JPS6029632A - Leak inspecting device - Google Patents

Leak inspecting device

Info

Publication number
JPS6029632A
JPS6029632A JP13796683A JP13796683A JPS6029632A JP S6029632 A JPS6029632 A JP S6029632A JP 13796683 A JP13796683 A JP 13796683A JP 13796683 A JP13796683 A JP 13796683A JP S6029632 A JPS6029632 A JP S6029632A
Authority
JP
Japan
Prior art keywords
inspected
leak
sensor
foam
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13796683A
Other languages
Japanese (ja)
Inventor
Shinji Okamoto
岡本 紳二
Kazunari Yoshimura
一成 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP13796683A priority Critical patent/JPS6029632A/en
Publication of JPS6029632A publication Critical patent/JPS6029632A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/06Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by observing bubbles in a liquid pool

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To automate an inspecting work by detecting regular reflected light by a leak foam, by two sensor arrays in the X-Y directions, deriving the X-Y coordinates, and displaying a leak position. CONSTITUTION:Plural objects to be inspected 5 are submerged onto the bottom face of a liquid tank 3, and generation of a foam from the object to be inspected of sealing-up failure is quickened by heating the object to be inspected 5 by a heater part 6. When the foam rises and is positioned on a detecting plane A of X and Y sensor arrays 7, 8, light from an illuminating device 1 is regularly reflected by the surface of the foam, and made incident to one sensor of the sensor arrays corresponding to the foam generated position. The sensor arrays 7, 8 are constituted so that parallel lights are made incident into the long cylindrical direction, therefore, the light which is made incident by being regularly reflected by a foam B is irradiated to a photosensor 10 provided on the end of a long cylinder 9 and detected.

Description

【発明の詳細な説明】 (技術分野) 本発明は密封型リレー、半導体デバイス等の気密性全検
査するリーク検査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a leak testing device for completely testing the airtightness of sealed relays, semiconductor devices, and the like.

(背景技術9 従来、気密性を検査するり−ク検査方法としては、 (イ)液中で気泡発生ケ検出する。(Background technology 9 Conventionally, the leak inspection method for inspecting airtightness is as follows: (b) Detect the generation of bubbles in the liquid.

(ロ)ヘリウムガスケ被検査物内に注入しておき、その
リーク全ヘリウム検出器で検出する。
(b) Helium gasket is injected into the object to be inspected, and leaks are detected using a total helium detector.

(ハ)リーク時の音または茹汁波を検出する。(c) Detecting the sound or boiling water wave at the time of leakage.

等の方式があるが、密封=a IJシレー半導体デノ(
イス等の小物量産品の場合は(イ)の方式が多く用いら
れている。すなわち、フロロカーボン液のような液中に
被検査物全入れた後、加熱等により気泡発生全促進させ
、リークVこよる気泡?肉眼で観察し検査する方法であ
る。
There are other methods such as sealing = a IJ Sire semiconductor deno (
Method (a) is often used for small mass-produced items such as chairs. That is, after placing the entire object to be inspected in a liquid such as fluorocarbon liquid, the generation of bubbles is fully promoted by heating, etc., and the bubbles caused by leakage V? This is a method of visual observation and inspection.

第1図は上記の方法ケ自動化した従来の検査装置の一例
を示したもので、1は照明装置u、2は工業用テレビカ
メラ(iTVカメラ)、3r/i液槽、4はフロロカー
ボン液の如き検査液、5Qま複数個隣接して並べらnた
被検査物、6は気泡発生位置進するためのヒータ部であ
る。動作にあたってはiTVカメラ2で検査液中食常時
観察してリークに起因する気泡の発生を検出し、画像処
理を行って不良の被検査物全判別する。
Figure 1 shows an example of a conventional inspection device that has automated the above method. 1 is a lighting device u, 2 is an industrial television camera (iTV camera), 3 is a liquid tank r/i, and 4 is a fluorocarbon liquid. A plurality of inspection liquids such as 5Q and 5Q are arranged next to each other to be inspected, and 6 is a heater section for advancing the bubble generation position. In operation, the iTV camera 2 constantly observes the contents of the test liquid to detect the occurrence of bubbles due to leakage, and image processing is performed to identify all defective test objects.

