JPS602827A - Combustor of gas turbine - Google Patents

Combustor of gas turbine

Info

Publication number
JPS602827A
JPS602827A JP11050683A JP11050683A JPS602827A JP S602827 A JPS602827 A JP S602827A JP 11050683 A JP11050683 A JP 11050683A JP 11050683 A JP11050683 A JP 11050683A JP S602827 A JPS602827 A JP S602827A
Authority
JP
Japan
Prior art keywords
fuel
swirler
blades
combustion chamber
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11050683A
Other languages
Japanese (ja)
Inventor
Mamoru Suyari
護 須鎗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11050683A priority Critical patent/JPS602827A/en
Publication of JPS602827A publication Critical patent/JPS602827A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/30Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices
    • F23R3/32Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices being tubular

Abstract

PURPOSE:To finely atomize and homogeneously blend the fuel for combustion for thereby lowering NOx emissions, by providing a primary air feeding swirler at the inlet of premixing channel in front of a combustion chamber and providing the front face of swirler with a fuel feeding pipe having its injection ports faced to respective blades of swirler. CONSTITUTION:A primary air A is caused a swirling movement by means of blade 16 in passing through a swirler 15. A liquid fuel is injected in an atomized state through fuel injection ports 18 defined in a fuel feeding pipe 17 arranged in front of a swirler 15. The fuel is then finely atomized in contact with a high- speed air stream passing through blades 16, an collides with blades 16 for further atomizing. Since the number of fuel injection ports 18 is equal to that of blades 16, the fuel is uniformly injected over the entire air stream which passes through the swirler 15, and can be thus homogeneously blended. The fuel is thus finely atomized and homogeneously blended at the inlet of premixing channel 10 and therefore can be evaporated and homogeneously blended inside the premixing channel in an extremely short period. In consequence, NOx emissions can be lowered.

Description

【発明の詳細な説明】 本発明は、ガスタービン燃焼器、詳しくは燃料微粒化装
置を備えた燃焼器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas turbine combustor, and more particularly to a combustor equipped with a fuel atomization device.

周知の如く、ガスタービンの性能向上を図るため燃焼器
における圧力比を増加させている。ところが、そのため
−次空気を高圧にすると、燃焼器内の火炎温度が高くな
り、排気ガスの窒素酸化物(NOx )濃度が高くなり
公害となる。
As is well known, in order to improve the performance of a gas turbine, the pressure ratio in the combustor is increased. However, if the secondary air is made to have a high pressure, the flame temperature within the combustor will increase, and the concentration of nitrogen oxides (NOx) in the exhaust gas will increase, causing pollution.

すなわち、ガスタービン及びジェットエンジンからのN
Ox排出量は、それらのエンジンの燃焼器内火炎温度に
大きく依存している。又火炎温度は燃焼器入口温度に依
存している。これは圧縮機圧力比の上昇と共にNOxの
排出量が増加することを示している。まだこれとは別に
、低圧力比でも、レキュベータ付の再生サイクルではN
Ox排出量は増大する。
That is, N from gas turbines and jet engines
Ox emissions are highly dependent on the combustor flame temperature of those engines. The flame temperature also depends on the combustor inlet temperature. This indicates that the amount of NOx emissions increases as the compressor pressure ratio increases. Apart from this, even at low pressure ratios, N
Ox emissions increase.

この為、従来の方法では、燃焼器内へ水噴射をし、火炎
温度を低下させ、低NOxを達成しようとした。この方
法は、現在に於ても最も確実かつ手っとり早い方法であ
り、産業用として多く採用されている。
For this reason, in the conventional method, water was injected into the combustor to lower the flame temperature and attempt to achieve low NOx. This method is currently the most reliable and quickest method and is widely used in industrial applications.

