JPS6028173A - Operating and controlling method for exhaust heat collection turbine - Google Patents

Operating and controlling method for exhaust heat collection turbine

Info

Publication number
JPS6028173A
JPS6028173A JP58135893A JP13589383A JPS6028173A JP S6028173 A JPS6028173 A JP S6028173A JP 58135893 A JP58135893 A JP 58135893A JP 13589383 A JP13589383 A JP 13589383A JP S6028173 A JPS6028173 A JP S6028173A
Authority
JP
Japan
Prior art keywords
fuel
turbine
gas
amount
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58135893A
Other languages
Japanese (ja)
Inventor
Koji Mikawa
広治 三河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58135893A priority Critical patent/JPS6028173A/en
Publication of JPS6028173A publication Critical patent/JPS6028173A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To suppress variation in gas turbine inlet pressure at the time of starting or suspending operation thereof within the specified value by controlling amount of fuel to be supplied to the burner apparatus based on an output of fuel battery and a number of rotations of turbine in case the gas turbine and air compressor are started or suspended. CONSTITUTION:A fuel battery 10, a fuel reformer 20 which supplies the fuel to this battery 10, a plurality of electric compressors 31, 33 which supply the gas for oxidation to the battery 10, a plurality of exhaust heat collection gas turbines 30, 32 which drive the air compressors 31, 33, a burner apparatus which generates the gas to the gas turbines 30, 32 and a means 100 for adjusting amount of fuel to be supplied to the burner apparatus, etc. are provided. At the time of starting exhaust heat collection turbines 30, 32 in such a fuel battery power generation plant, a fuel gas is generated in such amount as equal to the rated gas flow of turbine to be started and the fuel for combustion is adjusted so that generation of fuel gas is reduced when the turbines is stopped. Moreover, amount of fuel matching the energy required until the turbine started reaches the specified number of rotations is supplied excessively or reduced, and the variation is controlled large at the initial time of starting and stoppage and it is reduced with passage of time.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池発電プラントにおける排熱回収用ガス
タービンの運転制御方法に係り、特に、起動、停止時の
プラント内ガス圧変動を抑制するのに好適な運転制御方
法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for controlling the operation of a gas turbine for exhaust heat recovery in a fuel cell power generation plant, and particularly to a method for controlling the operation of a gas turbine for exhaust heat recovery in a fuel cell power generation plant, and in particular, a method for controlling the operation of a gas turbine for exhaust heat recovery in a fuel cell power generation plant. The present invention relates to an operation control method suitable for.

〔発明の背景〕[Background of the invention]

燃料電池を運転するには、電池への燃料や酸化用ガスの
供給量、圧力等を所定値に制御することが必要である。
In order to operate a fuel cell, it is necessary to control the supply amount, pressure, etc. of fuel and oxidizing gas to the cell to predetermined values.

この具体的な方法として、負荷電流に応じて燃料電池へ
の空気供給量及び再循環量を制御する方法(特公昭48
−41352号)、改質器への燃料供給量を電池寛流で
制御する方法(肘公昭50−15050号)、改質器の
圧力を電池よシ高く保持し制御性を向上させる方法(特
開昭53−81923号)等が提案されている。これら
の制御方法は、主に電池負荷が変化した場合の流量制御
方法で多くの利点を有しているが、排熱回収用ガスター
ビンの運転制御の面で不十分である。
A specific method for this is to control the amount of air supplied to the fuel cell and the amount of recirculation according to the load current (Japanese Patent Publication No. 48
-41352), a method of controlling the amount of fuel supplied to the reformer by battery relaxation (Hibiko Kosho No. 50-15050), a method of improving controllability by maintaining the reformer pressure higher than that of batteries (special No. 81923/1983), etc. have been proposed. These control methods have many advantages, mainly in terms of flow control methods when the battery load changes, but are insufficient in terms of operational control of the exhaust heat recovery gas turbine.

