JPS6028787B2 - Method of manufacturing cellular concrete - Google Patents

Method of manufacturing cellular concrete

Info

Publication number
JPS6028787B2
JPS6028787B2 JP6683677A JP6683677A JPS6028787B2 JP S6028787 B2 JPS6028787 B2 JP S6028787B2 JP 6683677 A JP6683677 A JP 6683677A JP 6683677 A JP6683677 A JP 6683677A JP S6028787 B2 JPS6028787 B2 JP S6028787B2
Authority
JP
Japan
Prior art keywords
foam
foaming agent
cement
cationic surfactant
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6683677A
Other languages
Japanese (ja)
Other versions
JPS541322A (en
Inventor
元京 河井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON MUKI ZAIRYO KK
Original Assignee
NIPPON MUKI ZAIRYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON MUKI ZAIRYO KK filed Critical NIPPON MUKI ZAIRYO KK
Priority to JP6683677A priority Critical patent/JPS6028787B2/en
Publication of JPS541322A publication Critical patent/JPS541322A/en
Publication of JPS6028787B2 publication Critical patent/JPS6028787B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明はセメント、水、蛋白質性発泡剤及びカチオン性
界面活性剤より造る気泡コンクリートの製法に関し、そ
の目的とするところは軽量で、かつ高強度の建築、土木
用材料を得ることにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing aerated concrete made from cement, water, a protein foaming agent, and a cationic surfactant, and its purpose is to produce a lightweight and high-strength material for construction and civil engineering. It's about getting.

現在気泡コンクリートの製造においては、スラリー中で
アルミ粉末を発泡させてオートクレープ養生を行なうと
いう方法が大部分を占めている。この方法は画一的な製
品を大量に製造するという点に関しては非常に有効であ
るが、現場施工には向いていないという欠点がある。又
、現場施工として使用されている発泡スチレン工法にお
いては、内部に介在する発ポリスチレンには骨材として
の強度は期待できず、軽量化しようとすると耐燃性が不
十分になる。
Currently, most aerated concrete is produced by foaming aluminum powder in a slurry and then curing it in an autoclave. Although this method is very effective in producing uniform products in large quantities, it has the disadvantage that it is not suitable for on-site construction. In addition, in the expanded styrene construction method used for on-site construction, the polystyrene interposed inside cannot be expected to have the strength as an aggregate, and if an attempt is made to reduce the weight, the flame resistance will be insufficient.

さらには発泡ポリスチレンが高価なため、建築、±木の
限られた分野にしか適用できない。軽量、耐燃性があり
現場施工も容易に行える材料は見あたらないのが現状で
ある。本発明者は発泡剤としてオートクレープ養生を必
要としない蛋白質性発泡剤に着目し、気泡コンクリート
の強度増加をはかる方法として泡の膜を強化することに
成功した。
Furthermore, because expanded polystyrene is expensive, it can only be applied to limited fields such as architecture and wood. At present, there is no material that is lightweight, flame-resistant, and easy to construct on-site. The present inventor focused on a protein foaming agent that does not require autoclave curing as a foaming agent, and succeeded in strengthening the foam film as a method of increasing the strength of cellular concrete.

一般に界面活性剤は起泡性を有している。Generally, surfactants have foaming properties.

これは界面張力の異常な低下と界面における特異な吸着
に起因しているが、界面活性剤による泡は蛋白質系の物
質を添加すると消滅し難くなる傾向があり、さらには蛋
白質性発泡剤によって作られた泡が界面活性剤によって
消滅することがないばかりでなく、かえってその膜が強
化されることを知った。一方セメント粒子は硬化以前で
は水中において負に帯電しており、又界面活性剤の中で
はカチオン界面活性剤が凝集力に富んでいる。
This is due to an abnormal decrease in interfacial tension and unique adsorption at the interface, but foams caused by surfactants tend to be difficult to disappear when protein-based substances are added, and furthermore, foams created by protein-based blowing agents tend to be difficult to disappear. They found that not only did the bubbles not disappear due to the surfactant, but the film was actually strengthened. On the other hand, cement particles are negatively charged in water before hardening, and among surfactants, cationic surfactants have a high cohesive force.

本発明者はこれら一連の知識のもとにカチオン界面活性
剤及び蛋白質性発泡剤とから生じた泡が界面の吸着に優
れ、セメント粒子を泡の膜に凝集させ、泡膜付近で高密
度になり、泡をさらに強化することを確認した。蛋白質
性発泡剤、カチオン界面活性剤、セメント、水との複合
による気泡セメントスラリーは容易に現場施工ができ、
又養生もビニールシート類で被って湿気を与えるだけで
充分という利点があり、それ自体で高強度を有する鉄筋
の周囲に施けば一層強力なものとなる。
Based on this series of knowledge, the present inventor has discovered that the foam generated from the cationic surfactant and the protein foaming agent has excellent adsorption at the interface, causes cement particles to aggregate into a foam film, and forms a dense layer near the foam film. It was confirmed that the foam was further strengthened. Aerated cement slurry made by combining a protein foaming agent, cationic surfactant, cement, and water can be easily applied on-site.
It also has the advantage that curing is sufficient just by covering it with a vinyl sheet and adding moisture, and if it is applied around reinforcing bars that have high strength by themselves, they will become even stronger.