しかしながら、この種の方法ではI[!!I像処理が複
雑となるため装置が非常に高価なものとなる欠点全有(
−でおり、それゆえ安価な目視による方法に頼らざるr
得なかった。
However, in this kind of method I[! ! I have all the drawbacks that the image processing is complicated and the equipment is very expensive (
−, therefore, there is no need to rely on inexpensive visual methods.
I didn't get it.

(発明の目的) 本発明は」二記の点に鑑み提案はれたものであり、従来
から目視に頼っている小物景産品のリーク検査作業を自
動化すムための安価なリーク検査装置全提供することケ
目的とする。
(Objective of the Invention) The present invention has been proposed in view of the above two points, and provides a complete set of inexpensive leak inspection devices for automating the leak inspection work for small gifts, which has conventionally relied on visual inspection. The purpose is to do something.

(発明の開示) 第2図は本発明の一実施例葡示した構成図であり、■は
液槽3の上刃に設けられた照明装置、4はフロロカーボ
ン液の如き検査液、5は密封型リレー等の被検査物、6
はヒータ部、7,8は液槽3の側面に設けらt″した夫
々X、Y方向のセンサアレイである。°ナヒ、センサア
レイの何個のセンサは例えば第3図に示すように内面ケ
無反射処理した長筒9とその端部に設けらi’lたフォ
トセンサ10により構成されるものである。
(Disclosure of the Invention) Fig. 2 is a configuration diagram showing an embodiment of the present invention, where ■ is a lighting device provided on the upper blade of the liquid tank 3, 4 is a test liquid such as a fluorocarbon liquid, and 5 is a sealed seal. Objects to be inspected such as type relays, 6
is a heater section, and 7 and 8 are sensor arrays in the X and Y directions, respectively, which are provided on the side surface of the liquid tank 3. For example, as shown in FIG. It is composed of a long cylinder 9 which has been subjected to anti-reflection treatment and a photosensor 10 provided at its end.

動作にあたっては、被倹査′吻5ヶ複数個、液槽3の底
面に没め、ヒータ部6により被検査物5ケ加熱すること
により密封不良の被検査物からの気泡発生全促進させる
。しかして、その気泡が上昇し、X、Yセンサアレイ7
.8の検出平面A上に位置した時、照明装置1からの光
線が気泡表面で正反射し、気泡発生位置に応じたセンサ
アレイ中のいず1.か1つのセンサに入射する。前述し
たようにセンサアレイ7.8は第3図のように構成嘔れ
て2ジ、長筒方向に平行な光が入るようになっているの
で、気泡Bで正反射し2て入射した光は長筒9の末端に
設けられたフォトセンサ10に当り検出される。壕だ、
一般にフォトセンサは検出面積が大きくなるほど価格が
高く、ノイズも多くなるため、第4図の如く凸レンズ1
1ヲフオトセンサ10の前に入れて反射光盆集光し、フ
ォトセンサ10金小さくすることも可能である。
In operation, a plurality of five proboscises to be inspected are submerged in the bottom of the liquid tank 3, and the heater section 6 heats the five inspected articles to fully promote the generation of bubbles from the poorly sealed inspected articles. However, the bubbles rise and the X, Y sensor array 7
.. 8, the light beam from the illumination device 1 is specularly reflected on the bubble surface, and the light beam from the illumination device 1 is specularly reflected on the bubble surface, and the light beam from the illumination device 1 is reflected on the detection plane A in the sensor array according to the bubble generation position. or incident on one sensor. As mentioned above, the sensor array 7.8 is configured as shown in Fig. 3 so that parallel light enters in the direction of the long cylinder, so the light that is specularly reflected by the air bubble B and then incident is hits the photosensor 10 provided at the end of the long tube 9 and is detected. It's a trench.
In general, the larger the detection area of a photosensor, the higher the price and the more noise it produces.
It is also possible to make the photo sensor 10 smaller by placing it in front of the photo sensor 10 to collect the reflected light.

