JPS6028202A - Humidity sensitive element - Google Patents

Humidity sensitive element

Info

Publication number
JPS6028202A
JPS6028202A JP58135912A JP13591283A JPS6028202A JP S6028202 A JPS6028202 A JP S6028202A JP 58135912 A JP58135912 A JP 58135912A JP 13591283 A JP13591283 A JP 13591283A JP S6028202 A JPS6028202 A JP S6028202A
Authority
JP
Japan
Prior art keywords
humidity
moisture
resistance value
sensing element
sensitive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58135912A
Other languages
Japanese (ja)
Inventor
宇野 茂樹
光雄 原田
佐久間 一雄
平木 英朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58135912A priority Critical patent/JPS6028202A/en
Publication of JPS6028202A publication Critical patent/JPS6028202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は感湿素子に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a moisture sensitive element.

[発明の技術的背景とその問題点] 大気中の湿度を測定、検出する感湿素子(湿度センサ)
は、これまでに極めて多数の方式が提案され、かつ実用
化されている。特に、近年は電気的に直接湿度を検出で
きる方式の湿度センサが種々提案されている。この湿度
センサは湿度の検出のみならず、湿度の制御をも簡便に
電気的信号で処理できる特長を有するために注目されて
いる。
[Technical background of the invention and its problems] Moisture sensing element (humidity sensor) that measures and detects atmospheric humidity
A large number of methods have been proposed and put into practical use. In particular, in recent years, various types of humidity sensors that can directly detect humidity electrically have been proposed. This humidity sensor is attracting attention because it has the feature that not only humidity detection but also humidity control can be easily processed using electrical signals.

ところで、上述した湿度センサは大気中の湿度を測定す
るために、大気中の水分を感湿素子の表面に物理吸着さ
せ、電気的抵抗値を読−とるものが一般的である。こう
した湿度センサの感湿素体としては、従来、高分子物質
、金属酸化物の焼結体、或いは基板上に金属酸化物を焼
付けたものが用いられている。
By the way, in order to measure the humidity in the atmosphere, the above-mentioned humidity sensor generally causes moisture in the atmosphere to be physically adsorbed on the surface of a humidity sensing element, and then reads the electrical resistance value. Conventionally, the humidity sensing element of such a humidity sensor is a sintered body of a polymeric substance, a metal oxide, or a substrate in which a metal oxide is baked.

しかしながら、高分子物質を感湿素体とした湿度センサ
は低湿度領域での抵抗値がIMΩ乃至10MΩ以上と極
めて犬きくなるため、通常の電気的検出回路では容易に
湿度を検出できず、精度も極めて悪くなるという欠点が
あった。
However, humidity sensors that use polymeric substances as moisture sensing elements have extremely high resistance values in the low humidity region, ranging from IMΩ to over 10MΩ, so humidity cannot be easily detected using ordinary electrical detection circuits, resulting in high accuracy. It also had the disadvantage of being extremely bad.

まだ、金属酸化物を感湿素体とした湿度センサは初期の
感度が優れているものの、いずれも長期間の使用におい
ては抵抗値の変化が大きいという欠点がありた。この点
を克服するだめに金属酸化物の焼結体より々る湿度セン
サにヒータを付設し湿度測定前に一時的に感湿素体を加
熱し、高温状態にして感湿素体面を再生した後に湿度を
検出するものも知られている。つまシ、金属酸化物から
なる感湿素体の熱安定性を利用し、湿度を検出する直前
に高温にすることにより感湿素体を初期状態に戻して再
現性を確保している。しかしながらかかる湿度センサで
は、湿度検出直前に加熱を行なう必要があるために、連
続的な湿度検出は不可能である。しかも、ヒータやヒー
タ制御回路という複雑な機構が必要となり、コスト高の
一因となる。
Although humidity sensors using metal oxides as moisture sensing elements have excellent initial sensitivity, they all have the drawback of large changes in resistance after long-term use. In order to overcome this problem, a heater was attached to the humidity sensor made of a sintered metal oxide, and the humidity sensor was temporarily heated before humidity measurement to bring it into a high temperature state and regenerate the surface of the humidity sensor. There are also known devices that later detect humidity. Utilizing the thermal stability of the humidity-sensitive element made of a metal oxide, the humidity-sensitive element is returned to its initial state by raising the temperature to a high temperature just before detecting humidity, ensuring reproducibility. However, with such a humidity sensor, continuous humidity detection is impossible because heating must be performed immediately before humidity detection. Moreover, a complicated mechanism such as a heater and a heater control circuit is required, which becomes a cause of high cost.

