ
がレンズの円周方向であることを意味する。レンズ度数
がマイナスの領域では、零の線より下方が一トなり、レ
ンズ度数がプラスの領域では零の線より上方が−となる
。そして非点収差の大きさは零の線から離れる程大きく
なる。一般の単焦点レンズにおいてに、遠くおよび近く
を見たときの非点収差を小さくするために遠方視の非点
収差零の線aと近万視の非点収差零の線すの間になるよ
うにレンズ度数に合せてベースカーブが設定される。
This pace curve is related to the optical properties of the lens.
There is a close relationship with the IB. That is, when the power of the lens is specified, the optically optimal pace curve is limited. Many studies have been conducted for a long time on the relationship between lens power and base curve, including the famous Czerning ellipse. Figure 2 shows the vertical astigmatism when looking at an angle of 60° from the optical axis (hereinafter referred to as the viewing angle) with all single focus spherical lenses installed.
iIVC pace curve (Dl), horizontal axis shows lens power (p
w). The large line in the figure shows that when looking into the distance (hereinafter referred to as far vision) [representing astigmatism,
Line a represents the relationship between the pace curve and the power at which the astigmatism becomes zero. The broken line is when looking close (hereinafter referred to as near-mansight)
The dashed line represents the total astigmatism, and the astigmatism is zero. The + and - signs in the figure indicate the directions of the two principal refractive powers (maximum refractive power and minimum refractive power. The difference between these two refractive powers becomes astigmatism). There is. +1J means that the maximum refractive power is in the radial direction of the lens, -2 means that it is in the circumferential direction of the lens. In an area where the lens power is negative, the area below the zero line is one, and in an area where the lens power is positive, the area above the zero line is -. The magnitude of astigmatism increases as the distance from the zero line increases. In general single vision lenses, in order to reduce astigmatism when looking far and near, the line is between the zero astigmatism line a for distance vision and the zero astigmatism line a for near vision. The base curve is set according to the lens power.

さて累進多焦点レンズの場合は、ベースカーブの設定が
前述の単焦点球面レンズに比べ複雑である。それは先に
述べた累進多焦点レンズの使用上ンズでに、領域と見る
物の距離が決1っているので遠用部領域でに、遠方視し
たときに非点収差が小さいことが条件となり、近用部領
域では近万視したときの非点収差が小さいことが条件と
なる。
Now, in the case of a progressive multifocal lens, the setting of the base curve is more complicated than that of the above-mentioned single focus spherical lens. This is because when using a progressive multifocal lens as mentioned earlier, the distance between the lens area and the object being viewed is fixed, so it is necessary that astigmatism be small when viewing from a distance in the distance area. In the near vision region, the condition is that astigmatism when viewing near is small.

第6図は、累進多焦点レンズの場合の非点収差に関する
レンズ度数とベースカーブの関係を表わしている。図の
表わし万は第2図と同じである。累進多焦点レンズにお
いて、遠方視は単焦点球面レンズと同じであるが、近万
視は近用品領域の曲率中心が第1図のようにレンズ光軸
上にないため非点収差の零の線すが図に示すように単焦
点球面レンズに比ベマイナス度数側では下方に、プラス
度数側では上方にある。この図でに、近用部領域の曲率
中心の光軸に対する偏心k 3 ngとしたもので、偏
心が大きくなる−とこの傾向も大となる。ここで注意し
ておかねばならないことは、累進多焦点レンズにおいて
、近万視に近用部領域においてのみされるため、近万視
の場合のこ0図の縦軸のベースカーブと横細の度数はそ
れぞれ近用部領域での曲屈折力および度数であジ、累進
多焦点レンズでのいわゆるベースカーブおよび度数とは
異なるということである。たとえばベースカーブ4.5
D(Dはデイオプトリーの略)、刀U人度ZOD、度!
、X−6Dの累進多焦点レンズでに、近用部領域の部属
折力i6.5D、度数に−4,5Dとなる。この例の場
合の視角30°方向の非点収差は、図上で通用部領域で
は71近川部領域ではEで表される。
FIG. 6 shows the relationship between lens power and base curve regarding astigmatism in the case of a progressive multifocal lens. The representation of the figure is the same as in Figure 2. In a progressive multifocal lens, distance vision is the same as a single vision spherical lens, but in near vision, the center of curvature of the near vision area is not on the lens optical axis as shown in Figure 1, so the zero line of astigmatism However, as shown in the figure, compared to a single focus spherical lens, it is lower on the negative power side and upward on the positive power side. In this figure, the eccentricity of the center of curvature of the near vision region with respect to the optical axis is k 3 ng, and as the eccentricity increases, this tendency also increases. It should be noted here that with progressive multifocal lenses, near vision occurs only in the near vision area, so the base curve of the vertical axis in Figure 0 in the case of near vision and the horizontal narrow The dioptric power refers to the dioptric power and dioptric power in the near vision region, respectively, and is different from the so-called base curve and dioptric power of a progressive multifocal lens. For example, base curve 4.5
D (D stands for diopter), Katana Ujindo ZOD, degree!
, X-6D progressive multifocal lens has a partial optical power in the near vision area of i6.5D and a dioptric power of -4.5D. In this example, the astigmatism in the 30° visual angle direction is represented by 71 in the common area and E in the near river area in the figure.