第5図は1つのセンサで検出し得る気泡の範囲ケ図式的
に示したもので、センサアレイ?上方から観察した図で
あり、気泡Bは紙面と垂直方向に移171J してくる
ものとする。ここで、長筒9の人口幅す1〕、長筒9の
光導入部の長−aWt。
Figure 5 schematically shows the range of bubbles that can be detected by one sensor. This is a diagram observed from above, and bubbles B are assumed to be moving 171J in a direction perpendicular to the plane of the paper. Here, the artificial width (s1) of the long tube 9 and the length of the light introduction part of the long tube 9 - aWt.

長筒入口先端と気泡Bとの距離’tL(最大値として液
槽の一辺の長さ)とすれば、隣接するセンサと重複する
領域幅りは h−L@tanθ=L −D/l −−−−+1)とな
り、このhが大きい0士ど隣りのセンサとの分離が悪く
なり、位置検出の精度が低下することVCなる。
If the distance between the inlet tip of the long cylinder and the bubble B is 'tL (maximum value is the length of one side of the liquid tank), the width of the area overlapping with the adjacent sensor is h-L@tanθ=L-D/l- ---+1), and when h is large, the separation from the neighboring sensor becomes worse, and the accuracy of position detection decreases.VC.

し力・して、この対策としては第6図の如く遮光板12
ヲ数枚、光導入部に平行に設けることが効果的である。
Therefore, as a countermeasure to this problem, a light shielding plate 12 is used as shown in Figure 6.
It is effective to provide several of them in parallel to the light introducing section.

すなわち、遮光板12の配置間隔に工り前記tIJ式の
Dが格段に小さくなり、隣り合うセンサとの重複する検
出領域を少くして検出精度全太幅に向上させることがで
きる。
That is, by adjusting the arrangement interval of the light shielding plates 12, D of the tIJ formula can be significantly reduced, and the overlapping detection area with adjacent sensors can be reduced, thereby improving the detection accuracy to the full width.

第7図は第2図における検出平面Aの座標割当の一例を
示したものであり、X、〜Xn 、Y+ 〜Ynは個々
のセンサの座標葡示す。なお、図では分割會nXnにし
た場合7示しているが、nxm(n’=m)としても何
ら差し支えない。
FIG. 7 shows an example of the coordinate assignment of the detection plane A in FIG. 2, where X, ~Xn, Y+ ~Yn indicate the coordinates of the individual sensors. Note that although the figure shows a case 7 in which the number of divisions is nXn, there is no problem if the number of divisions is nxm (n'=m).

第8図は上記のセンサアレイから得られた信号ケ処理す
るための回路構成會ブロック図で示したものであり、セ
ンサアレイ7.8の出力は増幅回路13 、14 ’5
夫々介してコンノくレーク15゜1Gに入力され、アナ
ログ的な受光信号ケ一定のスレシホールドレベルで比較
し、気泡の有無を示す二値信号に変換される。次いで、
判定処理回路17では気泡発生全検出したX、Y方向の
一ヒンサから座標會求め、不良表示回路18ヲ動作させ
てリーク発生にかかる被検査物の位置ケ表示するように
構成さnている。
FIG. 8 is a block diagram showing the circuit configuration for processing the signals obtained from the sensor array described above, and the output of the sensor array 7.
The analog light reception signals are input to the conno rake 15° 1G through each of them, and the analog light reception signals are compared at a certain threshold level and converted into a binary signal indicating the presence or absence of bubbles. Then,
The determination processing circuit 17 is configured to obtain the coordinates from one of the X and Y directions when all bubbles are detected, and operate the defect display circuit 18 to display the position of the object to be inspected where the leak has occurred.