この上う々ことから、最近、湿度センサとしてZn08
5〜99−t= ル%、LiZrVO40,5〜10 
% ル%及びCr2O3+ Fe2030.5〜5 モ
k %の組成の金属酸化物からなる感湿素体を用いたも
の(特開昭56−4204号)が開発されている。この
湿度センサはヒータ等の再生処理なしで通常の環境条件
(0〜40℃、30〜90 % ’Hbl)で長期間に
亘って安定的に、しかも低い抵抗値で使用できるもので
あシ、エアコンや加湿器における湿度制御には充分適用
できる。しかしながら、かかる湿度センサは高温条件で
使用すると、必ずしも充分な経時特性、再現性( を得られない場合があった。
Due to these problems, Zn08 has recently been used as a humidity sensor.
5~99-t=le%, LiZrVO40,5~10
A device using a moisture-sensitive element body made of a metal oxide having a composition of 0.5 to 5 Mok% and Cr2O3+Fe203% has been developed (Japanese Patent Application Laid-Open No. 56-4204). This humidity sensor can be used stably for a long period of time under normal environmental conditions (0 to 40 degrees Celsius, 30 to 90% Hbl) without any regeneration treatment such as a heater, and has a low resistance value. It is fully applicable to humidity control in air conditioners and humidifiers. However, when such a humidity sensor is used under high temperature conditions, it may not always be possible to obtain sufficient aging characteristics and reproducibility.

[発明の目的] 本発明は高温条件下で長時間使用しても抵抗値変化はほ
とんど生じずに安定に使用でき、かつ広範囲の湿度領域
においても使い易い電気的抵抗値を有する感湿素子を提
供しようとするものである。
[Objective of the Invention] The present invention provides a moisture-sensitive element that can be used stably with almost no change in resistance even when used for a long time under high-temperature conditions, and has an electrical resistance value that is easy to use even in a wide range of humidity. This is what we are trying to provide.

[発明の概要] 本発明はCrz0321〜73−e ル%、ZnO及び
MgOのうちの少なくとも1種25〜55モルチ、P2
O52,0〜10.0モル襲、Li200.5〜80モ
ルチモル2O50,5〜8.0モル襲を必須成分とした
焼結体からなる感湿素子である。こうした感湿素子は例
えば周囲温度25°C1相対湿度30%の場合では約8
00にΩ、同温度で相対湿度9咋の場合では約15にΩ
、と広範囲な湿度領域において使い易い抵抗値を持ち、
しかも85°Cという高温条件下に長期間放置しても経
時変化が小さく高信頼性を有するものである。このよう
に本発明の感湿素子が優れた特性を有するのはCrzO
3,ZnO(又はZnOとMgO、MgO単独)の結晶
性粒子の粒界にこれらCrzOaやZnO等の少量のP
2O5、Li 20 、 V2O5の成分が存在する構
造になっているためであると推定される。
[Summary of the invention] The present invention provides Crz0321-73-e mol%, at least one of ZnO and MgO, 25-55 mol%, P2
This is a moisture-sensitive element made of a sintered body whose essential components are O52.0 to 10.0 mol and Li200.5 to 80 mol 2O50.5 to 8.0 mol. For example, at an ambient temperature of 25°C and a relative humidity of 30%, such a humidity sensing element has a
00 Ω, and at the same temperature and relative humidity of 9 Ω, approximately 15 Ω.
, and has an easy-to-use resistance value in a wide range of humidity,
Moreover, even if left for a long period of time under a high temperature condition of 85° C., it shows little change over time and has high reliability. As described above, the moisture sensitive element of the present invention has excellent characteristics because of CrzO.
3. A small amount of P such as CrzOa or ZnO is added to the grain boundaries of crystalline particles of ZnO (or ZnO and MgO, or MgO alone).
This is presumed to be due to the structure in which the components 2O5, Li 20 and V2O5 are present.

上記C「203の配合割合を限定した理由は、その量を
21モモル襲満にすると、感湿特性としての抵抗値が全
般的に高くなシ、かといってその量が73モモル襲超え
ると、高温放置での経時変化が大きくなるからである。
The reason for limiting the blending ratio of C "203" above is that if the amount exceeds 21 momoles, the resistance value as a moisture sensitive property will be generally high, but on the other hand, if the amount exceeds 73 momoles, This is because the change over time becomes large when left at high temperatures.