燃料電池発電プラントでは、各負荷レベルでの発電効率
を向上させるため、排熱を有効に回収するだめのガスタ
ービンを複数台設置し、負荷レベルにより部分運転する
。このだめ、ガスタービンの起動、停止時にはガスター
ビン入口ガスの圧力が変動し、この影響で燃料電池内の
ガス圧力が変動するが、前記した制御方式では考慮され
ていない。
In a fuel cell power generation plant, in order to improve power generation efficiency at each load level, multiple gas turbines are installed to effectively recover waste heat and are operated partially depending on the load level. However, when the gas turbine is started or stopped, the pressure of the gas turbine inlet gas fluctuates, and this influence causes the gas pressure within the fuel cell to fluctuate, but this is not taken into account in the control method described above.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、燃料電池発電プラントの排熱回収用タ
ービン起動、停止時におけるガスタービン入口圧力の変
動を、所定値内に抑制する運転制御方法を提供すること
にある。
An object of the present invention is to provide an operation control method for suppressing fluctuations in gas turbine inlet pressure within a predetermined value during startup and shutdown of an exhaust heat recovery turbine in a fuel cell power generation plant.

〔発明の概要〕[Summary of the invention]

本発明では、排熱回収用タービン起動時には、起動する
タービンの定格ガス流量に見合う燃焼ガスを発生させ、
停止時には燃焼ガス発生量を低減させるように燃焼用燃
料を調整する。さらに、起動するタービンが定格回転数
に達するまでに必要とするエネルギーに見合った量を過
剰に供給、あるいは減少させ、起動、停止の塑期には変
化量を大きく、時間とともに小さくすることで、ガスタ
ービン入口圧力の変動を抑制させている。
In the present invention, when starting the exhaust heat recovery turbine, combustion gas corresponding to the rated gas flow rate of the turbine to be started is generated,
When the engine is stopped, the combustion fuel is adjusted to reduce the amount of combustion gas generated. Furthermore, by supplying an excessive amount of energy or reducing it in proportion to the amount of energy required for the starting turbine to reach its rated rotation speed, the amount of change is large during the plastic phase of starting and stopping, and becomes smaller over time. This suppresses fluctuations in gas turbine inlet pressure.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。第1
図は、燃料電池10、燃料改質器20、排熱回収用ター
ビン30,32.、空気圧縮機31゜33、負荷80、
負荷追従用制御装置90より構成される燃料電池発電プ
ラントに本発明による制御装置100を適用した例であ
る。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure shows a fuel cell 10, a fuel reformer 20, exhaust heat recovery turbines 30, 32. , air compressor 31°33, load 80,
This is an example in which a control device 100 according to the present invention is applied to a fuel cell power generation plant comprising a load following control device 90.

メタン、メタノールなどの化石燃料40は、調節弁44
を介して燃料改質器20に送られ、反応室21で水素を
多く含むガスに転換され、流量計45、調節弁47を有
する流量制御系46を介して燃料電池10のアノード室
11に送られる。一方、空気圧縮機31.33で所定値
まで圧縮された空気は、流量計73、調節弁75を有す
る流量制御系76を介して燃料電池のカソード室12に
送られる。ここで、電極13.14及び電解質15での
電気化学反応により電圧を発生し、外部負荷80に電力
を供給する。燃料電池での未反応燃料、酸化ガスは、そ
れぞれ、圧力計52.55、調節弁54.57を有する
圧力制御系53.56を介して改質器20の燃焼室22
に送られ、調節弁62より送られる補助燃料60ととも
に燃焼する。燃焼エネルギーの一部は反応室21での反
応エネルギーとして消費され、残りは排熱回収用ガスタ
ービン30.32に送られる。ガスタービンでの回収動
力で空気圧縮機31.33を駆動する。
Fossil fuels 40 such as methane and methanol are supplied to the control valve 44
The gas is sent to the fuel reformer 20 via the reaction chamber 21, converted into a hydrogen-rich gas, and sent to the anode chamber 11 of the fuel cell 10 via a flow control system 46 having a flow meter 45 and a control valve 47. It will be done. On the other hand, air compressed to a predetermined value by the air compressors 31 and 33 is sent to the cathode chamber 12 of the fuel cell via a flow control system 76 having a flow meter 73 and a control valve 75. Here, a voltage is generated by the electrochemical reaction at the electrodes 13 , 14 and the electrolyte 15 to supply power to the external load 80 . Unreacted fuel and oxidizing gas in the fuel cell are transferred to the combustion chamber 22 of the reformer 20 via pressure control systems 53.56 each having a pressure gauge 52.55 and a control valve 54.57.
and is combusted together with the auxiliary fuel 60 sent from the control valve 62. A part of the combustion energy is consumed as reaction energy in the reaction chamber 21, and the rest is sent to the exhaust heat recovery gas turbine 30.32. The recovered power from the gas turbine drives air compressors 31 and 33.