次に第io図は本発明の他の実施例を示すもので、レン
ズに凸型シリンドリカルレンズを用いて検出感度を大幅
に向上したものである。すなわら、前述したセンサの構
成ゲ丹び第9図(イ)に示すが、この際、気泡Bからの
正反射光が入射する時間が短かく、受光感度や回路の応
答速度等の関係から1IjJ図(0)に示す如くノオト
センザの検出信号がコンパレートレベルVthに達しな
い場合が起こり得る。この対策としてtま増幅率ケ上げ
て検出感度ケ上げる方法が考えられるが、この場合S/
N比が悪化するため好“ましくない。
Next, FIG. io shows another embodiment of the present invention, in which a convex cylindrical lens is used as the lens to greatly improve detection sensitivity. In other words, the configuration of the sensor described above is shown in Fig. 9 (a), but in this case, the period for which the specularly reflected light from bubble B is incident is short, and the relationship between the light receiving sensitivity and the response speed of the circuit, etc. As shown in FIG. 1IjJ (0), there may be a case where the detection signal of the sensor does not reach the comparator level Vth. As a countermeasure to this problem, it is possible to increase the detection sensitivity by increasing the amplification factor by t, but in this case, the S/
This is not preferable because the N ratio deteriorates.

−+:た、気泡の移動する縦方向Vこ視野會広くとると
コストの高い大型のフォトセンサ全必要とし、更にこの
際にはノイズが多くなるといつ不都合がある。
-+: In addition, if the field of view in the vertical direction V in which the bubble moves is widened, a large and expensive photosensor will be required, and furthermore, in this case, there will be a problem if noise increases.

そこで、この実1rli 9IJ (第10図少では気
泡13の移動する縦方向に長手方向に有する凸型シリン
ドリカルレンズ19i用い、低価格で小型のフォ)・セ
ンサ10であってもS/N比を悪化させることなく十分
な検出感度を得ることケ可能にしている。第11図にこ
の実廁例ケ採用した場合の検出信号ケ示したもので、検
出感度が向」二すると共に、気泡Bが視野内に存在する
期間t。が長くなるので、検出確率を大幅に向上でき、
反射光量の少かい小さな気泡セも十分に検出できるよう
になる。
Therefore, even with this actual 1rli 9IJ sensor 10, the S/N ratio is low. This makes it possible to obtain sufficient detection sensitivity without deterioration. FIG. 11 shows the detection signal when this practical example is adopted, and the detection sensitivity is improved and the period t during which the bubble B exists within the visual field. , the detection probability can be greatly improved.
Even small air bubbles with a small amount of reflected light can be sufficiently detected.

次に第12図および第13図に本発明の史に他の実施例
全示したもので、照明装置づR1び液槽に改良を加えた
ものである。丁なわち、前述の第2図に示した実施例で
は液槽3の上刃に設けた照明装置1により検を液4會照
らし、気泡による正反射光全センサアレイで検出するよ
うにしていたため、その正反射光は第14図に示す如く
気泡Bの全表面の極く一部からの限られたものであり、
センサから見た気泡Bの明部は第15図(イ)の斜線部
で示す如くである1、そのため、受光感度の向」二にも
限度があり、1トf(、受光光k)から気泡の大きさ全
判別してリーク状況孕把握するといった場合にも精度が
非常に悪かった。−力、上記の他に第2図の構成では照
明装置lが液槽3の真上にあるため被検細物の出し入れ
等において作業の邪魔になるという不都合もあった。
Next, FIGS. 12 and 13 show all other embodiments of the present invention, in which improvements have been made to the lighting device R1 and the liquid tank. In other words, in the embodiment shown in FIG. 2 described above, the liquid 4 was illuminated by the illumination device 1 installed on the upper blade of the liquid tank 3, and the specular reflection from the air bubbles was detected by the entire sensor array. , the specularly reflected light is limited to a very small portion of the entire surface of bubble B, as shown in FIG.
The bright area of the bubble B seen from the sensor is as shown by the shaded area in Fig. 15 (A). Therefore, there is a limit to the light receiving sensitivity, and from 1 to f (, received light k) Accuracy was also extremely poor when it came to determining the size of all bubbles and determining leak status. In addition to the above, in the configuration shown in FIG. 2, the illumination device 1 is located directly above the liquid tank 3, which has the disadvantage that it obstructs work such as taking in and out small objects to be examined.