しかし、水噴射のものは、純水装置等の付帯設備及びラ
ンニングコスト面で、ドライタイプと比べ高価なものと
なる。又、交通機関等の移動タービンには採用し難いも
のであった。
However, the water injection type is more expensive than the dry type in terms of incidental equipment such as a water purifier and running costs. In addition, it is difficult to employ it in mobile turbines for transportation systems and the like.

尚、上記NOx排出量は、燃焼器内の平均燃焼温度に依
存するのではなく、最高温度により影響を受け、従来の
当量比(理論的な燃料と空気の混合比に対する実際の混
合比の割合)の大きな高負荷燃焼器では、燃料と空気の
混合が不均一となり、主燃焼域での温度分布が大きく、
この最高温度によりNOx排出量が増大してしまう結果
にあった。
Note that the above NOx emissions do not depend on the average combustion temperature in the combustor, but are affected by the maximum temperature, and are determined by the conventional equivalence ratio (the ratio of the actual mixture ratio to the theoretical fuel-air mixture ratio). In a high-load combustor with a large
This maximum temperature resulted in an increase in NOx emissions.

以上の従来技術を背景とし、最近、液体燃料をあらかじ
め蒸発させて空気と均一に混合し、その後燃焼させるこ
とにより低NOxをドライで達成しようとする研究が進
められている。これによると航空機巡航時のNOx排出
量を現状の込。に低下させる。
With the above-mentioned conventional technology as a background, research has recently been underway to achieve low NOx in a dry manner by pre-evaporating liquid fuel, uniformly mixing it with air, and then combusting it. According to this, the current amount of NOx emissions during aircraft cruising is included. decrease to.

この燃焼法は、予蒸発・予混合燃焼法(Lean。This combustion method is the pre-evaporation/premix combustion method (Lean).

Premixed、 Prevaporized !u
el combustion )と言われ、希薄燃焼法
である。この燃焼法は、最終的に、主燃焼域に流入する
のは、燃料と空気の理論混合比の半分近< (0,55
〜0.6)の燃料とし、ムのNOxを達成しようとして
いる。
Premixed, Prevaporized! u
el combustion) and is a lean burn method. In this combustion method, the amount that ultimately flows into the main combustion zone is approximately half of the stoichiometric mixture ratio of fuel and air < (0,55
~0.6), and aim to achieve a NOx level of 0.6%.

しかし、上記予蒸発・予混合燃焼法(L、P、P、 )
においては、如何に短時間のうちに燃料を蒸発させ、燃
焼用空気と均一に混合させるかが問題となる。
However, the above pre-evaporation/premix combustion method (L, P, P, )
In this case, the problem is how to evaporate the fuel in a short time and mix it uniformly with the combustion air.

すなわち、上記LPPにおいては、第1図7)に示す如
く、燃焼室(1)の前部に予蒸発・予混合通路(2)を
設け、この通路(2)内で超希薄な混合を行なわせるの
であるが、該通路(2)内で短時間のうちに燃料を蒸発
させ、かつ均一混合させないと、通路(2)内で自発火
及び逆火が起こり、NOx排出量を低減させることがで
きないのである。
That is, in the above LPP, as shown in Fig. 1 7), a preevaporation/premixing passage (2) is provided at the front of the combustion chamber (1), and ultra-lean mixing is performed within this passage (2). However, if the fuel is not evaporated in a short time and mixed uniformly in the passage (2), spontaneous ignition and backfire will occur in the passage (2), making it difficult to reduce NOx emissions. It cannot be done.

このことは、第2図から第5図に示す測定データ及び計
算データから首肯される。
This is confirmed from the measured data and calculated data shown in FIGS. 2 to 5.

第2図は、火炎温度とNOxOx排出量間係を示し火炎
温度が高い程、NOx量が増大することを示している。
FIG. 2 shows the relationship between flame temperature and NOxOx emissions, and shows that the higher the flame temperature, the greater the NOx amount.