上記ZnO及びMgOのうちの少なくとも1種の配合割
合を限定した理由は、その量を25モモル襲満にすると
、高温放置での経時変化が犬きくなシ、かといってその
量が55モモル襲超えると、感湿特性としての抵抗値が
全般的に高く々るがらである。
The reason for limiting the blending ratio of at least one of ZnO and MgO is that if the amount is set to 25 mmol, the change over time when left at high temperatures will be difficult, but if the amount is set to 55 mmol, If it exceeds this value, the resistance value as a moisture sensitive property will generally be high and shaky.

この場合、ZnO、MgOを夫々単独で用いても、それ
らを併用しても同様な作用を発揮できる。
In this case, even if ZnO and MgO are used alone or in combination, similar effects can be exerted.

上記CuOの配合割合を限定した理由は、その量を2.
0モル襲未満傾、すると、高温放置での経時変化が犬き
くなシ、かといってその量が10.0モル襲を越えると
、低湿度側での抵抗値が上昇するからである。
The reason for limiting the blending ratio of CuO is that the amount is 2.
This is because if the amount is less than 0 mol, the change over time when left at high temperatures will be poor, but if the amount exceeds 10.0 mol, the resistance value will increase on the low humidity side.

上記Li2O、V2O5の配合割合を夫々限定した理由
はLizO、V2O5の量を各々0.5モル襲未満にす
ると、感湿特性としての抵抗値が全般的に亘って高くな
り、かといってLizO、V2O5の量が各々8.0モ
ル襲を越えると、高温放置での経時変化が大きくなるか
らである。
The reason for limiting the blending ratios of Li2O and V2O5 is that when the amounts of LizO and V2O5 are each less than 0.5 mol, the resistance value as a moisture sensitive property becomes higher overall, but on the other hand, LizO, This is because when the amount of V2O5 exceeds 8.0 moles each, changes over time when left at high temperatures become large.

[発明の実施例」 次に、本発明の詳細な説明する。[Embodiments of the invention” Next, the present invention will be explained in detail.

実施例 1゜ まず、出発原料として酸化クロム、酸化亜鉛、リン酸−
アンモニウム、炭酸リチウム、酸化バナジウムの微粉末
を用いた。これら出発原料を、Cr2O3,ZnO、C
uO,Li2O,V2O5(7)モル比テ45%。
Example 1 First, chromium oxide, zinc oxide, and phosphoric acid were used as starting materials.
Fine powders of ammonium, lithium carbonate, and vanadium oxide were used. These starting materials are Cr2O3, ZnO, C
uO, Li2O, V2O5 (7) molar ratio 45%.

45%、4%、3%、3チとなるように秤量を行ない、
しかる後にポットミルで冴時間湿式混合した。
Weigh it so that it becomes 45%, 4%, 3%, 3chi,
Thereafter, the mixture was wet mixed in a pot mill for some time.

つづいて、この混合物を120℃で12時間乾燥した後
、800℃で仮焼した。ひきつづき、仮焼物をボットミ
ルで冴時間湿式粉砕した後、120’Oで12時間再度
乾燥して原料粉末を調製した。
Subsequently, this mixture was dried at 120°C for 12 hours and then calcined at 800°C. Subsequently, the calcined product was wet-milled for a while in a bot mill, and then dried again at 120'O for 12 hours to prepare a raw material powder.

次いで、上記原料粉末にポリビニルアルコール(粘結剤
)を2重量%加え、ライカ機で造粒した後、この造粒物
を50轍/cr/Iの条件で加圧成形して直径8間、厚
さ約2朋の円盤状成形体を造った。
Next, 2% by weight of polyvinyl alcohol (binder) was added to the raw material powder and granulated using a Leica machine, and the granulated product was pressure-molded at 50 ruts/cr/I to give a diameter of 8 mm. A disk-shaped molded body with a thickness of about 2 mm was made.

