JPS6029559A - Heat pump type refrigerator - Google Patents

Heat pump type refrigerator

Info

Publication number
JPS6029559A
JPS6029559A JP58139206A JP13920683A JPS6029559A JP S6029559 A JPS6029559 A JP S6029559A JP 58139206 A JP58139206 A JP 58139206A JP 13920683 A JP13920683 A JP 13920683A JP S6029559 A JPS6029559 A JP S6029559A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
valve
heat
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58139206A
Other languages
Japanese (ja)
Other versions
JPH0480313B2 (en
Inventor
綿引 正巳
中里 謹也
阿部 秀世
房夫 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP58139206A priority Critical patent/JPS6029559A/en
Publication of JPS6029559A publication Critical patent/JPS6029559A/en
Publication of JPH0480313B2 publication Critical patent/JPH0480313B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は冷媒圧縮機をエンジンで駆動して加熱運転(暖
房や温水取り出し運転)と冷却運転(冷房や冷水取り出
し運転)とを行なうヒートポンプ式冷凍装置に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a heat pump that drives a refrigerant compressor with an engine to perform heating operation (heating and hot water extraction operation) and cooling operation (air conditioning and cold water extraction operation). refrigeration system.

(ロ)従来技術 エンジンで冷媒圧縮機を駆動させて冷暖房や給湯運転を
行ない、しかもエンジンの排熱を暖房や給湯の熱源とし
て回収することは既に知られている。しかしながら、エ
ンジンの排熱を回収する従来の方式はエンジン及びこの
エンジンの排気ガスと熱交換して昇温した冷却水を水配
管により室内側まで引き込んで暖房専用の熱交換器と連
結するものであった為、工事が面倒であり、且つコスト
も高(なる欠点を有していた。
(b) Prior Art It is already known that an engine drives a refrigerant compressor to perform cooling/heating or hot water supply operations, and that exhaust heat from the engine is recovered as a heat source for space heating or hot water supply. However, the conventional method for recovering engine exhaust heat is to exchange heat with the engine and the engine's exhaust gas, draw the coolant into the room through water piping, and connect it to a heat exchanger dedicated to heating. Because of this, the construction was troublesome and the cost was high.

又、冷房運転時、エンジン及び排気ガスと熱交換して昇
温した冷却水を外気と熱交換させる為に放熱器を室外に
設置しているが、外気温度が高い為に所定の熱交換量を
得るには放熱器の容量を大きくとらなければならず、製
造コストがあがると共に装置が大型になる欠点を有して
いた。
In addition, during cooling operation, a radiator is installed outdoors to exchange heat with the outside air after the cooling water heats up by exchanging heat with the engine and exhaust gas, but due to the high outside air temperature, the specified amount of heat exchange is not enough. In order to obtain this, the capacity of the radiator must be increased, which has the disadvantage of increasing manufacturing costs and increasing the size of the device.

(ハ)発明の目的 本発明はエンジンの排熱を暖房用水配管なしで暖房用熱
源として活用でき、且つ冷房時のエンジン冷却水用の放
熱器を小容量にもしくは不要にできるヒートポンプ式冷
凍装置を提供することにある。
(c) Purpose of the Invention The present invention provides a heat pump type refrigeration system that can utilize engine exhaust heat as a heat source for heating without the need for heating water piping, and that can reduce the capacity of a radiator for engine cooling water during cooling or eliminate the need for it. It is about providing.

に)発明の構成 本発明はエンジンで駆動される圧縮機を利用側熱交換器
、減圧素子、熱源側熱交換器の冷媒≠路と四方切換弁を
介して連結したヒートポンプ式冷媒回路において、この
冷媒管路の高圧液管より分岐した分岐管路に冷媒ポンプ
とエンジンの排熱回収用の熱交換器とを介在し、この排
熱回収用の熱交換器の冷媒出口側に加熱運転時に開く第
1の弁と冷却運転時に開く第2の弁とを並列に設けて、
この第1の弁を四方切換弁と利用側熱交換器との間に、
第2の弁を四方切換弁と熱源側熱交換器との間に夫々連
結してヒートポンプ式冷凍装置を構成したものである。
B) Structure of the Invention The present invention provides a heat pump type refrigerant circuit in which a compressor driven by an engine is connected to a user-side heat exchanger, a pressure reducing element, and a refrigerant path of a heat source-side heat exchanger via a four-way switching valve. A refrigerant pump and a heat exchanger for recovering exhaust heat from the engine are interposed in a branch pipe that branches from the high-pressure liquid pipe of the refrigerant pipe, and a refrigerant outlet side of the heat exchanger for recovering exhaust heat is opened during heating operation. A first valve and a second valve that opens during cooling operation are provided in parallel,
This first valve is placed between the four-way switching valve and the user-side heat exchanger,
The second valve is connected between the four-way switching valve and the heat source side heat exchanger to configure a heat pump type refrigeration system.