そこで、この実施例では照明装置を液槽の側面;(設り
゛ろと共に、液槽内面にミラーを張りめぐらし、気泡か
らの正反射光量ケ大幅に増大させて、検出感度の向上ケ
図り、気泡の大きさの1′41定も容易に行えるように
している。
Therefore, in this embodiment, the illumination device was installed on the side of the liquid tank, and mirrors were placed on the inside of the liquid tank to greatly increase the amount of specularly reflected light from the bubbles, thereby improving detection sensitivity. , it is possible to easily determine the bubble size at 1'41.

第12図および第13図において、20は照明装置ケ示
し、セン−リアレイ7,8の上刃に\1し行して設けら
nている。また、センサアレイ7,8と対向する面の視
野内に入る部分にυユ吸収体22が配設さ21−、セン
サアレイ7,8の入口部および照明装置20孕除(、(
lJの面ycItj、全てミラー21が配設されている
t+ ’−こて、センサアレイ7,8と対向する面の一
部に吸収体22を設け′Cいるのは液槽内面からの直接
反射光がセンソ−に入射するのケ防ぐためである。
In FIGS. 12 and 13, reference numeral 20 indicates an illumination device, which is provided on the upper blades of the sensor arrays 7 and 8 in a row. In addition, a υ absorber 22 is disposed in the field of view of the surface facing the sensor arrays 7 and 8, and the entrance portions of the sensor arrays 7 and 8 and the illumination device 20 are removed (, (
The surface ycItj of lJ, t+'-trowel where mirrors 21 are all arranged, absorber 22 is provided on a part of the surface facing sensor arrays 7 and 8,'C is directly from the inner surface of the liquid tank. This is to prevent reflected light from entering the sensor.

しかして、)t<1明装置20からの光線は液(留3内
面のミラー2Iで繰り返し反射きれ、検査液4 (tJ
:はぼ全方向からの光線で照明で、!1−ることにな/
!、)。
Therefore, )t
: Illumination with light rays from all directions! 1-Totona/
! ,).

したかつて、リーク検査に除して発生1〜た気泡は全方
向か1つ照明さr+−1第15図(ロ)のρ[」〈気泡
Bの全表面が明部となって観、測されることVこなる。
In the past, during a leak test, the entire surface of bubble B became a bright area and was observed and measured by illuminating one bubble in all directions. I can't do what I want to do.

そのため、受光光量が大幅Vこjv1加し、検出感度ケ
向上できると共に、受光光1^より気泡の大きさケ判定
することもLIJ能VCなる、。
Therefore, the amount of received light is significantly increased by V, and detection sensitivity can be improved, and the size of the bubble can also be determined from the received light 1^.

(発明の効果) 以上のように本発明にあっては、被検査物7液槽内Vこ
没入ぜしめ、前記被検H物から発生する気泡に、Cリリ
ーフを倹糞する装置において、前記被検査物の上方に照
明装置を配置し、IJ−り気泡による正反射光ケ前記液
槽の側力に設けたX−Y方向2組のセンサアレイで検出
し、このセンサアレイの出力信号からX−Y座標ケ求め
、リーク位置ケ表示す/)J:うにしたので、(イ)従
来の如<4TVカメラ勿使用せず、女価なフォトセンサ
全使用し、筒中な構成でリーク検査を行える。
(Effects of the Invention) As described above, in the present invention, in the apparatus for inserting the object to be inspected into a V tube in the seven liquid tanks and discharging the C relief into the air bubbles generated from the object to be inspected, A lighting device is placed above the object to be inspected, and the specularly reflected light from the IJ bubbles is detected by two sets of sensor arrays in the X and Y directions installed on the sides of the liquid tank, and from the output signals of these sensor arrays. Determine the X-Y coordinates and display the leak position/) J: So, (a) I did not use the traditional <4 TV camera, but instead used all the expensive photosensors, and performed the leak inspection with a cylinder configuration. I can do it.

(ロ)複雑な処理が必斐でなく高速処理である。(b) Complex processing is not necessary and high-speed processing is required.