つづいて、この成形体を1300’Oの温度下で2時間
焼成した後、焼結体の両生面を研磨して厚さ1節とした
。ひきつづき、この焼結体(感湿素体)の両生面に酸化
ルテニウムペーストをスクリーン印刷した後、約700
℃で焼付けを行なって直径6關の電極を形成し、第1図
に示す構造の感湿素子を製造した。なお、第1図中の1
は感湿素体、2は電極である。
Subsequently, this molded body was fired at a temperature of 1300'O for 2 hours, and then both sides of the sintered body were polished to a thickness of 1 knot. Subsequently, after screen printing ruthenium oxide paste on both sides of this sintered body (moisture sensitive element), about 700
Baking was carried out at .degree. C. to form electrodes with a diameter of 6 mm, and a moisture-sensitive element having the structure shown in FIG. 1 was manufactured. Note that 1 in Figure 1
is a moisture sensitive element body, and 2 is an electrode.

しかして、本実施例1の感湿素子について周囲温度を2
5°Cに一定とし、相対湿度を30〜90%に変化させ
た時の抵抗値(感湿特性)を調べたところ第2図に示す
特性図を得た。この第2図から明らかな如く本発明の感
湿素子は周囲温度25°C下、相対湿度30%では76
0KQ、同温度下、相対湿度90%では8.6にΩと広
範囲の湿度領域で極めて使い易い低い抵抗値を示すこと
がわかる。
Therefore, for the humidity sensing element of Example 1, the ambient temperature was
When the resistance value (humidity sensitivity characteristic) was examined at a constant temperature of 5 DEG C. and the relative humidity was varied from 30 to 90%, the characteristic diagram shown in FIG. 2 was obtained. As is clear from FIG. 2, the humidity sensing element of the present invention has a temperature of 76% at an ambient temperature of 25°C and a relative humidity of 30%.
It can be seen that at 0KQ, the same temperature, and 90% relative humidity, the resistance is 8.6Ω, which is a low resistance value that is extremely easy to use in a wide range of humidity.

また、本実施例1の感湿素子について温度85°0の恒
温槽に1000時間放置した後、周囲温度5℃で相対湿
度を30〜90%に変化させた時の抵抗値(感湿特性)
を調べたところ、第3図に示す特性図を得た。この第3
図から明らかな如く、本発明の感湿素子は高温放置した
後の感湿特性がほとんど変化しておらず、安定した経時
特性を有することがわかる〇 実施例2〜7 前記実施例工と同様な方法によシ下記第1表に示す組成
の焼結体(感湿素体)を備えた6種の感湿素子を製造し
た。
In addition, the resistance value (humidity sensitivity characteristics) when the humidity sensing element of Example 1 was left in a constant temperature bath at a temperature of 85° 0 for 1000 hours and the relative humidity was changed from 30 to 90% at an ambient temperature of 5°C.
As a result of investigation, the characteristic diagram shown in Figure 3 was obtained. This third
As is clear from the figure, the humidity sensitive element of the present invention shows almost no change in its moisture sensitive characteristics after being left at high temperatures, and it can be seen that it has stable characteristics over time. Examples 2 to 7 Same as the above examples Six types of humidity sensing elements were manufactured using a method using a sintered body (humidity sensing element) having the composition shown in Table 1 below.

しかして、本実施例2〜7の感湿素子について周囲温度
25℃下、相対湿度30%、90%の抵抗値(初期感湿
特性)、並びに85°Cの恒温槽に1000時間放置し
た後での周囲温度25°C下、相対湿度30チ90%の
抵抗値(高温放置後の感湿特性)を調べた〇その結果を
同第1表に併記した。また、同第1表中には本発明の組
成範囲をはずれる感湿素体を備えた感湿素子を参照例1
〜6として併記した。
Therefore, the humidity sensing elements of Examples 2 to 7 were tested at an ambient temperature of 25°C, a relative humidity of 30%, a resistance value of 90% (initial moisture sensitivity characteristics), and after being left in a constant temperature bath at 85°C for 1000 hours. The resistance value (moisture sensitivity characteristics after being left at high temperature) at an ambient temperature of 25°C and a relative humidity of 30°C and 90% was investigated. The results are also listed in Table 1. In addition, in Table 1, reference example 1 shows a humidity sensing element equipped with a humidity sensing element outside the composition range of the present invention.
Also listed as ~6.