流量制御系46.74の流量設定値は、別の制御装置9
0より与えられる。この制御装置は、例えば、特公昭4
8−41352号や特公昭50−15050号で提案さ
れている負荷電流に比例した信号を発生する負荷追従制
御装置である。圧力制御系43,53゜56.77は圧
力計42.52,55.76の圧力が一定となるように
ガス流量を調節する。負荷変動時のような過渡時におい
ても、燃料電池1oのアノード室11とカソード室12
の圧力を一定に保持する。
The flow rate set value of the flow control system 46.74 is determined by another control device 9.
Given from 0. This control device is, for example,
This is a load following control device that generates a signal proportional to the load current, as proposed in Japanese Patent Publication No. 8-41352 and Japanese Patent Publication No. 15050/1982. The pressure control system 43, 53° 56.77 adjusts the gas flow rate so that the pressure of the pressure gauges 42.52, 55.76 is constant. Even during transient times such as during load fluctuations, the anode chamber 11 and cathode chamber 12 of the fuel cell 1o
Maintain the pressure constant.

制御装置100は、本発明による方法を適用した例であ
シ、負荷電流に基づく信号83とタービン回転数に基づ
く信号84を用いて所定の演算を行い、タービン32へ
のガス流入弁64及びバーナへの燃料供給弁62の開度
を制御する。
The control device 100 is an example to which the method according to the present invention is applied, and performs a predetermined calculation using a signal 83 based on the load current and a signal 84 based on the turbine rotation speed, and controls the gas inflow valve 64 to the turbine 32 and the burner. The opening degree of the fuel supply valve 62 is controlled.

次に、制御装置100の必要性と動作方法を第2図及び
第3図を用いて説明する。第2図は、燃料電池10の出
力とバーナ部への燃料供給量60の関係を示したもので
ある。エネルギーバランスのみを考える場合には、燃料
電池の出力と燃料供給量の変化割合は、通常1:1に設
定できるが、第1図に示す発電プラントに適用する場合
には、圧力制御系53’、56.77の制御範囲を考慮
する必要がある。燃料供給量が多過ぎると、バーナ室2
2の圧力が上昇し、制御弁54.57の差圧が小さくな
シ、制御系53.56が制御不能になる可能性がある。
Next, the necessity and operating method of the control device 100 will be explained using FIGS. 2 and 3. FIG. 2 shows the relationship between the output of the fuel cell 10 and the fuel supply amount 60 to the burner section. When only energy balance is considered, the ratio of change in fuel cell output and fuel supply amount can normally be set to 1:1, but when applied to the power generation plant shown in FIG. 1, the pressure control system 53' , 56.77 control ranges need to be considered. If the amount of fuel supplied is too large, burner chamber 2
If the pressure in the control valves 54 and 57 increases and the pressure difference across the control valves 54 and 57 is small, the control system 53 and 56 may become uncontrollable.

この状態は第2図1.■の運転範囲の上側に相当する。This state is shown in Figure 2.1. Corresponds to the upper side of the operating range of ■.

燃料供給量が少な過ぎるとタービン、空気圧縮機での回
収動力が少なくなり、空気圧力フ6が減少して圧力制御
系77が動作不能になる可能性がある。この状態は第2
図I。
If the amount of fuel supplied is too small, the power recovered by the turbine and air compressor will decrease, the air pressure 6 will decrease, and the pressure control system 77 may become inoperable. This state is the second
Figure I.

■の運転範囲の下側に相当する。すなわち、制御性まで
考慮した運転範囲は第2図のようになる。
Corresponds to the lower side of the operating range of ■. In other words, the operating range in consideration of controllability is as shown in FIG.