(ハ)座標出力が高精度で得られろため、複数個の物体
ケ同時多数で倹をriJ能であり、かつ不良選別出力も
得られる。
(c) Since the coordinate output can be obtained with high precision, it is possible to efficiently handle multiple objects at the same time, and it is also possible to obtain a defect selection output.

等のvr4著なる効果を奏する。VR4 has remarkable effects such as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の検査装置の構成図、第2図は本発明の一
実施例を示す構成1ス、第3図乃至第6図はセンザアレ
イケ構成する個々のセンサ構成図、第71+B+は第2
図の実施例の動作説明図、第8図は不発明の回路構成を
示すブロック図、第9図乃至第11図は他の実施例にか
かる説明図、第12図乃至第15図は更に他の実施例に
かかる説明図である。 ■、20・・・・・照明装置、3・・・・・液槽、4・
・・・・・検査液、5・・・・・被検査物、6・・・・
・ヒータ部、7゜8・・・ センサアレイ、9・・・・
長筒、to・・・・・・フ第1・センサ、11・・・・
・・凸レンズ、12・・・・・・遮光板、13゜14−
・−増幅回路、15 、16・・・・・コンパレータ、
17・・・・判定処理回路、18・・・・・不良表示回
路、19・・・・シリンドリカルレンズ、21・・・・
・・ミラー、22・・・・・・吸収体 第1図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 Qイ1 (イ) (ロ) 第10図 第11図 第12図 1 第14図 \ 第15図 (イ) (ロ) □
Fig. 1 is a configuration diagram of a conventional inspection device, Fig. 2 is a configuration diagram showing one embodiment of the present invention, Figs. 3 to 6 are configuration diagrams of individual sensors constituting the sensor array, and Fig.
FIG. 8 is a block diagram showing an uninvented circuit configuration, FIGS. 9 to 11 are explanatory diagrams of other embodiments, and FIGS. 12 to 15 are further diagrams of other embodiments. It is an explanatory diagram concerning an example of. ■, 20...Lighting device, 3...Liquid tank, 4...
... Test liquid, 5 ... Test object, 6 ...
・Heater part, 7゜8... Sensor array, 9...
Long tube, to...F 1st sensor, 11...
...Convex lens, 12... Light shielding plate, 13゜14-
・-Amplification circuit, 15, 16... Comparator,
17... Judgment processing circuit, 18... Defective display circuit, 19... Cylindrical lens, 21...
...Mirror, 22... Absorber Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Q1 (A) (B) Figure 10 Figure 11 Figure 12 Figure 1 Figure 14\ Figure 15 (A) (B) □

Claims (3)

【特許請求の範囲】[Claims] (1)被検査物r液槽内に没入せしめ、前記被検査物か
ら発生する気泡によりリーク音検査する装ffにおいて
、前記被検査物の上方に照IJJ装置葡配置し、リーク
気泡による正反射光を前記液槽の側方に設けたX−Y方
向2組のセンサアレイで検出し、このセンサアレイの出
力信号からX−Y座標ケ求め、リーク位置7衷示するこ
とケ特徴としたリーク検査装置。
(1) In a device for inspecting leak sound by immersing an object to be inspected in a liquid tank and using air bubbles generated from the object to be inspected, an IJJ device is placed above the object to be inspected, and the specular reflection caused by the leak bubbles. The light is detected by two sets of sensor arrays in the X-Y direction provided on the sides of the liquid tank, and the X-Y coordinates are determined from the output signals of the sensor arrays and the leak positions are indicated. Inspection equipment.
(2)センサアレイの個々のセンサは長筒状の光導入部
と、垂直方向を長手方向と1〜だシリンドリカルレンズ
と、このシリンドリカルレンズの焦点位置に配置ばnf
cフオトセンセンりなる特許請求の範囲第1項記載のリ
ーク検査装置。
(2) Each sensor of the sensor array has a long cylindrical light introduction part, a cylindrical lens whose vertical direction is 1 to 100 m long, and is arranged at the focal position of this cylindrical lens.
The leak testing device according to claim 1, which comprises a c-photosensor.
(3)液槽内面はセンサアレイの視野に入る部分を除い
てミラーを配設してなる特許請求の範囲第1項記載のリ
ーク検査装置。
(3) The leak inspection device according to claim 1, wherein a mirror is disposed on the inner surface of the liquid tank except for a portion that falls into the field of view of the sensor array.
JP13796683A 1983-07-27 1983-07-27 Leak inspecting device Pending JPS6029632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13796683A JPS6029632A (en) 1983-07-27 1983-07-27 Leak inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13796683A JPS6029632A (en) 1983-07-27 1983-07-27 Leak inspecting device