第3図は、混合通路(2)における混合燃料の滞留時間
とNOx排出量との関係を示し、滞留時間が長い程、又
は当量比が大きい程、NOx量が増大することを示して
いる。
FIG. 3 shows the relationship between the residence time of the mixed fuel in the mixing passage (2) and the NOx emission amount, and shows that the longer the residence time or the larger the equivalence ratio, the greater the NOx amount.

第4図は、圧力と着火遅れ時間及び燃料蒸発時間との関
係を示し、圧力一定では着火遅れ時間も一定となり、こ
の着火遅れ時間内にすばやく蒸発するには燃料粒子が微
細な程よいことを示している。すなわち、着火遅れ時間
をオーバーすると、燃料は自発火するため、該時間内に
蒸発を完了しなければガらないのであり、かつ前記滞留
時間を短縮してその短時間内に蒸発完了するには、燃料
粒子が微細なものでなければならないことを示している
Figure 4 shows the relationship between pressure, ignition delay time, and fuel evaporation time. When the pressure is constant, the ignition delay time is also constant, and it shows that the finer the fuel particles are, the better to quickly evaporate within this ignition delay time. ing. In other words, if the ignition delay time is exceeded, the fuel will spontaneously ignite, so if the evaporation is not completed within the ignition delay time, the fuel will not burn out. , indicating that the fuel particles must be fine.

第5図は、当量比とNOxの関係を示したものであり、
均一混合の場合、希薄混合の方がNOx量が低減するが
、不均一混合では、混合比に関係なくNOx量が増大す
ることを示している。
Figure 5 shows the relationship between equivalence ratio and NOx,
In the case of homogeneous mixing, the amount of NOx decreases with dilute mixing, but with non-uniform mixing, the amount of NOx increases regardless of the mixing ratio.

以上を要約すれば、超希薄で短時間のうちに均質に混合
し、短時間のうちに燃焼を完結させる燃焼法が、低NO
xを達成できるという事になる。短時間で予蒸発・予混
合を行なわせることにより、自発火及び逆火を防止でき
ることになる。
To summarize the above, the combustion method that achieves homogeneous mixing in an ultra-dilute and short time and completes combustion in a short time is the best way to achieve low NO
This means that x can be achieved. By performing pre-evaporation and pre-mixing in a short time, spontaneous ignition and backfire can be prevented.

以上詳述した如く、LPPにおいては、短時間のうちに
燃料と燃料用空気とを混合し、燃料を蒸発させるために
、燃料の初期粒径を小さくしなければならないと云う事
が認識されるのであるが、今だその達成手段が未解決で
ある。すなわち、従来は、第1図に示すように、−次空
気供給用スワラ−(4)を通過した後の空気に対し、単
一の又は少数のノズル(6)から燃料を噴出させていた
為、燃料の微粒化及び均質混合化が今一つのものであっ
た。
As detailed above, in LPP, it is recognized that the initial particle size of the fuel must be made small in order to mix the fuel and fuel air and evaporate the fuel in a short time. However, the means to achieve this goal is still unresolved. That is, conventionally, as shown in Fig. 1, fuel was injected from a single or a small number of nozzles (6) to the air after passing through the secondary air supply swirler (4). , atomization and homogeneous mixing of fuel were different.

そこで、本発明は、極めて簡単な構造でもって燃料を微
細化かつ均質混合化することができるガスタービン燃焼
器を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a gas turbine combustor that can refine and homogeneously mix fuel with an extremely simple structure.

従って、その特徴−とする処は、燃焼室の前部に該燃焼
室に連通ずる予混合通路を設け、該通路の入口に一次空
気供給用スワラーを設ける他、該スワラ−の各羽根に燃
料を直接衝突させるべく各羽根に対面した噴出孔を有す
る燃料供給管をスワラ−の前面に配設した点にある。
Therefore, its characteristics are that a premixing passage communicating with the combustion chamber is provided at the front part of the combustion chamber, a swirler for supplying primary air is provided at the entrance of the passage, and each blade of the swirler is provided with fuel. A fuel supply pipe having an ejection hole facing each blade is disposed on the front surface of the swirler so that the fuel directly collides with the swirler.