斯かる構成により、暖房や給湯を行なう加熱運転時には
利用側熱交換器で凝縮した高圧液冷媒の一部を冷媒ポン
プでエンジンの排熱回収用の熱交換器に送り込んでこの
熱交換器で加熱させてガス化させ、高温高圧となったこ
の冷媒を圧縮機からの吐出冷媒と合流させて再び利用側
熱交換器に送り込むことによって暖房能力をあげるよう
にしたものである。又、冷房(冷却)運転時には熱源側
熱交換器で凝縮した高圧液冷媒の一部を冷媒ポンプでエ
ンジンの排熱回収用の熱交換器に送り込んで高温のエン
ジン冷却水を冷却することによってエンジン冷却水用の
放熱器を小容量もしくは不要としたもので、エンジン冷
却水と熱交換されてガス化された冷媒を圧縮機からの吐
出冷媒と合流させて再び熱源側熱交換器で凝縮させるよ
うにしたものである。
With this configuration, during heating operation for space heating or hot water supply, a part of the high-pressure liquid refrigerant condensed in the user-side heat exchanger is sent by the refrigerant pump to the heat exchanger for recovering engine exhaust heat, and heated by this heat exchanger. The heating capacity is increased by gasifying the high-temperature, high-pressure refrigerant and combining it with the refrigerant discharged from the compressor and sending it again to the user-side heat exchanger. Also, during cooling operation, a part of the high-pressure liquid refrigerant condensed in the heat exchanger on the heat source side is sent to the heat exchanger for recovering engine exhaust heat using a refrigerant pump to cool the high-temperature engine cooling water. A radiator with a small capacity or no need for a cooling water radiator.The refrigerant that has been heat exchanged with the engine cooling water and gasified is combined with the refrigerant discharged from the compressor and condensed again in the heat exchanger on the heat source side. This is what I did.

(ホ)実施例 本発明の実施例を図面に基づいて説明すると、第1図に
おいて、(1)は下部に機械室(2)を、上部に熱交換
室(3)を備えた室外機、(4aX4b)(4c)は室
内機で、切換キット(5)を介して配管接続されている
(E) Embodiment An embodiment of the present invention will be described based on the drawings. In FIG. (4aX4b) (4c) is an indoor unit, which is connected to piping via a switching kit (5).

(6)はエンジン(7)で駆動される圧縮機、(8)は
冷暖流路切換用の四方切換弁、(9a)(9b)(9c
)は切換キット(5)により同時もしくは単独に冷媒が
流れ案内空気と室内77 ン(10aX10bX10c
)で夫々強制的に熱交換される利用側熱交換器、(11
aX11b)(11c)は冷房用減圧素子、(12a)
(12bX12c)は暖房用逆止弁、0暗ま受液器、I
は暖房用減圧素子、051は冷房用逆止弁、Q6)Q6
1は室外空気と室外ファンaηで強制的に熱交換される
熱源側熱交換器、Uはエンジン(力及び圧縮機(6)か
らの発熱で温度上昇して機械室(2)内にこもる熱を冷
却する蒸発器、翰は気液分離器、翰はエンジン(7)の
始動時に一時的に開くアンロード用のバイパス弁である
(6) is a compressor driven by the engine (7), (8) is a four-way switching valve for switching between cooling and heating channels, (9a) (9b) (9c
), the refrigerant flows simultaneously or independently with the switching kit (5) and the indoor
), the user-side heat exchanger (11
aX11b) (11c) is a cooling pressure reducing element, (12a)
(12bX12c) is a heating check valve, 0 dark liquid receiver, I
is a pressure reducing element for heating, 051 is a check valve for cooling, Q6) Q6
1 is a heat source side heat exchanger that forcibly exchanges heat between outdoor air and an outdoor fan aη, and U is a heat exchanger on the heat source side that forcibly exchanges heat between outdoor air and an outdoor fan aη, and U is a heat exchanger that heats up due to the engine (power and heat generated from the compressor (6)) and accumulates in the machine room (2). The evaporator that cools the engine (7) is a gas-liquid separator, and the hood is a bypass valve for unloading that opens temporarily when the engine (7) is started.