使用されるカチオン界面活性剤のうちで好ましいものは
第4級アンモニウム塩であり、そのアルキル基力む,.
ないしC,5であればなお良く、C,.以下では泡の質
が粗荒になり、C,5以上では低温での起泡力は弱まる
Preferred among the cationic surfactants used are quaternary ammonium salts, whose alkyl groups, .
It is even better if it is between C, 5 and C, . Below C.5, the quality of the foam becomes coarse, and above C.5, the foaming power at low temperatures weakens.

気泡コンクリートに使用される蛋白質性発泡剤は対セメ
ント重量比が0.1%ないし1%であり、特に0.3%
ないし0.5%が良い結果を生む。
The protein foaming agent used in cellular concrete has a weight ratio of 0.1% to 1%, especially 0.3%.
to 0.5% produces good results.

又、カチオン界面活性剤の使用量は対蛋白質性発泡剤の
重量比が0.1%ないし5%である。特に好ましい範囲
は曲げ強度、圧縮強度、比重、どれを重視するかによっ
て異なり、曲げ強度及び比重を重視しようとすれば0.
5ないし2%が良く、圧縮強度及び比重を重視しようと
すれば2%ないし5%が良い。
Further, the amount of the cationic surfactant used is such that the weight ratio to the protein foaming agent is 0.1% to 5%. The particularly preferable range varies depending on which of bending strength, compressive strength, or specific gravity is more important.
5 to 2% is good, and if you want to emphasize compressive strength and specific gravity, 2% to 5% is good.

カチオン界面活性剤の量が0.1%以下は曲げ強、圧縮
強度共著しい増加は見られず、5%以上では泡膜にセメ
ント粒子が凝集しすぎて泡が消滅して密度が低下し軽量
化を期待することできなくなる。
When the amount of cationic surfactant is less than 0.1%, no significant increase in bending strength and compressive strength is observed, and when it is more than 5%, cement particles aggregate in the foam film so much that the foam disappears, resulting in a decrease in density and light weight. It is no longer possible to expect change.

気泡コンクリートの作製方法としては使用する発泡機又
は蝿梓磯原料投入力法、投入順序が重要な意味を持つ、
例えば鷹梓機においては泡の量を増すために高速に回転
するものが良くセメントの投入方法では少量づつ一定量
を投入し固まりができないようにする等注意すべき点が
多々ある。
As for the production method of aerated concrete, the foaming machine used, the raw material input force method, and the order of input are important.
For example, the Takaazusa machine rotates at high speed to increase the amount of foam, and there are many points to be careful about when adding cement, such as adding a constant amount in small portions to prevent clumping.

発泡セメントスラリーを作る方法として有効なのは以下
に掲がる三つの方法であり、特に■の方法が最も好まし
い。■ 水、蛋白質性起泡剤、カチオン界面活性剤を混
合し、発泡機によって泡を作っておき、この泡を水、セ
メントよりなるセメントスラリー中に注入、損辞するこ
とによって発泡セメントスラリーとする。
The following three methods are effective for producing foamed cement slurry, and method (1) is particularly preferred. ■ Mix water, a protein foaming agent, and a cationic surfactant to create foam using a foaming machine, and then inject this foam into a cement slurry consisting of water and cement to create a foamed cement slurry. .

■ 水、蛋白質性建泡剤、カチオン界面活性剤を混合、
擬枠することによって泡を作っておき、この泡を水、セ
メントよりなるセメントスラリ−中に注入燈洋すること
によって発泡セメントスラリ−とする。
■ Mix water, proteinaceous foaming agent, and cationic surfactant,
Foam is created by forming a false frame, and the foam is poured into a cement slurry consisting of water and cement to form a foamed cement slurry.

■ 水、蛋白質性起泡剤、カチオン界面活性剤を混合、
擬梓することによって泡を作り、この中にセメント粉を
少量づつ混入、縄拝することによって発泡セメントスラ
リーとする。
■ Mix water, protein foaming agent, and cationic surfactant,
Foam is created by stirring, and cement powder is mixed into the foam little by little, and foamed cement slurry is made by stirring.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

実施例 カチオン界面活性剤としてェソカードC−12(ライオ
ン油脂株式会社製)を使用し、蛋白質性発泡剤として米
国マール社のマールクリ−トP液を使用した。
EXAMPLE Esocard C-12 (manufactured by Lion Oil Co., Ltd.) was used as a cationic surfactant, and Marcrete P liquid (manufactured by Marl Corporation, USA) was used as a protein foaming agent.