以下、本発明の実施例を図面に基づき詳述する。Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第6図から第8図に示すものは、本発明の実施例である
What is shown in FIGS. 6 to 8 is an embodiment of the present invention.

同図において、ガスタービン燃焼器(6)は、一端開口
部が図外圧縮機からの高圧空気受入口(7)とされた筒
状外部ケーシング(8)と、該ケーシング(8)の内面
と所定間隙をおいて同心状に内嵌された燃焼室(9)と
、外部ケーシング(8)内で且つ燃焼室(9)の前壁部
から燃焼室(9)と同心状に前方に突出した円筒状の予
蒸発予混合通路(10)とを有する。
In the figure, a gas turbine combustor (6) includes a cylindrical outer casing (8) whose opening at one end serves as a high-pressure air intake port (7) from a compressor (not shown), and an inner surface of the casing (8). A combustion chamber (9) is fitted concentrically within the combustion chamber (9) with a predetermined gap, and a combustion chamber (9) protrudes forward from the front wall of the combustion chamber (9) within the outer casing (8) concentrically with the combustion chamber (9). It has a cylindrical pre-evaporation and pre-mixing passageway (10).

燃焼室(9)の後端は高温高圧の燃焼ガス排気口(ol
とされ、該排気口(11)の外周面は外部ケーシング(
8)の後端内面に内嵌固着されている。排気口(■lか
らの燃焼ガスは図外のタービンに導入される。燃焼室(
9)の後部の周壁面に希釈口02)が複数個開設されて
いる。
The rear end of the combustion chamber (9) is a high-temperature, high-pressure combustion gas exhaust port (ol).
The outer peripheral surface of the exhaust port (11) is connected to the outer casing (
8) is internally fitted and fixed to the inner surface of the rear end. Combustion gas from the exhaust port (■l is introduced into the turbine (not shown). The combustion chamber (
A plurality of dilution ports 02) are provided on the rear peripheral wall surface of 9).

燃焼室(9)の前端面中央部には、予混合通路(lO)
内に突出する円錐状保炎器Q3iが通路(lO)と同心
状に設けられている。保炎器031の後端外周面と、予
混合通路(101の後端内周面間に、予混合通路(lO
)と燃焼室(9)とを連通ずる環状の導入口04)が設
けられている。
In the center of the front end surface of the combustion chamber (9), there is a premixing passage (lO).
A conical flame stabilizer Q3i protruding inward is provided concentrically with the passageway (lO). A premixing passage (lO
) and the combustion chamber (9) are provided with an annular inlet 04).

予混合通路(10)の前端入口に一次空気供給用スワラ
ー(旋回器) (15)が設けられている。第7図及び
第8図に示すように、該スワラーθ荀には所定のねじれ
角を有する多数の放射状固定羽根(16Nが設けられて
いる。前記空気受入口(7)からの高圧空気が羽根θ6
)間を通過することにより、該空気は旋回運動を与えら
れ予混合通路+101内に導入される。
A primary air supply swirler (15) is provided at the front end entrance of the premixing passage (10). As shown in FIGS. 7 and 8, the swirler θ is provided with a large number of radial fixed vanes (16N) having a predetermined helix angle. θ6
), the air is given a swirling motion and introduced into the premixing passage +101.

このスワラ−(I5)の前面に燃料供給管(Iηが設け
られている。この燃焼供給管a″iIは、スワラ−(1
5)の内外円周間の略中央円周上に位置する円環状管で
あり、該供給管Q71の端面に多数の細径の燃焼噴出孔
α8)が開設されている。この噴出孔呻がらの燃焼が羽
根00に直接衝突すべく、噴出孔健は各羽根(16)に
夫々対面して設けられている。
A fuel supply pipe (Iη) is provided in front of this swirler (I5). This combustion supply pipe a″iI is connected to the swirler (1
The supply pipe Q71 is an annular pipe located approximately on the central circumference between the inner and outer circumferences of the supply pipe Q71, and a large number of small-diameter combustion ejection holes α8) are provided in the end face of the supply pipe Q71. The nozzle holes are provided facing each vane (16) so that the combustion of the nozzle shells directly collides with the blades 00.

