JPS6027879B2 - Reinforcement method - Google Patents

Reinforcement method

Info

Publication number
JPS6027879B2
JPS6027879B2 JP53122738A JP12273878A JPS6027879B2 JP S6027879 B2 JPS6027879 B2 JP S6027879B2 JP 53122738 A JP53122738 A JP 53122738A JP 12273878 A JP12273878 A JP 12273878A JP S6027879 B2 JPS6027879 B2 JP S6027879B2
Authority
JP
Japan
Prior art keywords
reinforced
reinforcing
fiber
reinforcing beam
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53122738A
Other languages
Japanese (ja)
Other versions
JPS5549226A (en
Inventor
清六 宮宇地
康生 嵯峨根
和男 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP53122738A priority Critical patent/JPS6027879B2/en
Priority to US06/079,195 priority patent/US4290641A/en
Priority to EP79103803A priority patent/EP0010641B1/en
Priority to DE7979103803T priority patent/DE2964626D1/en
Publication of JPS5549226A publication Critical patent/JPS5549226A/en
Publication of JPS6027879B2 publication Critical patent/JPS6027879B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Body Structure For Vehicles (AREA)

Description

【発明の詳細な説明】 本発明は繊維強化合成樹脂製補強ビームによって被補強
材を補強する方法に関するものであり、特に特定の断面
形状を有する補強ビームを特定の位置関係によって被補
強材を補強する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for reinforcing a material to be reinforced with a reinforcing beam made of fiber-reinforced synthetic resin. It's about how to do it.

断面日形状のビームは構造材やその他の用途に広く使用
されている。
Beams with a sun-shaped cross section are widely used in structural materials and other applications.

たとえばH型鋼と呼ばれる鉄鋼ビームは建築構造材とし
て使用され、極めて一般的なものである。本発明者らは
、自動車などの輸送機器その他の軽量化を目的として、
従来鉄鋼の機材を合成樹脂などの軽量材と代替する種々
の手段を検討してきた。合成樹脂として特に強度の渡れ
た繊維強化合成樹脂の適用を研究し、従釆日型鋼の使用
されていた分野、あるいは新たに適用しうる分野に繊維
強化合成樹脂製機材を使用する方法を種々検討した。繊
維強化合成樹脂としてガラス繊維強化不飽和ポリエステ
ル樹脂などの繊維強化熱硬化性樹脂が一般的であり、引
き抜き成形などによる長さ方向に繊維が配列された繊維
強化熱硬化性樹脂製の断面日形状のビームも知られてい
る。
For example, steel beams called H-beams are used as building structural materials and are extremely common. The present inventors aimed at reducing the weight of transportation equipment such as automobiles, etc.
We have been investigating various ways to replace conventional steel equipment with lightweight materials such as synthetic resin. Researching the application of fiber-reinforced synthetic resin, which has particularly high strength as a synthetic resin, and examining various ways to use fiber-reinforced synthetic resin equipment in fields where conventional Japanese-shaped steel was used or in new fields where it can be applied. did. Fiber-reinforced thermosetting resins such as glass fiber-reinforced unsaturated polyester resins are commonly used as fiber-reinforced synthetic resins. beams are also known.

たとえば、ガラス繊維ロービングに不飽和ポリエステル
樹脂を合浸し断面日形のダィを通して引き抜きつつ樹脂
を硬化することにより目的とする成形物を得ることがで
きる。これらの強化繊維が長さ方向に配列された断面日
形状の繊維強化合成樹脂製のビームを被補強材を補強す
るために使用することを検討したところ、このビームは
従来のH型鋼ビームと異る機械的挙動を示すことに気が
付いた。その理由の一つは機械的強度の方向性であり、
即ち強化繊維の配列方向の引張り強度は高いがそれと直
角方向の引張り強度が低いことによるものである。第2
は、剛性が低く変形し易いことであり、第3は硬度が低
いことである。これらは繊維強化合成樹脂の本来の性質
である。これらの性質によりこのビームを補強材として
使用すると種々の欠点が生じる。第1図は従来の方法に
より鉄板などの平板1を繊維強化合成樹脂製の補強ビー
ム2で補強した状態を示した正面図と側面図である。
For example, a desired molded article can be obtained by impregnating a glass fiber roving with an unsaturated polyester resin and curing the resin while drawing the resin through a die having a diagonal cross section. When we investigated the use of a beam made of fiber-reinforced synthetic resin with a day-shaped cross section in which these reinforcing fibers were arranged in the length direction to reinforce the reinforced material, we found that this beam was different from the conventional H-shaped steel beam. It was noticed that the mechanical behavior of the One of the reasons is the directionality of mechanical strength,
That is, the tensile strength in the direction in which the reinforcing fibers are arranged is high, but the tensile strength in the direction perpendicular to this is low. Second
The third reason is that it has low rigidity and is easily deformed, and the third reason is that it has low hardness. These are the original properties of fiber-reinforced synthetic resins. These properties lead to various disadvantages when using this beam as a reinforcement. FIG. 1 is a front view and a side view showing a state in which a flat plate 1 such as an iron plate is reinforced with a reinforcing beam 2 made of fiber-reinforced synthetic resin by a conventional method.