この図から、このレンズでば遠用部領域は非点収差が小
さく良好であるが、近用部領域では非点収差が非常に大
きいことがわかる。−万、ベースカーブ4.5D、加入
度2.0Dの同じ形状の屈折面をもツ累進多焦点レンズ
であっても、レンズ度数力CLODのときには1上で遠
用部領域がF/、近用部領域がE′となり、ともに非点
収差が小さいことがわかる。これを具体的に表わしたの
が第4図と第5図である。
From this figure, it can be seen that with this lens, astigmatism is small and good in the far vision region, but astigmatism is very large in the near vision region. - Even if a progressive multifocal lens has a refractive surface of the same shape with a base curve of 4.5D and an addition power of 2.0D, when the lens power is CLOD, the distance area is F/, and the near area is above 1. The active area is E', and it can be seen that astigmatism is small in both cases. This is concretely shown in FIGS. 4 and 5.

第4図、第5図は先に述べた特願昭55−175,60
1によるレンズで、ベースカーブ4.5D、加入度2.
0Dの同じ屈折面形状を前方屈折面としてもつレンズで
ある。第4図に、レンズ度数−6,ODのもの、第sp
′j!Jはレンズ度数αODのものである。
Figures 4 and 5 are the patent application filed in 1975-175, 1960 mentioned above.
1 lens, base curve 4.5D, add power 2.
This lens has the same 0D refractive surface shape as the front refractive surface. Figure 4 shows the lens power -6, OD, sp.
'j! J is the lens power αOD.

両図とも(a)は主子午線から切ったレンズ片側半分の
非点収差分布s (b)a同半分の非点収差の最大屈折
力の方向(以下、非点収差の方向と称す)とその大きさ
を示しており、座標軸は視角である。
In both figures, (a) shows the astigmatism distribution s of one half of the lens cut from the principal meridian. (b) A shows the direction of the maximum refractive power of the astigmatism in the same half (hereinafter referred to as the direction of astigmatism) and its direction. It shows the size, and the coordinate axis is the viewing angle.

((b)図は上部および側方の一部を省略)図中のA。((b) figure omits the upper part and part of the side) A in the figure.

Bl)それぞれ遠用中心および近用中心kaわす。Bl) Distance center and near center kawasu, respectively.