電池出力を減少させると燃料供給量は相対的に多くなシ
(第2図1)発電効率が低下する。低出力時の発電効率
を向上させるだめには、低出力時の燃焼ガス流量で効率
が高くなる排熱回収用ガスタービンを運転するのが効果
的である。例えば、定格時の容量1/2のガスタービン
に切替えると、第2図■の特性となり燃料供給量を減少
させることができる。
When the battery output is reduced, the amount of fuel supplied becomes relatively large (Fig. 2, 1), and the power generation efficiency decreases. In order to improve power generation efficiency at low output, it is effective to operate a gas turbine for exhaust heat recovery, which increases efficiency at low output combustion gas flow rates. For example, if the gas turbine is switched to a gas turbine with half the rated capacity, the characteristics shown in FIG.

一方、燃料電池の負荷を変化させ、タービンの運転台数
を変化させると、バーナ室22の圧力が変動し、過渡的
に圧力制御系53,56.77が制御不能になる場合が
ある。第2図において、低負荷時のAより定格負荷時の
Dに移行する場合、A−+B−+Dの破線の方式では運
転範囲を逸脱するためA−+B−)C−+Dの実線の方
式をとる必要がある。この場合においてもバーナ室22
の圧力変化を小さくするための制御が不可欠であり、本
発明の方法で解決することができる1、 第3図は本発明による制御装置100の構成を示したも
のである。第3図で101,102゜103.104,
105は演算器、106はタイマ、107はスイッチ、
108は演算器である。
On the other hand, when the load on the fuel cell is changed and the number of operating turbines is changed, the pressure in the burner chamber 22 fluctuates, and the pressure control systems 53, 56, 77 may temporarily become uncontrollable. In Figure 2, when transitioning from A at low load to D at rated load, the method shown by the broken line A-+B-+D will deviate from the operating range, so the method shown by the solid line A-+B-)C-+D is used. I need to take it. In this case as well, the burner chamber 22
1, which can be solved by the method of the present invention. FIG. 3 shows the configuration of a control device 100 according to the present invention. 101,102゜103.104 in Figure 3,
105 is a computing unit, 106 is a timer, 107 is a switch,
108 is a computing unit.

電流信号83は101に入力され設定信号を越えた時に
109に信号を出力する。109の信号は102.10
3,104,106に入力され、102では弁64を開
とする信号を発する。本実施例では、遅れ要素を介して
いる。演算器103では弁62の開度を計算する。バー
ナ室の燃焼ガス圧力を一定に保持するには、起動タービ
ン32に流量するガスと等しい燃焼ガスを発生すれば良
く、この分を燃料60で補給する。燃料60を完全燃焼
させるだめの空気をバーナ室22に供給するのは当然の
ことであるため第1図では省略しである。すなわち、起
動タービン32の定格ガス流量がF32なら、燃料がメ
タンの場合、燃料60の増加量は次式とする。 l ΔF60=F32/(11Xk60) ・・・・・・ 
(1)(1)式のに60は燃料を完全燃焼させるために
必要な過剰空気比である。
A current signal 83 is input to 101 and outputs a signal to 109 when it exceeds a set signal. 109 signal is 102.10
3, 104, and 106, and a signal to open the valve 64 is issued at 102. In this embodiment, a delay element is used. The arithmetic unit 103 calculates the opening degree of the valve 62. In order to keep the combustion gas pressure in the burner chamber constant, it is sufficient to generate combustion gas equal to the gas flowing into the startup turbine 32, and this amount is replenished with the fuel 60. It is a matter of course that air for complete combustion of the fuel 60 is supplied to the burner chamber 22, so it is omitted in FIG. That is, if the rated gas flow rate of the startup turbine 32 is F32 and the fuel is methane, the amount of increase in the fuel 60 is determined by the following formula. l ΔF60=F32/(11Xk60) ・・・・・・
(1) In equation (1), 60 is the excess air ratio required to completely burn the fuel.