Cυは冷媒管路の高圧液管@より分岐した分岐管路で、
冷媒デフ10階と流量調整弁<241とエンジン(7)
の排熱回収用の熱交換器(2!19とを備えている。
Cυ is a branch pipe branched from the high pressure liquid pipe @ of the refrigerant pipe,
Refrigerant differential 10th floor, flow rate adjustment valve <241 and engine (7)
It is equipped with a heat exchanger (2!19) for exhaust heat recovery.

而してこの熱交換器(ハ)の冷媒出口側には暖房運転時
に開く第1の弁(イ)と冷房運転時に開く第2の弁罰と
を並列に設け、第1の弁(ホ)は四方切換弁(8)と利
用側熱交換器(9a)(9bX9c)との間の囚箇所に
第1の補助減圧素子Q樽を介して、又、第2の弁(5)
は四方切換弁(8)と熱源側熱交換器aOとの間のCB
1箇所に第2の補助減圧素子−を介して夫々連結されて
いる。
On the refrigerant outlet side of this heat exchanger (c), a first valve (a) that opens during heating operation and a second valve that opens during cooling operation are provided in parallel. is installed between the four-way switching valve (8) and the user-side heat exchanger (9a) (9bX9c) via the first auxiliary pressure reducing element Q barrel, and the second valve (5).
is the CB between the four-way switching valve (8) and the heat source side heat exchanger aO.
They are each connected to one location via a second auxiliary pressure reducing element.

一方、エンジン(7)の冷却水管路は破線で示すように
設けてあり、循環ポンプ(至)からの冷却水はエンジン
(力の冷却部01)とエンジン(7)の排気ガス熱交換
器O3とを並流して温度上昇した後、排熱回収用の熱交
換器c!9と放熱器0り(至)とに分配され三方弁04
)で合流して循環ポンプ(至)に戻されるようになって
いる。尚、(ハ)は自動空気抜弁、(至)は安全弁、G
7)は膨張タンク、(2)は排気ガスマフラーである。
On the other hand, the cooling water pipe for the engine (7) is provided as shown by the broken line, and the cooling water from the circulation pump (to) is connected to the engine (power cooling section 01) and the exhaust gas heat exchanger O3 of the engine (7). After the temperature rises by flowing in parallel with the heat exchanger c! for exhaust heat recovery. Three-way valve 04 distributed between radiator 9 and radiator 0
) and are returned to the circulation pump (to). In addition, (c) is automatic air vent valve, (to) is safety valve, G
7) is an expansion tank, and (2) is an exhaust gas muffler.

次に回路動作を説明する。暖房運転時は四方切換弁(8
)を実線状態に設定し、且つ第1の弁(ハ)を開き第2
の弁(財)を閉じてエンジン(7)で圧縮機(6)を駆
動すると、実線矢印の如く圧縮機(6)から吐出された
冷媒は四方切換弁(8)より切換キット(5)を経て利
用側熱交換器(9a)(9b)(9c)を並流して凝縮
液化した後、夫々暖房用逆止弁(12aX12bX12
c)を経て切換キット(5)で合流する。然る後、この
高圧液冷媒は受液器(13と分岐管路Qυとの二方向に
分流され、受液器Q3側に流入した一方の液冷媒は暖房
用減圧素子θ力を経て熱源側熱交換器061Hに流入し
てここで蒸発気化した後、四方切換弁(8)−蒸発器帥
一気液分離器09を介して圧縮機(6)に吸入される。
Next, the circuit operation will be explained. During heating operation, the four-way switching valve (8
) is set to the solid line state, and the first valve (c) is opened and the second valve is opened.
When the compressor (6) is driven by the engine (7) with the valve closed, the refrigerant discharged from the compressor (6) is transferred to the switching kit (5) from the four-way switching valve (8) as shown by the solid line arrow. After passing through the user side heat exchangers (9a, 9b, and 9c) in parallel to condense and liquefy, the respective heating check valves (12a, 12b, and 12
c) and merges at the switching kit (5). After that, this high-pressure liquid refrigerant is divided into two directions: the liquid receiver (13) and the branch pipe Qυ, and one liquid refrigerant that flows into the liquid receiver Q3 passes through the pressure reducing element θ for heating and flows to the heat source side. After flowing into the heat exchanger 061H and being evaporated there, it is sucked into the compressor (6) via the four-way switching valve (8), the evaporator and the gas-liquid separator 09.