第4図において近用部領域(およそ成句30°より下方
の部分)に大きな非点収差が見られ、その非点収差の方
向はほぼ垂直方向である。また中間部領域の側方にも大
きな非点収差がある。−1第5図においては全ての領域
において非点収差が小さい。この2つのレンズの非点収
差の違いに、つぎのように説明される。非球面レンズの
非点収差に2つの要因に別けて考えることができる。そ
の1つはレンズの屈折面自体がもっている非点収差であ
り、レンズの屈折面が非球面であることによって生ずる
ものである。これを非球面要因と呼ぶことにする。もち
ろん球面の屈折面でにこの要因に無い。他の1つ要因に
、先に述べたベースカーブとレンズ度数との関係から生
ずるものである。これヲベースカープ要因と呼ぶことに
する。前出の第2,3図はベースカーブ要因を表わすも
のである。この2つの要因により第4図と第1図の2つ
のレンズの非点収差の差が説明される。すなわち両レン
ズにおいて、前方屈折面の非球面形状は同じであり後方
屈折面ばどもに球面であるため非球面要因は同じである
。従って両レンズの非点収差の違いはベースカーブ要因
によるものである。このことは第6図に示した両レンズ
のベース・カーブ要因の差と第4図、第5図の非点収差
の差が良く対−していることにより証明される。詳しく
説明すると、第50のレンズ度数αODのものでは、第
3図に示すようにベースカーブ要因は非常にノ」\さく
、非点収差にほとんど非球面要因によるもの “である
。第5図(b)において遠用部領域の側方部では非点収
差の方向が水平方向であ、0、近用部領域の側方では非
点収差の方向が垂直方向である。これは前述の像の歪曲
および中間部側方の非点収差を抑制するための形状、す
なわちレンズの水平方向断面の形状がレンズの側方にお
いて、遠用部領域の場合に曲率が増加し近用部領域の場
合は曲率が減少する形状にしたためである。第4図のし
・ンズはこのような非球゛゛面要因に対して、第3図の
FおよびEのベースカーブ要因が付加されたもので遠用
部領域では小さな十方向の非点収差、すなわちレンズ中
央に向かう方向の非点収光が、近用部領域では大きな十
方向の非点収差が付加されている。このことは第4図(
b)によって確認される。特に近用部領域においてに、
非球面安置の非点収差の方“向とベースカーブ要因の非
点収差の方向がほぼ同じ方向にするために、側方部での
非点収差が急激に増加されるのがわかる。
In FIG. 4, large astigmatism is seen in the near vision region (approximately below 30°), and the direction of the astigmatism is approximately vertical. There is also large astigmatism on the sides of the intermediate region. -1 In FIG. 5, astigmatism is small in all regions. The difference in astigmatism between these two lenses is explained as follows. The astigmatism of an aspherical lens can be considered separately into two factors. One of them is astigmatism, which the refractive surface of the lens itself has, and is caused by the fact that the refractive surface of the lens is an aspherical surface. This will be called the aspherical factor. Of course, this factor does not apply to spherical refractive surfaces. Another factor arises from the relationship between the base curve and lens power mentioned above. We will call this the Wobase Carp factor. Figures 2 and 3 above show the base curve factors. These two factors explain the difference in astigmatism between the two lenses of FIG. 4 and FIG. 1. That is, in both lenses, the aspherical shape of the front refractive surface is the same and the rear refractive surface is also spherical, so the aspherical factors are the same. Therefore, the difference in astigmatism between both lenses is due to the base curve factor. This is proven by the fact that the difference in base curve factors of both lenses shown in FIG. 6 and the difference in astigmatism shown in FIGS. 4 and 5 correspond well. To explain in detail, in the case of the 50th lens power αOD, the base curve factor is very small as shown in Fig. 3, and the astigmatism is mostly due to the aspherical factor. Fig. 5 ( In b), the direction of astigmatism is horizontal in the lateral part of the distance vision area, and the direction of astigmatism is vertical in the lateral part of the near vision area. The shape for suppressing distortion and intermediate lateral astigmatism, that is, the shape of the horizontal cross section of the lens, increases in curvature in the distance region and increases in the near vision region. This is because the shape has a decreasing curvature.The lenses in Figure 4 are the addition of the base curve factors F and E in Figure 3 to such aspherical surface factors, and the distance vision area is In the near vision area, a small astigmatism in the ten directions, that is, astigmatism in the direction toward the center of the lens, is added, and in the near vision area, a large astigmatism in the ten directions is added.This can be seen in Figure 4 (
b) is confirmed by Especially in the near vision area,
It can be seen that because the direction of the astigmatism due to the aspherical surface placement and the direction of the astigmatism due to the base curve factor are almost the same, the astigmatism at the side portions increases rapidly.