調節弁64が開になると、ガスタービン32は回転を始
め、回転信号84が演算器105に入力される。105
では回転信号に逆比例しだ信号を発生させ、スイッチ1
07を介して演算器10Bに送る。スイッチ107はタ
イマ106の出力でオン・オフされ、109の信号が増
加した場合には一定時間112側の信号を114に送る
。演算器108で110と114の積をめ86に出力す
る。この操作で、86の信号は、起動タービン32が定
格回転数に達するまでに必要とするエネルギーに相当す
る燃料を供給したことになる。
When the control valve 64 is opened, the gas turbine 32 starts rotating, and a rotation signal 84 is input to the computing unit 105. 105
Now, generate a signal that is inversely proportional to the rotation signal, and press switch 1.
07 to the arithmetic unit 10B. Switch 107 is turned on and off by the output of timer 106, and when the signal at 109 increases, it sends the signal at 112 to 114 for a certain period of time. The arithmetic unit 108 multiplies 110 and 114 and outputs it to 86. With this operation, the signal 86 indicates that fuel corresponding to the energy required by the starting turbine 32 to reach the rated rotational speed has been supplied.

電流信号83が設定信号よシ少なくなった時には109
の信号が減少する。この信号により演算器104が動作
を始め、時間とともに減少する信号を111に発する。
109 when the current signal 83 becomes less than the setting signal.
signal decreases. This signal causes the arithmetic unit 104 to start operating, and outputs a signal to 111 that decreases over time.

理想的には、112へ出力される信号と等しいことが望
ましいが、112の信号はガスタービン32、空気圧縮
機33の運転条件で変化する場合が多いため、停止ター
ビンの回転モーメントより起動に要する時間をめ、この
時間だけ出力を発生させる方法でも良い。スイッチ10
7は一定時間111の信号を114に送る。この操作で
、86の信号は、停止タービンが有する自転エネルギー
に相当する燃料を削減したことになる。
Ideally, it is desirable that the signal output to 112 be equal to the signal output to 112, but since the signal of 112 often changes depending on the operating conditions of the gas turbine 32 and air compressor 33, the signal required to start up is smaller than the rotational moment of the stopped turbine. A method may also be used in which the output is generated only for a set time. switch 10
7 sends a signal 111 for a certain period of time to 114. With this operation, the signal 86 indicates that the fuel equivalent to the rotational energy of the stopped turbine has been reduced.

次に従来の制御方式と本発明における制御特性を第4図
を用いて説明する。第4図てV o + P ”o +
D P oはガスタービンの切替えが々い場合、Vl 
+ph1 、DPlは第1図の流量計67、調節弁62
を有する流量制御系61でのフィードバック制御特性、
V2’、Ph2.DP2は流量制御系61に本発明の制
御系100を付加した場合の制御特性である。
Next, the control characteristics of the conventional control system and the present invention will be explained with reference to FIG. Figure 4V o + P ”o +
D P o is Vl when switching of gas turbine is frequent.
+ph1 and DPI are the flowmeter 67 and control valve 62 in Fig. 1.
Feedback control characteristics in the flow control system 61 having
V2', Ph2. DP2 is a control characteristic when the control system 100 of the present invention is added to the flow rate control system 61.

燃料電池の出力をWのように増加させた場合、10時点
で弁64が開となシ、ガスタービン32が起動する。ガ
スタービン32側へ、ガスが流れた分、燃料ガス圧力は
減少し、ガスタービン30の出力が一時低下するため圧
縮機吐出圧力が若干低下し、圧力制御系76の働きで大
気放出量72を減少させる。この信号を流量計67が検
出し、流量制御系61に送シ、弁62を開いて補償する
When the output of the fuel cell is increased to W, the valve 64 is opened at time 10 and the gas turbine 32 is started. As the gas flows toward the gas turbine 32, the fuel gas pressure decreases, and the output of the gas turbine 30 temporarily decreases, causing the compressor discharge pressure to decrease slightly, and the pressure control system 76 lowers the amount released into the atmosphere 72. reduce This signal is detected by the flow meter 67 and sent to the flow control system 61, which opens the valve 62 to compensate.