同時に分岐管路c!1)側に流入した高圧液冷媒は冷媒
ポンプ(ハ)で圧送され流量調整弁04)を介して排熱
回収用の熱交換器(ハ)に送り込まれ、ここでエンジン
(7)の高温冷却水で加熱さnて気化した後、第1の弁
(ハ)と第1の補助減圧素子−を経て(4)箇所に至り
、四方切換弁(8)からの圧縮機(6)の吐出冷媒と合
流して再び利用側熱交換器(9aX9b)(9c)に流
入する。
At the same time, branch pipe c! The high-pressure liquid refrigerant that has flowed into the side 1) is pumped by the refrigerant pump (c) and sent through the flow rate adjustment valve 04) to the heat exchanger (c) for exhaust heat recovery, where it cools the engine (7) at a high temperature. After being heated with water and vaporized, the refrigerant passes through the first valve (c) and the first auxiliary pressure reducing element and reaches the location (4), where it is discharged from the compressor (6) from the four-way switching valve (8). and flows into the utilization side heat exchanger (9aX9b) (9c) again.

こうして形成される暖房サイクルを第2図に示すモリエ
ル線図で説明すると、(a)−(bl間は圧縮機(6)
による冷媒圧縮行程、(bl −(c1間は利用側熱交
換器(9a)(9b)(9c)による冷媒の凝縮液化行
程、(0)−(d1間は暖房用減圧素子Q4)による冷
媒減圧行程、(d)−(e)間は熱源側熱交換器(Ie
による冷媒の蒸発気化行程、(e) −(at間は蒸発
器a樽による冷媒の再蒸発気化行程で、これら行程によ
り主閉サイクルを形成している。一方、(c)−(f)
間は冷媒ポンプQ31による冷媒圧送行程、(f) −
(g1間は排熱回収用の熱交換器(ハ)による冷媒の蒸
発気化行程、(g) −(h)間は第1の補助減圧素子
(ハ)による冷媒減圧行程、(h) −(C)間は利用
側熱交換器(9a)(9b)(9c)による冷媒の凝縮
液化行程で、これら行程により開閉サイクルを形成して
いる。
The heating cycle formed in this way is explained using the Mollier diagram shown in Fig. 2. Between (a) and (bl) is the compressor (6).
refrigerant compression stroke by (bl - (c1), refrigerant condensation and liquefaction stroke by the user-side heat exchangers (9a) (9b) (9c), (0) - (d1 (d1) by heating pressure reducing element Q4) Between steps (d) and (e), the heat source side heat exchanger (Ie
The period between (e) and (at is the re-evaporation and vaporization process of the refrigerant by the evaporator barrel A, and these processes form the main closed cycle. On the other hand, (c) - (f)
The interval is the refrigerant pumping stroke by the refrigerant pump Q31, (f) -
(Between g1 is the evaporation process of the refrigerant by the heat exchanger (c) for exhaust heat recovery; between (g) and (h) is the refrigerant depressurization process by the first auxiliary pressure reducing element (c); (h) - ( C) is a condensation and liquefaction process of the refrigerant by the use-side heat exchangers (9a), (9b), and (9c), and these processes form an opening and closing cycle.

このように主閉サイクルの(b) −(c)間の冷媒凝
縮行程に開閉サイクルの(h) −(c)間の冷媒凝縮
行程が加わることにより利用側熱交換器(9a)(9b
)(9c)からの放熱量が増え、暖房能力をあげること
ができる。
In this way, by adding the refrigerant condensation process between (h) and (c) of the open/close cycle to the refrigerant condensation process between (b) and (c) of the main closed cycle, the user side heat exchanger (9a) (9b
) (9c) increases, and the heating capacity can be increased.