さて、この第4肉のレンズは近用部領域の非点収差が大
きく使用に適しにくいのは明らかである。
Now, it is clear that this fourth lens has a large astigmatism in the near vision region and is not suitable for use.

そこで当然ベースカーブを変えることが考えられる。第
3図のベースカーブ要因の図から、ベース−カーブ全4
.5Dより下げて2.5DKすれば、良くなるのでにな
いかと容易に推測される。しかし失踪にはそう簡単では
ない。っぎの第6図に、第4図のレンズのベースカーブ
i2.5DEしたものである。このレンズにおいて非球
面要因は第4図のものと同じである。(a)に示す非点
収差分布を第4図のものと比べて見ると、近用部領域の
非点収差が相変らず大きくほとんど改善されていない。
Therefore, it is natural to consider changing the base curve. From the diagram of base curve factors in Figure 3, all 4 base curves
.. It is easy to guess that it would be better if it was lower than 5D to 2.5DK. However, it is not so easy to disappear. Figure 6 shows the base curve i2.5DE of the lens in Figure 4. In this lens, the aspherical factors are the same as those in FIG. Comparing the astigmatism distribution shown in FIG. 4 with that shown in FIG. 4, the astigmatism in the near vision region remains large and has hardly been improved.

これに−見第6図に示したベースカーブ要因の変化と矛
盾するようであるが、そうではない。第6図の破線で示
した近方視時の非点収差に近用部領域の曲率中心の偏心
が3mmの場合のものであり、ベースカーブが小さくな
れば同じ加入度でも偏心が大きくなり、第3図のものよ
り+側に非点収差が変化する、このレンズの場合+c[
+l 2 Dはど第3図のものに付加される。このため
第6図のものの近用部領域の非点収差に、第4図のもの
とほとんど同じとなってしまうのである。一方遠用部領
域の上部側方においては、非点収差の非球面要因が水平
方向の方向をもっているところに、ベースカーブ要因が
一方向、すなわちレンズ中心に対して円周方向に作用す
ることにより両安因が加算され非点収差が大きくなって
いる。
This may seem to contradict the change in base curve factors shown in FIG. 6, but this is not the case. The astigmatism in near vision shown by the broken line in Fig. 6 is for a case where the eccentricity of the center of curvature in the near vision region is 3 mm, and as the base curve becomes smaller, the eccentricity increases even with the same addition power. In the case of this lens, where the astigmatism changes to the + side compared to the one in Figure 3, +c[
+l 2 D is added to the one in FIG. For this reason, the astigmatism in the near region of the lens shown in FIG. 6 is almost the same as that of the lens shown in FIG. 4. On the other hand, in the upper side of the distance region, where the aspherical factor of astigmatism has a horizontal direction, the base curve factor acts in one direction, that is, in the circumferential direction with respect to the lens center. Both factors are added together, and the astigmatism becomes large.

以上述べたように、累進多焦点レンズにおいてはベース
カーブの設定に単焦点球面レンズと違って非常に複雑で
あり、先の例のように単純にベースカーブの設定の仕方
だけでに、満足な性能全量し得ない場合もある。本発明
はこのような累進多焦点レンズにおいて復硫なレンズ設
計tすることなく、安易な方法で非点収差の改善を図る
ものである。
As mentioned above, the setting of the base curve for progressive multifocal lenses is very complicated, unlike that for single-focal spherical lenses, and it is not possible to be satisfied with simply setting the base curve as in the previous example. In some cases, full performance may not be achieved. The present invention aims to improve astigmatism in such a progressive multifocal lens by a simple method without designing a resulfurized lens.

以下、本発明を実施例を含めて詳細に説明する。Hereinafter, the present invention will be explained in detail including Examples.