圧縮機吐出圧力の低下で電池への空気供給量71が若干
減少し、丑だ、燃焼ガス圧力の低下で燃料電池圧力調節
弁54.57の流量が増加するため、電池内のガス圧力
が低下する。電池内のガス圧力の低下割合は、カソード
側(空気側)が圧縮機吐出力低下の分だけ大きく、結果
的にガス差圧が増加することになる。
The air supply amount 71 to the battery decreases slightly due to the decrease in compressor discharge pressure, and the flow rate of the fuel cell pressure control valves 54 and 57 increases due to the decrease in combustion gas pressure, resulting in a decrease in gas pressure within the battery. do. The rate of decrease in gas pressure within the battery is greater on the cathode side (air side) by the amount of decrease in compressor discharge force, resulting in an increase in gas pressure difference.

本発明では、弁64の開と同時に弁62の開度を実線の
ように変化させて燃焼ガスの圧力変動を抑制し、電池内
のガス差圧変動を小さくすることができる。
In the present invention, at the same time as the valve 64 is opened, the opening degree of the valve 62 is changed as shown by the solid line to suppress fluctuations in the pressure of the combustion gas, thereby making it possible to reduce fluctuations in the gas differential pressure within the battery.

なお、第4図で燃焼ガス圧力は燃料電池出力大で高くな
っているが、これは、排熱回収効率を高くする目的でタ
ービン入口に圧力調整用弁を使用しないだめであシ、本
発明の効果に影響しない。
In addition, in Fig. 4, the combustion gas pressure becomes high due to the large output of the fuel cell, but this is because a pressure regulating valve is not used at the turbine inlet for the purpose of increasing the exhaust heat recovery efficiency. does not affect the effectiveness of

本発明では、排熱回収用タービン起動時に、起動するタ
ービンの定格ガス流量に見合う燃焼ガスを発生させ、停
止時には燃焼ガス発生量を低減させるように燃焼用態別
を調整するため、燃焼ガスの圧力変動を抑?i+lJし
、燃料電池のガス差圧を小さくすることができる。
In the present invention, when the exhaust heat recovery turbine is started, combustion gas corresponding to the rated gas flow rate of the turbine to be started is generated, and when the turbine is stopped, the combustion type is adjusted so that the amount of combustion gas generated is reduced. Suppress pressure fluctuations? i+lJ, and the gas differential pressure in the fuel cell can be reduced.

以上においては、本発明をその特定の実施例について説
明したが、本発明は説明した実施例に限定されるもので
なく、本発明の範囲内で種々の応用が可能であることは
当業者にとって明らかである。
Although the present invention has been described above with reference to specific embodiments thereof, it will be appreciated by those skilled in the art that the present invention is not limited to the described embodiments, and that various applications are possible within the scope of the present invention. it is obvious.

例えば、第1図において、制御装置100への入力信号
を負荷電流と回転数としているが、負荷電流の代りに電
力でも良く、まだ、排熱回収用ガスタービ/は2台に限
定することなく本発明を適が、この制御方式は本発明特
有のものでなく、従来から提案されている方式を記述し
たものである。
For example, in Fig. 1, the input signals to the control device 100 are the load current and the rotation speed, but electric power may be used instead of the load current, and the number of exhaust heat recovery gas turbines is not limited to two. However, this control method is not unique to the present invention, but describes a method that has been proposed in the past.

例えば、圧縮機吐出圧力調整法として燃焼ガス側を大気
にバイパスして回収動力量を変化させる。
For example, as a compressor discharge pressure adjustment method, the amount of recovered power is changed by bypassing the combustion gas side to the atmosphere.

大気放出空気72を燃焼ガスに混合する等が考えられる
。この場合の圧力制御系77、流量計67の設置場所は
第1図と異なることになるが、この場合においても本発
明を適用できることは明らかである。
It is conceivable to mix the air released into the atmosphere 72 with the combustion gas. Although the installation locations of the pressure control system 77 and flow meter 67 in this case will be different from those shown in FIG. 1, it is clear that the present invention can be applied to this case as well.

〔発明の効果〕〔Effect of the invention〕

本発明によれば次の効果がある。 According to the present invention, there are the following effects.

(1)排熱回収用ガスタービンの起動、停止時における
ガスタービン入口圧力(燃焼ガス圧力)の変動を小さく
することができる。
(1) Fluctuations in the gas turbine inlet pressure (combustion gas pressure) when starting and stopping the exhaust heat recovery gas turbine can be reduced.