この暖房運転時、各室内機(4aX4b)(4c)の暖
房負荷が減ったり、切換キット(5)で冷媒の流れを切
換えて室内機(4a)(4bX4c)の運転台数が減り
高圧液管(社)中の冷媒圧力が高くなると、この圧力を
検出して流量調整弁(24)が絞られ熱交換器(ハ)へ
の冷媒流入量を減らして高圧圧力が異常に上昇するのを
防止している。併せてこの熱交換器(ハ)の冷媒出口箇
所の冷媒圧力を検出して三方弁(財)を比例制御し、こ
の圧力が低いとエンジン(力の高温冷却水を熱交換器(
ハ)側へ、逆に圧力が高いと放熱器(至)側へ多く流す
ように調節している。
During this heating operation, the heating load on each indoor unit (4aX4b) (4c) is reduced, and the number of operating indoor units (4a) (4bX4c) is reduced by switching the refrigerant flow using the switching kit (5). When the refrigerant pressure in the heat exchanger (c) increases, this pressure is detected and the flow rate regulating valve (24) is throttled to reduce the amount of refrigerant flowing into the heat exchanger (c) to prevent the high pressure from rising abnormally. ing. At the same time, the refrigerant pressure at the refrigerant outlet of the heat exchanger (c) is detected and the three-way valve is proportionally controlled.
When the pressure is high, it is adjusted to flow more to the radiator (to) side.

又、冷房運転時は四方切換弁(8)ヲ破線状態に切換え
、且つ第1の弁c!6)を閉じて第2の弁(5)を開く
と、圧縮機からの吐出冷媒は四方切換弁(8)−熱源側
熱交換器ff6)00−冷房用逆止弁09−受液器(+
31と流れた後、切換キット(5)と分岐管路(21)
との二方向に分流される。そして切換キット(5)側に
流入した一方の高圧液冷媒は冷房用減圧素子(lla)
(llb)(llc)−利用側熱交換器(9a)(9b
)(9c)−切換キラH5)−四方切換弁(8)−蒸発
器a樽−気液分離器(IIを介して圧縮機(6)に吸入
される。同時に分岐管路0υ側に流入した高圧液冷媒は
冷媒ポンプQ漕−流量調整弁04)−熱交換器(ハ)−
第2の弁@−第2の補助減圧素子−を経て[F])箇所
に至り、四方切換弁(8)からの圧縮機(6)の吐出冷
媒と合流して再び熱源側熱交換器a00eに流入する。
Also, during cooling operation, the four-way switching valve (8) is switched to the broken line state, and the first valve c! 6) and open the second valve (5), the refrigerant discharged from the compressor flows through the four-way switching valve (8) - heat source side heat exchanger ff6) 00 - cooling check valve 09 - liquid receiver ( +
31, then switch kit (5) and branch pipe (21)
The current is divided into two directions. Then, one high-pressure liquid refrigerant that has flowed into the switching kit (5) side is connected to the cooling pressure reducing element (lla).
(llb) (llc) - User side heat exchanger (9a) (9b
) (9c) - Switching killer H5) - Four-way switching valve (8) - Evaporator a barrel - Inhaled into the compressor (6) via the gas-liquid separator (II. At the same time, it flowed into the branch pipe 0υ side. High-pressure liquid refrigerant is refrigerant pump Q tank - flow rate adjustment valve 04) - heat exchanger (c) -
It reaches point [F]) via the second valve @-second auxiliary pressure reducing element, where it joins with the refrigerant discharged from the compressor (6) from the four-way switching valve (8) and returns to the heat source side heat exchanger a00e. flows into.

こうして形成される冷房サイクルを第3図に示房用減圧
素子(11a)(11b)(llc)による冷媒減圧性
る冷媒の蒸発気化行程、(e) −(a)間は蒸発器0
8+による冷媒の再蒸発気化行程で、これら行程にまり
主2の補助減圧素子−による冷媒減圧行程、(h) −
(c1間は熱源側熱交換器06)α0による冷媒の凝縮
液化行程で、これら行程により開閉サイクルを形成して
いる。
The cooling cycle formed in this way is shown in Fig. 3, where the refrigerant pressure is reduced by the pressure reducing elements (11a), (11b), and (llc).
In the re-evaporation vaporization process of the refrigerant by 8+, the refrigerant depressurization process by the main 2 auxiliary pressure reducing element -, (h) -
(C1 is the heat source side heat exchanger 06) This is the condensation and liquefaction process of the refrigerant by α0, and these processes form an opening and closing cycle.