第7図に、本発明の一つの実施例である。このレンズに
、前面の非球面屈折面ば先の第4図と同じでアル。従っ
てベースカーブは4.5D、加入度i2.OD’tl’
アル。レンズ度数も−6,、o D ?同’ L テあ
るが、90°方向に基底をもつプリズム(い2りゆる了
ツブプリズム・)が2.0プリズムデイオグトリ付加し
てああ。この基底方向90°のプリズムを付けるのが本
発明の特徴であり、Cのプリズムは眼鏡の左右両レンズ
に等しく付加されるもので通常のプリズム処方のように
斜視の矯正を目的にしたり、左右レンズKi%底方向2
7o0のプリズムを入れてプラスレンズの薄形化を図る
ものとは異なっている。
FIG. 7 shows one embodiment of the present invention. The front aspherical refractive surface of this lens is the same as shown in Figure 4. Therefore, the base curve is 4.5D and the addition i2. OD'tl'
Al. The lens power is also -6, o D? There is the same L type, but a prism with a base in the 90° direction (2.0-degree prism) is added to the 2.0 prism diagonal. The feature of the present invention is to attach a prism with a base direction of 90°.The C prism is attached equally to both the left and right lenses of glasses, and can be used for the purpose of correcting strabismus like a normal prism prescription, or for the purpose of correcting strabismus on both sides. Lens Ki% bottom direction 2
This is different from the case where a 7o0 prism is inserted to make the plus lens thinner.

さて第7囚と第4図を比較すれば本発明の効果に明らか
である。本発明のものぼ近用部領域おいて著しい非点収
差の減少がみられ、中間部領域の側方においても非点収
差が減少し改善されている。
Now, if we compare Figure 4 with Figure 7, the effects of the present invention will become clear. In the object of the present invention, astigmatism is significantly reduced in the near vision region, and astigmatism is also reduced and improved on the sides of the intermediate region.

遠用部領域においてに、上方部分においてに多少悪くな
っているが、側方部分では非点収差の小さな領域が筆4
図のも・のよシ下方に下がっておシ。
In the distance area, the astigmatism is slightly worse in the upper part, but in the side part, the area with small astigmatism is
As shown in the figure, it is lowered downwards.

失踪にフレームにレンズを入れるときにレンズの上部に
カットされることを考えると改善されていると言える。
Considering that the top of the lens is cut when inserting the lens into the frame, this is an improvement.

本発明の効果に第8図によシ説明できる。第8図は基底
方向90’のプリズムを2.0プリズムデイオプ) U
−付加したときの遠方視および近方視(視角にともに5
0’で第2,5崗のものと同じ)のベースカーブとレン
ズ度数と非点収差の関係を表わしている。)また第3図
と同じく近用部領域の偏心を3IfIlとしている。こ
の図から基底方向90’のプリズムを付加することによ
り、遠方視の場合に非点収差が+側に移行し、近方視の
場合は非点収差が一側に移行することがわかる。従って
近用部領域では、大きな非点収差を生ずる原因となって
いた十方向の非点収差が減少することにより、′また遠
用部領域でに側方部での非球面要因と相殺する方向゛の
十方向の非点収差が増えることにより先述の効果が得ら
れる。
The effects of the present invention can be explained with reference to FIG. Figure 8 shows a prism with a base direction of 90' as a 2.0 prism diopter) U
- Distance vision and near vision when added (both visual angles are 5
0' (same as the 2nd and 5th curves), the relationship between the lens power and astigmatism. ) Also, as in FIG. 3, the eccentricity of the near vision region is set to 3IfIl. From this figure, it can be seen that by adding a prism in the base direction 90', astigmatism shifts to the + side in the case of far vision, and shifts to one side in the case of near vision. Therefore, in the near vision region, astigmatism in ten directions, which was the cause of large astigmatism, is reduced, and in the distance vision region, the astigmatism in the lateral regions is offset by the aspherical factor. The above-mentioned effect can be obtained by increasing the astigmatism in the ten directions.