上記本発明の実施例によれば、圧縮機からの高圧空気は
高圧空気受入口(7)を通り、その一部はスワラ−αm
lを通過して予蒸発・予混合通路(川)に入る。
According to the embodiment of the present invention, the high pressure air from the compressor passes through the high pressure air intake port (7), and a part of it passes through the swirler αm.
1 and enters the preevaporation/premixing passage (river).

また高圧空気の一部は、予混合通路(10)外周面及び
燃焼室(9)の外周面と外部ケーシング(8)の内周面
間の間隙を通り、燃焼室(9)後部の希釈口(+21か
ら燃焼室(9)に入る。
In addition, a part of the high-pressure air passes through the gap between the outer circumferential surface of the premixing passage (10), the outer circumferential surface of the combustion chamber (9), and the inner circumferential surface of the outer casing (8), and passes through the dilution port at the rear of the combustion chamber (9). (Enter the combustion chamber (9) from +21.

前記スワラ−(15)を通過する高圧−次空気は、スワ
ラ−(Iωの羽根(16)により旋回運動を与えられる
The high-pressure air passing through the swirler (15) is given swirling motion by the blades (16) of the swirler (Iω).

このスワラ−(15)を通過する空気に対し、スワラ−
(15)の前面に配設された燃料供給管(lηの燃料噴
出孔θねより液体燃料が噴射される。燃料噴射方式は圧
力噴゛霧式、エアプラスト式又はエアアシスト式のイス
レであってもよい。
The swirler (15)
(15) Liquid fuel is injected from the fuel injection hole θ of the fuel supply pipe (lη) arranged on the front side.The fuel injection method is pressure spray type, airplast type, or air assist type. You can.

燃料噴出孔(I8)から噴射された燃料は、噴霧状とな
って噴出孔08)から噴出すると共に、スワラ−θハの
羽根(16)間を通る高速空気流により更に微粒化され
、かつ、該燃料粒子は羽根(16)に衝突し、更に微粒
化が促進されるとともに均質混合化がはたされる。
The fuel injected from the fuel injection hole (I8) becomes a spray and is ejected from the injection hole 08), and is further atomized by the high-speed airflow passing between the blades (16) of the swirler-θ, and The fuel particles collide with the vanes (16), further promoting atomization and achieving homogeneous mixing.

上記燃刺噴出孔錘は、スワラ−θωの羽根α6)枚数に
対応して同数設けられているため、スワラ−羽根(16
)の枚数だけのスプレーが散在することになり、噴射燃
料はスワラ−(+51を通過する空気全体にわたり均一
に噴射されることになり、均質混合に寄与する。更に燃
料が羽根(I6)に衝突することにより、燃料の微粒化
が助長される。
The above-mentioned fuel sting ejection hole weights are provided in the same number corresponding to the number of swirler blades α6) of the swirler θω.
), and the injected fuel is uniformly injected over the entire air passing through the swirler (+51), contributing to homogeneous mixing.Furthermore, the fuel collides with the blade (I6). By doing so, atomization of the fuel is promoted.

しかして微粒化された燃料は、予蒸発・予混合通路(1
0)内において、蒸発すると共に更に均質混合される。
The atomized fuel is then transferred to the pre-evaporation/pre-mixing passage (1
0), the mixture evaporates and is further homogeneously mixed.

燃料は予混合通路(lO)入口において微粒化され均一
混合されているため、との予混合通路(10)内におい
てきわめて短時間のうちに蒸発しかつ均質混合される。
Since the fuel is atomized and uniformly mixed at the inlet of the premixing passage (10), it evaporates and is homogeneously mixed within the premixing passage (10) in a very short time.