ボルトランドセメント100の重量部に対し、マールク
リートP液3重量部に第1表に記載した重量部のェソカ
ードC−12を添加し、それを水で稀釈し60の重量部
とした発泡混合水溶液を加え気泡コンクリート板を作製
した。
A foamed mixed aqueous solution was prepared by adding 3 parts by weight of Marcrete P liquid to 3 parts by weight of Marcrete P liquid and diluting it with water to make 60 parts by weight of Esocard C-12, based on 100 parts by weight of Bortland Cement. Aerated concrete plates were made by adding

その板の強度比較を第1表に示す。この結果からェソカ
ードC−12を混入したものは混入しないものに比べて
曲げ強度、圧縮強度に増加がみられ、曲げ強度では0.
03部でピークに達し、圧縮強度では増加を続けた。
Table 1 shows a comparison of the strengths of the plates. The results show that the products containing Esocard C-12 have an increase in bending strength and compressive strength compared to those without Esocard C-12, and the bending strength is 0.
It reached a peak at 0.3 parts, and the compressive strength continued to increase.

第1表 (注) 曲レナ雌健鴫拳 圧縮比強度=鞭鰹Table 1 (note) Song Lena Female Kenpaku Fist Compression specific strength = whip bonito

【図面の簡単な説明】[Brief explanation of the drawing]

図面は上記本発明の実施例において、ェソカ−ドC−1
2の発泡剤に対する添加量と強度との関係を示すグラフ
である。
The drawings show the Esocard C-1 in the above embodiment of the present invention.
2 is a graph showing the relationship between the amount added to the foaming agent No. 2 and the strength.

Claims (1)

【特許請求の範囲】[Claims] 1 セメント、水及び蛋白質性発泡剤とにより気泡コン
クリートを製造する方法において、蛋白質性発泡剤中に
カチオン性界面活性剤を重量比で0.1〜5%混入する
ことを特徴とする気泡コンクリートの製法。
1. A method for producing aerated concrete using cement, water and a proteinaceous foaming agent, characterized in that a cationic surfactant is mixed in the proteinaceous foaming agent in an amount of 0.1 to 5% by weight. Manufacturing method.
JP6683677A 1977-06-07 1977-06-07 Method of manufacturing cellular concrete Expired JPS6028787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6683677A JPS6028787B2 (en) 1977-06-07 1977-06-07 Method of manufacturing cellular concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6683677A JPS6028787B2 (en) 1977-06-07 1977-06-07 Method of manufacturing cellular concrete

Publications (2)

Publication Number Publication Date
JPS541322A JPS541322A (en) 1979-01-08
JPS6028787B2 true JPS6028787B2 (en) 1985-07-06

Family

ID=13327319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6683677A Expired JPS6028787B2 (en) 1977-06-07 1977-06-07 Method of manufacturing cellular concrete

Country Status (1)

Country Link
JP (1) JPS6028787B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104446088A (en) * 2014-10-31 2015-03-25 陕西师范大学 Amino acid anionic-cationic surfactant based composite foaming agent

Also Published As

Publication number Publication date
JPS541322A (en) 1979-01-08

Similar Documents

Publication Publication Date Title
CA1182608A (en) Light-weight building material and method for the production thereof
US3867159A (en) Foamed concrete structures
KR20010012557A (en) Method for Producing Expandable Styrene Polymers Containing Graphite Particles
DK151877B (en) PROCEDURE FOR THE MANUFACTURING OF FROST RESISTANT CONCRETE
CN103011896A (en) Foam concrete
US4130687A (en) Inorganic foam
JP3386820B2 (en) Sound absorbing cementitious composition and its manufacturing method
US4011355A (en) Emulsion coating for lightweight aggregate
JPS6020351B2 (en) Manufacturing method of alkali-resistant glass fiber reinforced cellular concrete
NO810499L (en) FIRE-RESISTANT ARTICLE AND METHOD OF MANUFACTURE THEREOF
JPS6028787B2 (en) Method of manufacturing cellular concrete
US2053842A (en) Cellular cement and a process for making the same
JPH0747514B2 (en) Lightweight cured product manufacturing method
JPH0214889A (en) Production of closed cell-type foamed cement board
Miryuk Porous magnesia compositions with various fillers
RU2128154C1 (en) Method of production of foam concrete
JPS6033271A (en) Super lightweight alc material and manufacture
JPS59131559A (en) Manufacture of foamed aggregate for inorganic hydraulic substance
KR910006172A (en) Method of Forming Cement Molded Material and Insulating Fireproof Coating Layer
JPH0429631B2 (en)
SU927773A1 (en) Foaming agent for making light-weight concretes
JPH1067580A (en) Lightweight cement composite and its production
SU1539193A1 (en) Foaming agent for rendering concrete mix porous
DE2112780A1 (en) Foaming thermoplastic material beads - which contain blowing agent by exothermic reaction with calcium oxide and water
CA1104303A (en) Inorganic foam