第8図に示すような、基底方向90°のプリズム付加に
よる非点収差の変化、すなわちベースカーブ要因の変化
にプリズムの量に関係し、プリズム量が増えるほど遠方
視でにより+側に近方視ではより一側に移行する。従っ
て付加するプリズム量はベースカーブ、レンズ度数、レ
ンズ屈折面の設計等に応じてi&適のプリズムを8択す
ることができる。本発明者の餠究によれば、付加するプ
リズム量11’ls ”0プリズムデイオブトリーより
少ないものでは、あ1υ効来がなく、&0プリズムデイ
オプトリーを越えるものでは前述のベースカーブ要因の
変化が過多になり、逆にレンズ性能を損なうようになる
。また大きなプリズムの付加はレンズの外観にも影響を
もつので、それも考慮して1.0〜6.0プリズムデイ
オブトリーの軸面で最適のプリズム量を設定することが
望ましい。
As shown in Figure 8, the change in astigmatism due to the addition of a 90° prism in the base direction, that is, the change in the base curve factor, is related to the amount of prism. Visually, it shifts to one side. Therefore, the amount of prism to be added can be selected from eight i&appropriate prisms depending on the base curve, lens power, design of lens refractive surface, etc. According to the inventor's research, if the amount of added prism is less than 11'ls'0 prism diopter, there will be no effect, and if it exceeds &0 prism diopter, the above-mentioned base curve factor will be affected. This will result in too many changes, which will actually impair the lens performance.In addition, adding a large prism will also affect the appearance of the lens, so take this into consideration when setting the axis of the 1.0 to 6.0 prism diopter. It is desirable to set the optimum amount of prism for the surface.

また本発明の他の効果としては、レンズ種類の減少が挙
げられる。つまり通常の累進多焦点レンズではレンズの
度数に応じて何梅類かのベースカーブの異なるレンズを
揃えているが、本発明のようKi底方向90°にプリズ
ムを入れることによりまたそのプリズム量を種々に変え
ることにより、広い度数の範囲を1槌類のベースカーブ
でカッ(−2できるようにな9、レンズの種空を減らす
ことができる。このことはレンズの量産にとって有利と
なる。
Another effect of the present invention is a reduction in the number of types of lenses. In other words, normal progressive multifocal lenses have lenses with different base curves depending on the power of the lens, but by inserting a prism at 90° in the Ki base direction as in the present invention, the amount of prism can be reduced. By making various changes, it is possible to cover a wide range of dioptric power with a single base curve (-2), thereby reducing the amount of space required for the lens. This is advantageous for mass production of lenses.

以上の説明の如く、本発明によれば基底方向90°のプ
リズムを付加するという簡単な加工を施すだけで、客員
に非点収差の改良が可能である。
As described above, according to the present invention, it is possible to improve the astigmatism of the passenger by simply adding a prism of 90° in the base direction.

なお、本発明の実施例においてハ説明を簡便にスルタめ
にレンズの主子午線方向に7” IJ スムfzX入る
ものとして説明したが、実際の累進多焦点レンズのよう
に近方視時の幅晴を考慮して主子午線を数度傾ける場合
にも、本発明の効果に変らない。
In addition, in the embodiments of the present invention, the description has been made assuming that 7" IJ sum fz Even if the principal meridian is tilted several degrees in consideration of the above, the effect of the present invention remains unchanged.