従って予混合通路(lO)内で自発火するおそれがない
。また、燃焼室(9)の火炎が逆火するおそれがない。
Therefore, there is no risk of spontaneous ignition within the premixing passage (lO). Further, there is no possibility that the flame in the combustion chamber (9) will backfire.

上記予蒸発・予混合された燃料と空気は、燃焼室(9)
前部の導入口04)から燃焼室(9)に入り、該燃焼室
(9)内で燃焼して高温高圧ガスとなり、排気口(11
)から高速で排出される。
The pre-evaporated and pre-mixed fuel and air are transferred to the combustion chamber (9).
It enters the combustion chamber (9) from the front inlet port (04), burns in the combustion chamber (9), becomes high-temperature, high-pressure gas, and exits the exhaust port (11).
) is ejected at high speed.

上記導入口(14)を通過する混合気体は、保炎器(1
3)によりうず運動が与えられ、該混合気体は燃焼室(
9)前部でうず運動を行なうことになり、火炎は。
The mixed gas passing through the introduction port (14) is
3) gives a swirling motion, and the gas mixture moves into the combustion chamber (
9) The flame will move in a swirling motion at the front.

このうすにより保炎されることになり、炎がふき飛ぶこ
とはない。
This thin layer will hold the flame and prevent it from blowing out.

しかして、本実施例によれば、短時間のうちに均質な予
蒸発・予混合がなされるだめ、LPPの特徴である低N
Ox化を達成することができるものである。
According to this embodiment, homogeneous pre-evaporation and pre-mixing can be achieved in a short period of time, and the low N
It is possible to achieve Ox conversion.

尚、本発明は、上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

本発明によれば、燃料を微細化かつ均質混合化させて燃
焼さすことができるので、NOx排出月の低減が図られ
るものである。
According to the present invention, since the fuel can be made fine and homogeneously mixed and then combusted, the number of NOx emissions can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す燃焼器の断面図、第2図は火炎温
度とNOx量の関係を示すグラフ、第3図は滞留時間と
NOx量の関係を示すグラフ、第4図は圧力と自発火時
間及び蒸発時間との関係を示すグラフ、第5図は当量比
とNOx量の関係を示すグラフ、第6図は本発明の第1
実施例を示す燃焼器の断面図、第7図は同スワラ−の断
面図、第8図は同スワラ−の正面図である。 (6)・・・燃焼器、(9)・・・燃焼室、(10)・
・・予混合通路、0(至)・・・スワラ−106)・・
・羽根、θカ・・・燃料供給管、α8)・・・噴出孔。
Figure 1 is a cross-sectional view of a conventional combustor, Figure 2 is a graph showing the relationship between flame temperature and NOx amount, Figure 3 is a graph showing the relationship between residence time and NOx amount, and Figure 4 is a graph showing the relationship between pressure and NOx amount. FIG. 5 is a graph showing the relationship between spontaneous ignition time and evaporation time, FIG. 5 is a graph showing the relationship between equivalence ratio and NOx amount, and FIG.
FIG. 7 is a cross-sectional view of the swirler, and FIG. 8 is a front view of the swirler. (6)...Combustor, (9)...Combustion chamber, (10)...
...Premixing passage, 0 (to)...Swirler-106)...
- Vane, θ force...Fuel supply pipe, α8)...Blowout hole.