で高温のエンジン(7)冷却水が冷却される一方、この
行程で凝縮液化されることにより、高温のエンジン(7
)冷却水は熱源側熱交換器Q6)αeを活用して冷却さ
れるので、放熱器(至)はその分だけ容量を小さくする
かもしくは不要とすることができる。
The high-temperature engine (7) cooling water is cooled in this process, and the high-temperature engine (7) is condensed and liquefied in this process.
) Since the cooling water is cooled by utilizing the heat source side heat exchanger Q6) αe, the capacity of the radiator (to) can be reduced by that amount or it can be made unnecessary.

尚、上記実施例では、第1及び第2の補助減圧素子@翰
とし【膨張弁や毛細管を用いることになるが、第1及び
第2の弁(26)(27)そのものに減圧機能をもたせ
れば補助減圧素子@(2)は不要となる。
In the above embodiment, the first and second auxiliary pressure reducing elements @Kan are used (expansion valves and capillary tubes are used, but the first and second valves (26) and (27) themselves have a pressure reducing function. If so, the auxiliary pressure reducing element @(2) becomes unnecessary.

又、利用側熱交換器(9aX9bX9c)の何れかを給
湯用熱交換器として用いて暖房と給湯の同時運転を行な
うようにしても良い。
Alternatively, any one of the user-side heat exchangers (9aX9bX9c) may be used as a hot water supply heat exchanger to perform heating and hot water supply operations simultaneously.

(へ)発明の効果 本発明はエンジンで圧縮機を駆動するヒートポンプ式冷
凍装置に、高圧液冷媒の一部とエンジンの高温冷却水と
を熱交換させる排熱回収用の熱交換器を組み込んで構成
したので、エンジンの排熱を暖房の熱源として回収する
為の専用の水配管が不要となり、利用側熱交換器で室内
を強力に暖房することができる。
(f) Effects of the Invention The present invention incorporates a heat exchanger for exhaust heat recovery that exchanges heat between a part of the high-pressure liquid refrigerant and the high-temperature cooling water of the engine in a heat pump type refrigeration system in which a compressor is driven by an engine. With this configuration, there is no need for dedicated water piping to recover engine exhaust heat as a heat source for heating, and the user-side heat exchanger can powerfully heat the room.

しかも冷房時にはこの排熱回収用の熱交換器でエンジン
の高温冷却水を冷却して熱源側熱交換器で大気に放熱す
るようにしているので、エンジン冷却水を冷やす為の放
熱器を小容量かもしくは不要とすることができ、製造コ
ストの低減と装置の小型化を図ることができる。
Moreover, during cooling, the engine's high-temperature cooling water is cooled by this exhaust heat recovery heat exchanger, and the heat is radiated to the atmosphere by the heat source side heat exchanger, so the radiator used to cool the engine cooling water has a small capacity. Alternatively, it can be omitted, reducing manufacturing costs and downsizing the device.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図は冷媒回路
図、第2図は暖房時のモリエル線図、第3図は冷房時の
モリエル線図である。 (6)・・・圧縮機、 (力・・・エンジン、 (8)
・・・四方切換弁、 (9a)(9b)(9c) ・=
利用側熱交換器、 (lla)(11b)(11c)、
(141・・・減圧素子、 (161−・・熱源側熱交
換器、 0υ・・・分岐管路、 (2り・・・高圧液管
、 (23)・・・冷媒ポンプ、 (ハ)・・・熱交換
器(排熱回収用)、(イ)・・・第1の弁、 (5)・
・・第2の弁。
The drawings show an embodiment of the present invention; FIG. 1 is a refrigerant circuit diagram, FIG. 2 is a Mollier diagram during heating, and FIG. 3 is a Mollier diagram during cooling. (6)...Compressor, (Power...Engine, (8)
...Four-way switching valve, (9a) (9b) (9c) ・=
User side heat exchanger, (lla) (11b) (11c),
(141...pressure reducing element, (161-...heat source side heat exchanger, 0υ...branch pipe line, (2ri...high pressure liquid pipe, (23)...refrigerant pump, (c)...・・Heat exchanger (for waste heat recovery), (a) ・・first valve, (5)・
...Second valve.