以下余白 上記第1表から明らかな如く、本発明の感湿素子は広範
囲の湿度領域で極めて使い易い抵抗値を有し、かつ高温
条件下でも安定した経時特性を有することがわかる。こ
れに対し、本発明の組成範囲からはずれた焼結体からな
る感湿素子(参照例1〜6)は前記広範囲の湿度領域で
使い易い抵抗値と、高温条件下で安定した経時特性との
両方を満足しない。
As is clear from Table 1 above, the humidity sensing element of the present invention has a resistance value that is extremely easy to use in a wide range of humidity, and has stable aging characteristics even under high temperature conditions. In contrast, moisture-sensitive elements (Reference Examples 1 to 6) made of sintered bodies outside the composition range of the present invention have resistance values that are easy to use in the wide range of humidity and stable aging characteristics under high-temperature conditions. Don't satisfy both.

実施例 8゜ まず、出発原料として酸化クロム、炭酸マグネシウム、
リン酸−アンモニウム、炭酸リチウム、酸化バナジウム
の微粉末を用いた。これら出発原料を、Cr2O3,M
gO、P2O5、Li 20 、 V2O5のモル比で
45チ、45条、4チ、3係、3チとなるように秤量を
行ない、しかる後にボットミルでU時間湿式混合した。
Example 8 First, as starting materials, chromium oxide, magnesium carbonate,
Fine powders of ammonium phosphate, lithium carbonate, and vanadium oxide were used. These starting materials are Cr2O3,M
The molar ratios of gO, P2O5, Li20, and V2O5 were weighed to be 45, 45, 4, 3, and 3, and then wet mixed in a bot mill for U hours.

つづいて、この混合物を120υで12時間乾燥した後
、800°Cで仮焼した。ひきつづき、仮焼物をポット
ミルでU時間湿式粉砕した彼、120°Cで12時間再
度乾燥して原料を調製した。
Subsequently, this mixture was dried at 120υ for 12 hours and then calcined at 800°C. Subsequently, the calcined product was wet-milled in a pot mill for U hours, and dried again at 120° C. for 12 hours to prepare a raw material.

次いで、上記原料粉末を用いて実施例1と同様な方法に
よシ第1図と同構造の感湿素子を製造した。
Next, a moisture-sensitive element having the same structure as that shown in FIG. 1 was manufactured in the same manner as in Example 1 using the raw material powder.

しかして、本実施例8の感湿素子について周囲温度を5
°0に一定とし、相対湿度を30〜90つに変化させた
時の抵抗値(感湿特性)を調べたところ第4図に示す特
性図を得だ。この第4図から明らかな如く本発明の感湿
素子は周囲温度5℃下、相対湿度30%では630KQ
、同温度下、相対湿度90係では6,7にΩと広範囲の
湿度領域で極めて使い易い低い抵抗値を示すことがわか
る。
Therefore, for the humidity sensing element of Example 8, the ambient temperature was
When the resistance value (humidity sensitivity characteristic) was examined when the relative humidity was changed from 30 to 90 degrees with a constant temperature of 0.degree., the characteristic diagram shown in FIG. 4 was obtained. As is clear from FIG. 4, the humidity sensing element of the present invention has a temperature of 630 KQ at an ambient temperature of 5°C and a relative humidity of 30%.
It can be seen that at the same temperature and relative humidity of 90, it exhibits a low resistance value of 6 or 7 Ω, which is extremely easy to use in a wide range of humidity.

また、本実施例8の感湿素子について温度85°Cの恒
温槽に1000時間放置した後、周囲温度25℃で相対
湿度を30〜90%に変化させた時の抵抗値(感湿特性
)を調べたところ、第5図に示す特性図を得た。この第
5図から明らかな如く、本発明の感湿素子は高温放置し
た後の感湿特性がほとんど変化しておらず、安定した経
時特性を有することがわかる。
In addition, the resistance value (humidity sensitivity characteristics) when the humidity sensing element of Example 8 was left in a constant temperature bath at a temperature of 85°C for 1000 hours and the relative humidity was changed from 30 to 90% at an ambient temperature of 25°C. As a result of investigation, the characteristic diagram shown in FIG. 5 was obtained. As is clear from FIG. 5, the moisture sensitive element of the present invention shows almost no change in its moisture sensitive characteristics after being left at high temperatures, indicating that it has stable aging characteristics.

実施例9〜14 前記実施例1と同様な方法により下記第2表に示す組成
の焼結体(感湿素体)を備えた6種の感湿素子を製造し
た。
Examples 9 to 14 Six types of humidity sensing elements each having a sintered body (moisture sensing element) having the composition shown in Table 2 below were manufactured in the same manner as in Example 1.