補強ビーム2は二本のフランジ3,4と一本のウェブ5
とからなり、フランジ3の上面に被補強材である平板1
が位置している。補強ビーム2はその両端で平板に結合
され、平板にたとえば矢印方向に応力がかかった場合の
変形を防止している。しかし、この従来の方法では繊維
強化合成樹脂製補強ビーム2が変形し易く、たとえば第
2図A,B,Cにその断面を榛式的に示すように点線で
示すような変形をする。補強ビーム2は長さ方向の引張
強度は高いがそれと直角方向の引張強度が低いのでAで
はウェプ部に、BおよびCではフランジ部に長さ方向に
クラックが生じる恐れが大きい。そこで本発明者はこの
問題を解決すべく種々の研究検討を行ったところ、従来
の常識に反して断面日形状ビームの二本のフランジの先
端を被補強材に当援することにより解決の見通しを得た
The reinforcing beam 2 has two flanges 3, 4 and one web 5.
and a flat plate 1 which is the reinforced material on the upper surface of the flange 3.
is located. The reinforcing beam 2 is connected to a flat plate at both ends to prevent deformation when stress is applied to the flat plate, for example in the direction of the arrow. However, in this conventional method, the reinforcing beam 2 made of fiber-reinforced synthetic resin is easily deformed, for example, as shown by the dotted line in FIGS. 2A, B, and C, the cross sections of which are schematically shown. The reinforcing beam 2 has a high tensile strength in the longitudinal direction, but a low tensile strength in a direction perpendicular to the longitudinal direction, so there is a high possibility that cracks will occur in the web part in A, and in the flange parts in B and C in the longitudinal direction. Therefore, the inventor of the present invention conducted various research studies to solve this problem, and found that, contrary to conventional wisdom, a solution could be achieved by attaching the ends of the two flanges of the cross-sectional sun-shaped beam to the reinforced material. I got it.