また実施例としてマイナス度数のレンズを挙げたが、基
底方向のプリズム付加による前述のブ1ノズムW因の変
化にプラス度数レンズにおいても同様であるので、プラ
ス度数レンズでも同様の効果力;・(4)うれる。さら
にプリズムの基底方向力590°1若干ずれるものであ
っても、本発明の範囲を出な
In addition, although a negative power lens was given as an example, the above-mentioned change in the B1 nosm W factor due to the addition of a prism in the base direction is the same for a positive power lens, so a positive power lens also has the same effect;・( 4) I'm happy. Furthermore, even if the base direction force of the prism is slightly deviated by 590 degrees, it does not fall outside the scope of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は累進多焦点レンズの屈折面の−ff的形状。1
・・・遠用部領域 2・・・近用部領域 5・・・中1
田部領域 4・・・主子午線の縮閉線 A・・・遠ID
中Ic?B・・・近用中r19 M・・・主子午線 r
、・・・遠用部1IiA域での主子午線の曲率半径 r
、・・・近用部領域での主子午線の曲率半径 r・・・
中間部領域での主子午線上の1点における曲率半径 第2図は、単焦点球面レンズでのベースカーブ□ レン
ズ度数と視角30°方向での非点収差の関係図。 縦軸D1・・・ベースカーブ 横II411pw・・・
レンズ度数 実線・・・遠方視時の等非点収差線 破線
・・・近方視吟の等非点収差線 a・・・遠方視時の非
点収差零の線 b・・・近方視時の非点収差零あ線第3
図は、累進多焦点レンズでのベースカーブレンズ度数と
視角、30°方向゛での非点収差の関係図。 第4図に、□ベースカーブ4.5D、加入度2.OD。 レンズ度数−6,0Dの従来の累進多焦点レンズの非点
収差分布図および非点収差方向図。 (a)・・・非点収差分布図 (ロ)・・・非点収差の
方向図第5図に1ペースカーブ4..5 I)、 71
0人度2.OD。 レンズ度数(LODの従来の累進多焦点レンズの非点収
差分布図(a)および非点収差方向図(b)。 第6図は、ベースカーブ2.6D1加入度2.ODルン
ズ夏数−&ODの従来の累進多焦点レンズの非点収差分
布図(a)および非点収差方向図(b)。 第7図に、第4図の累進多焦点レンズに本発明を施した
実施例の非点収差分布図(a)および非点収差方向図(
b)。 第8図に、本発明を応用したときの累進多焦点レンズの
ベースカーブ、Vンズ度数と視角30°方向での非点収
差の関係図。 以 上 第1図 (0L) Cb) 第5図 (α) (b) 第6図 (a) 第7 (bン 図
FIG. 1 shows the -ff shape of the refractive surface of a progressive multifocal lens. 1
...Distance area 2...Near vision area 5...Medium 1
Tabe area 4...Evolute line of main meridian A...Far ID
Middle Ic? B... Near r19 M... Principal meridian r
, ... radius of curvature of the principal meridian in the distance part 1IiA region r
,...Radius of curvature of the principal meridian in the near area r...
Radius of curvature at one point on the principal meridian in the intermediate region Figure 2 shows the relationship between the base curve □ of a single focus spherical lens and the astigmatism at a visual angle of 30 degrees. Vertical axis D1...Base curve Horizontal II411pw...
Lens power Solid line: Isoastigmatism line for far vision Broken line: Isoastigmatism line for near vision a: Line of zero astigmatism for far vision b: Line of zero astigmatism for near vision Astigmatism zero line 3rd
The figure is a diagram showing the relationship between base curve lens power, visual angle, and astigmatism in the 30° direction in a progressive multifocal lens. In Fig. 4, □ base curve 4.5D, addition power 2. O.D. FIG. 3 is an astigmatism distribution diagram and an astigmatism direction diagram of a conventional progressive multifocal lens having a lens power of -6.0D. (a) Astigmatism distribution diagram (b) Direction diagram of astigmatism Figure 5 shows 1 pace curve 4. .. 5 I), 71
0 people degree 2. O.D. Lens power (LOD) of conventional progressive multifocal lens astigmatism distribution diagram (a) and astigmatism direction diagram (b). Figure 6 shows base curve 2.6D1 addition power 2.OD Luns summer number -&OD Fig. 7 shows an astigmatism distribution diagram (a) and an astigmatism direction diagram (b) of a conventional progressive multifocal lens. Aberration distribution diagram (a) and astigmatism direction diagram (
b). FIG. 8 is a diagram showing the relationship between the base curve, V-lens power, and astigmatism at a visual angle of 30° of a progressive multifocal lens to which the present invention is applied. Above Figure 1 (0L) Cb) Figure 5 (α) (b) Figure 6 (a) Figure 7 (b)

Claims (1)