Claims (1)

【特許請求の範囲】[Claims] 1、 燃焼室の前部に該燃焼室に連通ずる予混合通路を
設け、該通路の入口に一次空気供給用スワラーを設ける
他、該スワラ−の各羽根に燃料を直接衝突させるべく各
羽根に対面した噴出孔を有する燃料供給管をスワラ−の
前面に配設したことを特徴とするガスタービン燃焼器。
1. A premixing passage communicating with the combustion chamber is provided at the front of the combustion chamber, and a swirler for supplying primary air is provided at the entrance of the passage, and each blade of the swirler is provided with a swirler to directly impinge fuel on each blade. A gas turbine combustor characterized in that a fuel supply pipe having facing jet holes is disposed in front of a swirler.
JP11050683A 1983-06-18 1983-06-18 Combustor of gas turbine Pending JPS602827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11050683A JPS602827A (en) 1983-06-18 1983-06-18 Combustor of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11050683A JPS602827A (en) 1983-06-18 1983-06-18 Combustor of gas turbine

Publications (1)

Publication Number Publication Date
JPS602827A true JPS602827A (en) 1985-01-09

Family

ID=14537495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11050683A Pending JPS602827A (en) 1983-06-18 1983-06-18 Combustor of gas turbine

Country Status (1)

Country Link
JP (1) JPS602827A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100099052A1 (en) * 2002-08-09 2010-04-22 Jfe Steel Corporation Tubular flame burner and combustion control method
US20100209858A1 (en) * 2006-01-26 2010-08-19 Frenette Henry E Combustion system for atomizing fuel mixture in burner box
US9657938B2 (en) 2014-02-07 2017-05-23 Eugene R. Frenette Fuel combustion system
US9874349B2 (en) 2015-04-03 2018-01-23 Eugene R. Frenette Fuel combustion system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100099052A1 (en) * 2002-08-09 2010-04-22 Jfe Steel Corporation Tubular flame burner and combustion control method
US8944809B2 (en) * 2002-08-09 2015-02-03 Jfe Steel Corporation Tubular flame burner and combustion control method
US20100209858A1 (en) * 2006-01-26 2010-08-19 Frenette Henry E Combustion system for atomizing fuel mixture in burner box
US9657938B2 (en) 2014-02-07 2017-05-23 Eugene R. Frenette Fuel combustion system
US9874349B2 (en) 2015-04-03 2018-01-23 Eugene R. Frenette Fuel combustion system

Similar Documents

Publication Publication Date Title
US9429324B2 (en) Fuel injector with radial and axial air inflow
RU2243449C2 (en) Combustion chamber with splitter of compressed air stream
US6240731B1 (en) Low NOx combustor for gas turbine engine
US6363726B1 (en) Mixer having multiple swirlers
US6381964B1 (en) Multiple annular combustion chamber swirler having atomizing pilot
US9366442B2 (en) Pilot fuel injector with swirler
EP0594127B1 (en) Combustor for gas turbines
JP4700834B2 (en) Method and apparatus for reducing combustor emissions with a swirl stabilization mixer
US4389848A (en) Burner construction for gas turbines
US5251447A (en) Air fuel mixer for gas turbine combustor
JP2954480B2 (en) Gas turbine combustor
EP0500256A1 (en) Air fuel mixer for gas turbine combustor
CN108561897B (en) Partial premixing and pre-evaporating ultralow emission combustion chamber for enhancing oil-gas mixing
JP2002195563A (en) Method and device for reducing burner emission
JP3590594B2 (en) Liquid fuel-fired low NOx combustor for gas turbine engine
JP3944609B2 (en) Fuel nozzle
US5146741A (en) Gaseous fuel injector
CN110925794A (en) Discrete multi-point rotational flow pressure atomizing nozzle, combustion chamber head and combustion chamber
JP2005344981A (en) Gas turbine combustor, and method for supplying fuel to gas turbine combustor
JPH10185196A (en) Prevaporization and premixing structure for liquid fuel in gas turbine combustor
JP3712947B2 (en) Liquid fuel-fired low NOx combustor for gas turbine engines
JPS602827A (en) Combustor of gas turbine
CN215175236U (en) Center staged combustion chamber based on self-excitation sweep oscillation fuel nozzle
JP3371467B2 (en) Gas turbine combustor
JPS6213932A (en) Combustor for gas turbine