(2)燃焼ガス圧力変動の低減に伴い、燃料電池のアノ
ード、カソード間のガス差圧変動を抑制でき、ガスクロ
スオーバの発生確率が低減し、装置の安全性が向上する
(2) With the reduction in combustion gas pressure fluctuations, gas differential pressure fluctuations between the anode and cathode of the fuel cell can be suppressed, the probability of gas crossover occurring is reduced, and the safety of the device is improved.

(3)排熱回収用ガスタービンの起動、停止を含めるこ
とで負荷変化幅を大きくすることができ、運転の自由度
が拡大する。すなわち、大幅負荷要求に対処できる発電
システムの提供が可能となる。
(3) By including the start and stop of the exhaust heat recovery gas turbine, the range of load changes can be increased, increasing the degree of freedom in operation. In other words, it is possible to provide a power generation system that can cope with large load demands.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を連用した燃料電池発電プラントの一例
を示した系統図、第2図は本発明の詳細な説明するだめ
の特性図、第3図は本発明の制御方法を説明するための
ブロック図、第4図は本発明の詳細な説明するだめの特
性図である。 10・・・燃料電池、20・・・態別改質器、30.3
2・・・ガスタービン、31.33・・・空気圧縮機、
80・・・負荷、90・・・負荷追従制御装置、61・
・・燃刺流活?霞 X′恣村宅把工ヵ 策4図
Fig. 1 is a system diagram showing an example of a fuel cell power generation plant using the present invention, Fig. 2 is a characteristic diagram for explaining the present invention in detail, and Fig. 3 is a diagram for explaining the control method of the present invention. FIG. 4 is a characteristic diagram for explaining the present invention in detail. 10... fuel cell, 20... state reformer, 30.3
2...Gas turbine, 31.33...Air compressor,
80... Load, 90... Load following control device, 61.
... Mosashi Rukatsu? Kasumi

Claims (1)

【特許請求の範囲】 1、燃料電池と、該電池へ燃料を供給する燃料改質器と
、該電池へ酸化用ガスを供給する複数台の空気圧縮機と
、空気圧縮機を駆動する複数台の排熱回収用ガスタービ
ンと、ガスタービンへのガスを発生するバーナ装置6と
、バーナ装置への燃料供給量を調節する手段を有する燃
料電池発電プラントにおいて、少なくとも1組のガスタ
ービンと空気圧縮機を起動(停止)する場合に、該電池
の出力と起動するタービンの回転数に基づいて、バーナ
装置への燃料供、l@量を制御するようにしたことを特
徴とする排熱回収用タービンの運転制御方法。 2、特許請求の範囲第1項記載の運転制御方法において
、バーナ装置への燃料供給量は、起動するタービンの回
転数に逆比例させるようにしたことを4ケ徴とする排熱
回収用タービンの運転制御方法。 36特許請求の範囲第1項記載の運転制御方法において
、バーナ装置へ供給する燃料の最大変化流量は、起動(
停止)、するタービンの定格ガス流量を発生する量とし
、さらに、バーナへ供給する燃料を、起動(停止)する
タービンが定格回転数に達するまでに必要とするオネル
ギーに見合った縫を過剰に供給(減少)するようにした
ことを特徴とする排熱回収用タービンの運転制御方法。 4、特許請求の範囲第1項記載の運転制御方法において
、バーナ装置へ供給する燃料の最大変化流量を、起動(
停止)の初期に大きく、時間とともに小さくするように
制御することを4V徴とする排熱回収用タービンの運転
制御方法。
[Claims] 1. A fuel cell, a fuel reformer that supplies fuel to the battery, a plurality of air compressors that supply oxidizing gas to the battery, and a plurality of air compressors that drive the air compressors. A fuel cell power generation plant having at least one set of a gas turbine and an air compressor; An exhaust heat recovery device characterized in that when starting (stopping) the machine, the amount of fuel supplied to the burner device is controlled based on the output of the battery and the rotation speed of the turbine to be started. Turbine operation control method. 2. The operation control method according to claim 1, wherein the amount of fuel supplied to the burner device is inversely proportional to the rotational speed of the turbine to be started. operation control method. 36 In the operation control method according to claim 1, the maximum change flow rate of the fuel supplied to the burner device is determined by the start-up (
The rated gas flow rate of the turbine to be started (stopped) is set to the amount that generates the rated gas flow rate, and the fuel supplied to the burner is supplied in excess of the amount of energy required for the turbine to start (stop) to reach its rated rotation speed. 1. A method for controlling the operation of a turbine for exhaust heat recovery, characterized in that: 4. In the operation control method according to claim 1, the maximum change flow rate of fuel supplied to the burner device is controlled by starting (
A method for controlling the operation of a turbine for exhaust heat recovery, in which the 4V characteristic is controlled so that it is large at the beginning of the shutdown and becomes small over time.
JP58135893A 1983-07-27 1983-07-27 Operating and controlling method for exhaust heat collection turbine Pending JPS6028173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58135893A JPS6028173A (en) 1983-07-27 1983-07-27 Operating and controlling method for exhaust heat collection turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58135893A JPS6028173A (en) 1983-07-27 1983-07-27 Operating and controlling method for exhaust heat collection turbine