Publications (1)

Publication Number Publication Date
JPS6029632A true JPS6029632A (en) 1985-02-15

Family

ID=15210893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13796683A Pending JPS6029632A (en) 1983-07-27 1983-07-27 Leak inspecting device

Country Status (1)

Country Link
JP (1) JPS6029632A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260648A (en) * 1985-09-11 1987-03-17 Ajinomoto Co Inc Transfer device
DE102004020242A1 (en) * 2004-04-22 2005-11-17 Steinbeis GmbH & Co. für Technologietransfer vertreten durch STZ EURO Steinbeis-Transferzentrum Energie- Umwelt-Reinraumtechnik Clean room filter leak proofing procedure uses hand moved test aerosol sensor with position monitored by laser or rope coordinate measurement system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4524944Y1 (en) * 1967-04-17 1970-09-30
JPS5240389A (en) * 1975-09-26 1977-03-29 Hitachi Ltd Device for inspecting air tightness of vessels

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4524944Y1 (en) * 1967-04-17 1970-09-30
JPS5240389A (en) * 1975-09-26 1977-03-29 Hitachi Ltd Device for inspecting air tightness of vessels

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260648A (en) * 1985-09-11 1987-03-17 Ajinomoto Co Inc Transfer device
DE102004020242A1 (en) * 2004-04-22 2005-11-17 Steinbeis GmbH & Co. für Technologietransfer vertreten durch STZ EURO Steinbeis-Transferzentrum Energie- Umwelt-Reinraumtechnik Clean room filter leak proofing procedure uses hand moved test aerosol sensor with position monitored by laser or rope coordinate measurement system

Similar Documents

Publication Publication Date Title
EP0483966B1 (en) Method of and apparatus for inspecting a transparent or translucent article such as a bottle
US3814946A (en) Method of detecting defects in transparent and semitransparent bodies
JP3892906B2 (en) Techniques for detecting three-dimensional defect locations in transparent structures.
US5309486A (en) Non-contact flaw detection for cylindrical nuclear fuel pellets
KR0159290B1 (en) Apparatus for detecting extraneous substances on a glass plate
US5118195A (en) Area scan camera system for detecting streaks and scratches
KR850000855B1 (en) The inspection device of hurt
JPH0674907A (en) Detection method for defect of tranparent plate-like body
US5486692A (en) Glassware inspection machine comprising diffused light sources and two-dimensional cameras
JPH0249148A (en) Method and device for inspecting drum part of bottle
JPS58219441A (en) Apparatus for detecting defect on surface of convex object
CN109544533A (en) A kind of metal plate defect detection and measure based on deep learning
CN109425619B (en) Optical measurement system and method
US4326808A (en) Method and apparatus for determining physical characteristics of object outer surfaces
JPH01262448A (en) Method and equipment for inspecting body of bottle
KR101108490B1 (en) Container mouth portion defect inspection method and device
IE47919B1 (en) Apparatus for inspecting translucent articles for faults
US3795452A (en) Instrument for automatically inspecting integrated circuit masks for pinholes and spots
JPS6029632A (en) Leak inspecting device
US3676008A (en) Method and electro-optical system for inspecting bodies such as tiles
US4219277A (en) Method of detecting flaws on surfaces
JP2591171B2 (en) Inspection device for foreign substances in food
US5354999A (en) Leak detection achieved by detection of light transmitted through an opaque layer interrupted by a passing bubble
GB2109928A (en) Method and apparatus for comparing data signals in an object inspection device
JPH04118546A (en) Bottle inspection device