しかして、本実施例9〜14の感湿素子について周囲温
度5℃下、相対湿度30% 、 90%の抵抗値(初期
感湿特性)、並びに85°Cの恒温槽に1000時間放
置した後での周囲温度25°C下、相対湿度側% 、 
90%の抵抗値(高温放置後の感湿特性)を調べた。そ
の結果を同第2表に併記した。また、同第2表中には本
発明の組成範囲をはずれる感湿素体を備えた感湿素子を
参照例7〜12として併記した。
Therefore, the humidity sensing elements of Examples 9 to 14 had an ambient temperature of 5°C, a relative humidity of 30%, a resistance value of 90% (initial moisture sensitivity characteristics), and after being left in a constant temperature bath at 85°C for 1000 hours. Ambient temperature 25°C, relative humidity %,
The 90% resistance value (moisture sensitivity characteristics after being left at high temperature) was investigated. The results are also listed in Table 2. In addition, in Table 2, reference examples 7 to 12 also include moisture-sensitive elements having moisture-sensitive elements outside the composition range of the present invention.

以下余白 上記第2表から明らかな如く、本発明の感湿素子は広範
囲の湿度領域で極めて使い易い抵抗値を有し、かつ高温
条件下でも安定した経時特性を有することがわかる。こ
れに対し、本発明の組成範囲からはずれた焼結体からな
る感湿素子(参照例7〜12)は前記広範囲の湿度領域
で使い易い抵抗値と、高温条件下で安定した経時特性と
の両方を満足しない。
As is clear from Table 2 above, the humidity sensing element of the present invention has a resistance value that is extremely easy to use in a wide range of humidity, and has stable aging characteristics even under high temperature conditions. On the other hand, the humidity sensing elements (Reference Examples 7 to 12) made of sintered bodies outside the composition range of the present invention have resistance values that are easy to use in the wide range of humidity and stable aging characteristics under high temperature conditions. Don't satisfy both.

実施例15〜19 前記実施例1と同様々方法により下記第3表に示す組成
の焼結体(感湿素体)を備えた6種の感湿素子を製造し
た。
Examples 15 to 19 Six types of humidity sensing elements each having a sintered body (moisture sensing element) having the composition shown in Table 3 below were manufactured in the same manner as in Example 1.

しかして、本実施例15〜19の感湿素子について周囲
温度25°C下、相対湿度30%、90係の抵抗値(初
期感湿特性)、並びに85°Cの恒温槽に1000時間
放置した後での周囲温度25℃下、相対湿度30%。
Therefore, the humidity sensing elements of Examples 15 to 19 were subjected to an ambient temperature of 25°C, a relative humidity of 30%, a resistance value of 90% (initial moisture sensitivity characteristics), and were left in a constant temperature bath at 85°C for 1000 hours. Later ambient temperature is 25°C and relative humidity is 30%.

90係の抵抗値(高温放置後の感湿特性)を調べた0そ
の結果を同第3表に併記した。また、同第3表中には本
発明の組成範囲をはずれる感湿索体を備えた感湿素子を
参照例13〜14として併記した。
The resistance value (humidity sensitivity characteristics after being left at high temperature) of the 90-meter was investigated and the results are also listed in Table 3. Further, in Table 3, humidity sensing elements having humidity sensing cables outside the composition range of the present invention are also listed as Reference Examples 13 to 14.

上記第3表から明らかな如く、本発明の感湿素子は広範
囲の湿度領域で極めて使い易い抵抗値を有し、かつ高温
条件下でも安定した経時特性を有することがわかる。こ
れに対し、本発明の組成範囲からはずれた焼結体からな
る感湿素子(参照例13〜14)は前記広範囲の湿度領
域で使い易い抵抗値と、高温条件下で安定した経時特性
との両方を満足しない。
As is clear from Table 3 above, the humidity sensing element of the present invention has a resistance value that is extremely easy to use in a wide range of humidity, and has stable aging characteristics even under high temperature conditions. In contrast, the humidity sensing elements (Reference Examples 13 to 14) made of sintered bodies outside the composition range of the present invention have a resistance value that is easy to use in the wide range of humidity and stable aging characteristics under high temperature conditions. Don't satisfy both.