【特許請求の範囲】 (1) レンズ屈折面の水平方向断面の曲率が側方にお
いて中央部より増大する遠用部領域および前記水平方向
断面の曲率が側方部において中央部より減少する近用部
領域の少なくとも一万を有する累進多焦点レンズにおい
て、斜視矯正を目的としない基底方向90度のプリズム
を有することを特徴とする累進多焦点レンズ。 (2)前記プリズムの大きさP(単位aプ17ズムデイ
オプトリー)が 1.0≦P≦6.0 であることを特徴とする特許請求範囲第1項記載の累進
多焦点レンズ。
[Scope of Claims] (1) A distance vision region where the curvature of the horizontal section of the refractive surface of the lens is greater at the sides than at the center, and a near vision region where the curvature of the horizontal section is smaller at the sides than at the center. What is claimed is: 1. A progressive multifocal lens having at least 10,000 partial regions, characterized in that it has a prism with a base direction of 90 degrees that is not intended for strabismus correction. (2) The progressive multifocal lens according to claim 1, wherein the size P (unit: a prism diopter) of the prism satisfies 1.0≦P≦6.0.
JP13876883A 1982-12-13 1983-07-29 Progressive multi-focus lens Pending JPS6029724A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13876883A JPS6029724A (en) 1983-07-29 1983-07-29 Progressive multi-focus lens
US06/557,978 US4606626A (en) 1982-12-13 1983-12-05 Progressive multifocal ophthalmic lenses with prism for correcting chromatic aberration
FR8319578A FR2545615B1 (en) 1982-12-13 1983-12-07 PROGRESSIVE MULTIFOCAL OPHTHALMIC LENS
DE3345076A DE3345076C3 (en) 1982-12-13 1983-12-13 Spectacle lens with a varifocal surface, the far part being designed to correct myopia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13876883A JPS6029724A (en) 1983-07-29 1983-07-29 Progressive multi-focus lens

Publications (1)

Publication Number Publication Date
JPS6029724A true JPS6029724A (en) 1985-02-15

Family

ID=15229738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13876883A Pending JPS6029724A (en) 1982-12-13 1983-07-29 Progressive multi-focus lens

Country Status (1)

Country Link
JP (1) JPS6029724A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992012452A1 (en) * 1990-12-27 1992-07-23 Seiko Epson Corporation Progressive lens
JP3852116B2 (en) * 1995-11-24 2006-11-29 セイコーエプソン株式会社 Progressive multifocal lens and spectacle lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992012452A1 (en) * 1990-12-27 1992-07-23 Seiko Epson Corporation Progressive lens
JP3852116B2 (en) * 1995-11-24 2006-11-29 セイコーエプソン株式会社 Progressive multifocal lens and spectacle lens

Similar Documents

Publication Publication Date Title
US4606626A (en) Progressive multifocal ophthalmic lenses with prism for correcting chromatic aberration
KR101523407B1 (en) Ophthalmic lens element
US8807747B2 (en) Spectacle eyeglass for myopic child
US7070274B2 (en) Spectacle lens
US4762408A (en) Progressive multifocal lens and spectacles using same
US8042940B2 (en) Opthalmic lenses having reduced base out prism
JP5542447B2 (en) Method for determining a single focus spectacle lens and single focus spectacle lens
GB1580484A (en) Progressive ophthalmic lens
JPH06313866A (en) Gradual-advance multifocal ophthalmic lens pair
JPS62500613A (en) Spectacle lenses for half-eye glasses
WO1998022848A1 (en) Ophthalmic no-line progressive addition lenses
EP0702257A2 (en) Progressive power presbyopia-correcting ophthalmic lenses
JP2576054B2 (en) Progressive multifocal lens
JP4618656B2 (en) Progressive multifocal lens series
JP4380887B2 (en) Progressive multifocal lens
US5506630A (en) Progressive multifocal lens
JPH0812339B2 (en) Eyeglass lens
JPS6029724A (en) Progressive multi-focus lens
JP3611155B2 (en) Progressive multifocal lens
JP3495437B2 (en) Progressive multifocal lens
JPH07294859A (en) Progressive multi-focus lens
JPH08114775A (en) Lens for correcting presbyopia
JPS6061719A (en) Progressive multifocus lens
AU2020268978A1 (en) Method for designing edge to edge photochromic soft contact lenses
JPH085967A (en) Aspherical spectacle lens