Claims (1)

【特許請求の範囲】[Claims] (1)エンジンで駆動される圧縮機を利用側熱交換器、
減圧素子、熱源側熱交換器の冷媒管路と四方切換弁を介
して連結したヒートポンプ式冷媒回路において、この冷
媒管路の高圧液管より分岐した分岐管路に冷媒ポンプと
エンジンの排熱回収用の熱交換器とを介在し、この排熱
回収用の熱交換器の冷媒出口側に加熱運転時に開く第1
の弁と冷却運転時に開く第2の弁とを並列に設けて、こ
の第1の弁を四方切換弁と利用側熱交換器との間に、第
2の弁を四方切換弁と熱源側熱交換器との間に夫々連結
したことを特徴とするヒートポンプ式冷凍装置。
(1) A heat exchanger that uses the compressor driven by the engine,
In a heat pump refrigerant circuit connected to the pressure reducing element and the refrigerant pipe of the heat source side heat exchanger via a four-way switching valve, the refrigerant pump and engine exhaust heat are recovered in a branch pipe branched from the high-pressure liquid pipe of this refrigerant pipe. A first heat exchanger that opens during heating operation is provided on the refrigerant outlet side of the heat exchanger for exhaust heat recovery.
A valve and a second valve that opens during cooling operation are provided in parallel, and the first valve is placed between the four-way switching valve and the heat exchanger on the user side, and the second valve is placed between the four-way switching valve and the heat source side heat exchanger. A heat pump type refrigeration device characterized by being connected to an exchanger.
JP58139206A 1983-07-28 1983-07-28 Heat pump type refrigerator Granted JPS6029559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58139206A JPS6029559A (en) 1983-07-28 1983-07-28 Heat pump type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58139206A JPS6029559A (en) 1983-07-28 1983-07-28 Heat pump type refrigerator

Publications (2)

Publication Number Publication Date
JPS6029559A true JPS6029559A (en) 1985-02-14
JPH0480313B2 JPH0480313B2 (en) 1992-12-18

Family

ID=15240013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58139206A Granted JPS6029559A (en) 1983-07-28 1983-07-28 Heat pump type refrigerator

Country Status (1)

Country Link
JP (1) JPS6029559A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250466A (en) * 1985-04-30 1986-11-07 三菱電機株式会社 Engine driving type air-conditioning hot-water supply device
JPH03105174A (en) * 1989-09-20 1991-05-01 Sanyo Electric Co Ltd Gas heat pump type refrigerating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192764A (en) * 1981-05-21 1982-11-26 Daikin Ind Ltd Air-conditioning hot-water supply device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192764A (en) * 1981-05-21 1982-11-26 Daikin Ind Ltd Air-conditioning hot-water supply device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250466A (en) * 1985-04-30 1986-11-07 三菱電機株式会社 Engine driving type air-conditioning hot-water supply device
JPH0437344B2 (en) * 1985-04-30 1992-06-19 Mitsubishi Electric Corp
JPH03105174A (en) * 1989-09-20 1991-05-01 Sanyo Electric Co Ltd Gas heat pump type refrigerating device

Also Published As

Publication number Publication date
JPH0480313B2 (en) 1992-12-18

Similar Documents

Publication Publication Date Title
JP6615345B2 (en) Refrigeration cycle system
WO2021228018A1 (en) Air conditioning unit and control method therefor
JP4317793B2 (en) Cooling system
JP5145026B2 (en) Air conditioner
KR100357989B1 (en) Heat pump system
JPS6155018B2 (en)
KR101964946B1 (en) temperature compensated cooling system high efficiency
KR101532781B1 (en) Air conditioning system
JPS6029559A (en) Heat pump type refrigerator
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JPS6343662B2 (en)
KR100613502B1 (en) Heat pump type air conditioner
KR100591323B1 (en) Heat pump type air conditioner
JPS5848824B2 (en) Air conditioning/heating water heater
KR102080053B1 (en) Heat pump air-conditioner having defrosting function
JP3918980B2 (en) Refrigeration equipment
JPS62202965A (en) Refrigeration cycle
JP2005147582A (en) Air conditioner
JP2002286309A (en) Refrigerator
JP4262901B2 (en) Refrigeration equipment
JP2004116930A (en) Gas heat pump type air conditioner
JP2008145002A (en) Air conditioning device
JP2002349996A (en) Exhaust heat recovery air conditioner
JPS6033459A (en) Heat pump type refrigerator
KR102165353B1 (en) Refrigerant system