Publications (1)

Publication Number Publication Date
JPS6028173A true JPS6028173A (en) 1985-02-13

Family

ID=15162263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58135893A Pending JPS6028173A (en) 1983-07-27 1983-07-27 Operating and controlling method for exhaust heat collection turbine

Country Status (1)

Country Link
JP (1) JPS6028173A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926756A1 (en) * 1997-12-11 1999-06-30 dbb fuel cell engines GmbH PEM fuel cell system as well as its method of operation
WO2002039514A3 (en) * 2000-11-13 2003-02-06 Honeywell Int Inc A three-wheel air turbocompressor for pem fuel cell systems
US6926978B2 (en) * 2001-08-11 2005-08-09 Ballard Power Systems Ag Fuel cell installation with a gas generation system and a fuel cell system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926756A1 (en) * 1997-12-11 1999-06-30 dbb fuel cell engines GmbH PEM fuel cell system as well as its method of operation
US6190791B1 (en) 1997-12-11 2001-02-20 Xcellsis Gmbh Proton exchange membrane (PEM) fuel cell system and process of operating same
WO2002039514A3 (en) * 2000-11-13 2003-02-06 Honeywell Int Inc A three-wheel air turbocompressor for pem fuel cell systems
US6607854B1 (en) 2000-11-13 2003-08-19 Honeywell International Inc. Three-wheel air turbocompressor for PEM fuel cell systems
US6926978B2 (en) * 2001-08-11 2005-08-09 Ballard Power Systems Ag Fuel cell installation with a gas generation system and a fuel cell system

Similar Documents

Publication Publication Date Title
JP6322712B2 (en) Pressure adjustment method
JPS6030062A (en) Output controller of fuel cell
JP2007280676A (en) Fuel cell system
JPS6028173A (en) Operating and controlling method for exhaust heat collection turbine
JPS6260791B2 (en)
EP2164125B1 (en) Fuel cell system and air supply method thereof
JP3137147B2 (en) Control method for turbine compressor device for fuel cell facility
JP2000297610A (en) Integrated coal gasification combined cycle power plant and operation control method of the same
JPS6332868A (en) Fuel cell power generating system
JP2841703B2 (en) Method and apparatus for controlling amount of air for cathode of molten carbonate fuel cell
JPS61227371A (en) Fuel cell power generation system
JP3151628B2 (en) Molten carbonate fuel cell power generator
JPS61267273A (en) Control method for power generation plant of fuel cell and its apparatus
JPH02183965A (en) Power generating system for fuel cell
JPS61140071A (en) Fuel cell plant
JPS5975571A (en) Method for operating power generating system with fuel cell
JPS5934843B2 (en) steam generator
JP3010086B2 (en) Cogeneration power plant
JPH0316750B2 (en)
JPH01112671A (en) Operating method for fuel cell power plant
JPS62237674A (en) Fuel cell power generating system
JPS6179820A (en) Starting method of turbo-compressor system
JPS61126774A (en) Fuel cell power generating system
JPS61176076A (en) Fuel battery equipment
JPH10255827A (en) Fuel cell power generation system