[発明の効果] 以上詳述した如く、本発明によれば広範囲の湿度領域に
おいても使い易い電気抵抗値(感湿特性)を有し、しか
も高温条件下で長時間使用しても抵抗値変化をほとんど
生じずに安定的に使用できる高信頼性の感湿素子を提供
できる。
[Effects of the Invention] As detailed above, the present invention has an electrical resistance value (humidity sensitivity characteristic) that is easy to use even in a wide range of humidity, and moreover, the resistance value does not change even when used for a long time under high temperature conditions. It is possible to provide a highly reliable moisture sensing element that can be stably used with almost no occurrence of moisture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の感湿素子の一形態を示す斜視図、第2
図は実施例1の感湿素子における初期感湿特性を示す線
図、第3図は同実施例1の感湿素子における高温放置後
の感湿特性を示す線図、第4図は実施例8の感湿素子に
おける初期感湿特性を示す線図、第5図は同実施例8の
感湿素子における高温放置後の感湿特性を示す線図であ
る。 ■・・・焼結体(感湿素体)、 2・・・電 極。 7 第1図 第2図 相苅狼(%) 第 4 図 相対湿度% 第3図 第5図 補益(%)
FIG. 1 is a perspective view showing one form of the moisture-sensitive element of the present invention, and FIG.
The figure is a diagram showing the initial humidity sensitivity characteristics of the humidity sensing element of Example 1, FIG. 3 is a diagram showing the humidity sensitivity characteristics of the humidity sensing element of Example 1 after being left at high temperatures, and FIG. 4 is a diagram of the example. FIG. 5 is a diagram showing the initial humidity sensitivity characteristics of the humidity sensing element of Example 8, and FIG. 5 is a diagram showing the humidity sensitivity characteristics of the humidity sensing element of Example 8 after being left at high temperatures. ■... Sintered body (moisture sensitive element), 2... Electrode. 7 Figure 1 Figure 2 Relative humidity (%) Figure 4 Relative humidity % Figure 3 Figure 5 Supplementary profit (%)

Claims (1)

【特許請求の範囲】[Claims] CrzOa 21〜73 モル%、ZnO及びMgO(
D ’) チノ少なくとも1種25〜55モルチ、P2
O52,0〜10.0% ル%、Lis+00.5〜8
.0 モル%、V2O50,5〜8.0 (−hチを必
須成分とした焼結体からなることを特徴とする感湿素子
CrzOa 21-73 mol%, ZnO and MgO (
D') Chino at least 1 type 25-55 molti, P2
O52, 0~10.0% Le%, Lis+00.5~8
.. 0 mol%, V2O50.5 to 8.0 (-h).
JP58135912A 1983-07-27 1983-07-27 Humidity sensitive element Pending JPS6028202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58135912A JPS6028202A (en) 1983-07-27 1983-07-27 Humidity sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58135912A JPS6028202A (en) 1983-07-27 1983-07-27 Humidity sensitive element

Publications (1)

Publication Number Publication Date
JPS6028202A true JPS6028202A (en) 1985-02-13

Family

ID=15162738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58135912A Pending JPS6028202A (en) 1983-07-27 1983-07-27 Humidity sensitive element

Country Status (1)

Country Link
JP (1) JPS6028202A (en)

Similar Documents

Publication Publication Date Title
JPS59155102A (en) Moisture sensitive element
JPS6028202A (en) Humidity sensitive element
JPS5897801A (en) Moisture sensitive element
KR910001859B1 (en) Humidity-sensing component composition
JPS60121702A (en) Moisture sensitive element
JPS60116101A (en) Moisture sensitive element
JPS60121701A (en) Moisture sensitive element
JPS5835902A (en) Moisture sensitive element
JPS5835901A (en) Moisture sensitive element
JPS6229101A (en) Moisture sensitive resistor
JP2546310B2 (en) Moisture-sensitive ceramic composition
JP2546309B2 (en) Moisture-sensitive ceramic composition
JPS6252921B2 (en)
JPS6161242B2 (en)
JPS6161241B2 (en)
JPS60247901A (en) Moisture sensitive material
JPS5811082B2 (en) Temperature and humidity detection element
JPS5835903A (en) Moisture sensitive element
JPH02100301A (en) Moisture-sensitive element
JPH0736008B2 (en) Moisture sensitive element
JPS5832303A (en) Humidity sensitive dielectric loss element
JPS628501A (en) Moisture sensor and manufacture thereof
JPS63184302A (en) Temperature sensor
JPS58131701A (en) Moisture sensitive element
JPH05264494A (en) Moisture-sensitive element