従来、断面日形状ビームの使用においては必ず一方のフ
ランジの外面を被補強材に当俵し、ゥェブ部はかかる圧
縮応力または引張応力とは平行の方向に向けられていた
。たとえば鉄道線路のレールに見られるように応力を支
える部分はウェブ部であった。これを繊維強化合成樹脂
製の場合は第3図に示すように断面日形状補強ビーム2
を横にし、二本のフランジの先端を被補強材1に当援す
ることにより従来の方法よりもその強度が改善される。
しかしながら、この方法では二本のフランジの先端が開
く方向あるいは閉じる方向の変形が生じる場合、フラン
ジとゥヱブ部との接合部に長さ方向にクラックが生じ易
く、この方法のみでは充分な効果が得られない。そこで
、第4図Aに示すように、ゥェブ部を二本のフランジの
先端部に配置し、断面コの字形としてウェブ部を被補強
材に当援する方法を検討した。しかし、この方法では被
補強材の変形が直接ゥェプ部の変形をもたらし、第4図
Bに模式的に示したように点線で表わされるようなウェ
ブ部の変形によってウェブ部に長さ方向にクラックが生
じる恐れが生じる。特にウェブ部のフランジ部と結合し
ている両端はその硬度が低いことにより座屈し易く、そ
れ故に被補強材がウェブ部に接し応力がウェブ部にかか
り易いことによりゥェブ部の破壊が起り易くなる。そこ
で本発明者はウェブ部の位置を検討したところ、ゥェプ
部をフランジの高さ方向中点より被補強材側に位置させ
かつフランジ先端には存在させないようにすることによ
りすべての問題を解決しうろことを見し、出した。本発
明における補強ビームは第5図の斜視図に示すような構
造を有し、二本のフランジ6,7と一本のウェブ8から
なり、ゥェブ部がフランジ部の高さ方向中点より一方側
に偏在している補強ビーム9である。第5図はその断面
図であり、補強ビーム9が被補強材10の下部に取り付
けられている。第7図はその側面図であり、補強ビーム
9の両端が接合臭11,12により被補強材1川こ当緩
されている。即ち、本発明の方法は、二本のフランジと
それらを結合する一本のウェブからなる断面日形状を有
し、強化繊維が補強ビームの長さ方向に配置された繊維
強化合成樹脂製の補強ビームによって被補強材を補強す
る方法において、該補強ビームの−本のフランジの先端
を該被補強材側に位置させること、および該補強ビーム
においてウェブが二本の該フランジの高さの中点よりも
被補強材側に偏在させるとともに該ゥェブ部の先端に存
在させないことを特徴とする繊維強化合成樹脂製補強ビ
ームによる被補強材の補強方法である。第7図に示した
補強ビームで補強された被補強材を比較的薄い鉄板とす
る。
Conventionally, when using beams with a circular cross section, the outer surface of one flange was always brought into contact with the material to be reinforced, and the web portion was oriented in a direction parallel to the compressive or tensile stress. For example, the part that supports stress, as seen in the rails of railroad tracks, is the web part. If this is made of fiber-reinforced synthetic resin, the cross-section of the reinforcing beam 2 is as shown in Figure 3.
By laying it on its side and supporting the tips of the two flanges against the reinforced material 1, its strength is improved compared to the conventional method.
However, with this method, if the tips of the two flanges are deformed in the opening or closing direction, cracks tend to occur in the length direction at the joint between the flange and the web, so this method alone is not effective enough. I can't. Therefore, as shown in FIG. 4A, we considered a method in which the web portions were placed at the tips of the two flanges, and the cross section was U-shaped so that the web portions supported the material to be reinforced. However, in this method, the deformation of the reinforced material directly causes deformation of the web part, and as schematically shown in Figure 4B, the deformation of the web part causes cracks in the length direction of the web part, as shown by the dotted line. There is a risk that this will occur. In particular, both ends of the web part that are connected to the flange part are likely to buckle due to their low hardness, and therefore, the reinforcing material contacts the web part and stress is easily applied to the web part, making it easy for the web part to break. . Therefore, the inventor of the present invention investigated the position of the web part and solved all the problems by locating the web part on the side of the reinforced material from the midpoint of the flange in the height direction and not at the tip of the flange. I looked at the scales and took them out. The reinforcing beam according to the present invention has a structure as shown in the perspective view of FIG. The reinforcing beams 9 are unevenly distributed on the sides. FIG. 5 is a sectional view thereof, in which a reinforcing beam 9 is attached to the lower part of the reinforced material 10. FIG. 7 is a side view of the reinforcing beam 9, in which both ends of the reinforcing beam 9 are loosened by the joining odors 11 and 12 against the reinforced material. That is, the method of the present invention provides reinforcement made of fiber-reinforced synthetic resin, which has a cross-sectional shape consisting of two flanges and one web connecting them, and in which reinforcing fibers are arranged in the longitudinal direction of the reinforcing beam. In a method of reinforcing a reinforced material with a beam, the tips of the two flanges of the reinforcing beam are located on the side of the reinforcing material, and the web in the reinforcing beam is located at the midpoint of the height of the two flanges. This is a method of reinforcing a material to be reinforced using fiber-reinforced synthetic resin reinforcing beams, which is characterized in that the fiber-reinforced synthetic resin reinforcing beams are unevenly distributed on the side of the material to be reinforced and are not present at the tip of the web portion. The reinforced material reinforced with the reinforcing beam shown in FIG. 7 is a relatively thin iron plate.

この鉄板はたとえば自動車のボンネット、トランクカバ
ー、ドアなどに用いられるものとし、第7図上面が表面
である。この裏面に補強ビームが当援され、その両端が
被補強材に取り付けられている。外方から鉄板に応力が
かかるとこの応力は補強ビームの長さ方向の引張り応力
となって補強ビームにかかる。この引張り応力は主とし
て二本のフランジにかかり、その一部はゥェブ部の引張
り応力ともなる。繊維強化合成樹脂製の補強ビームには
長さ方向に強化繊維が配置されているこの方向の引張り
応力に対して特に強く、外方からの応力を吸収すること
ができる。ウェブ部は被補強材と接触していないので、
被補強材の変形によってウェブに強化繊維と直角方向の
曲げ応力はかからない。
This iron plate is used for the hood, trunk cover, door, etc. of a car, for example, and the top side in FIG. 7 is the front side. A reinforcing beam is provided on the back side, and both ends of the beam are attached to the reinforced material. When stress is applied to the steel plate from the outside, this stress becomes tensile stress in the length direction of the reinforcing beam and is applied to the reinforcing beam. This tensile stress is mainly applied to the two flanges, and a portion of it also becomes the tensile stress of the web portion. The reinforcing beam made of fiber-reinforced synthetic resin has reinforcing fibers arranged in the longitudinal direction, so it is particularly strong against tensile stress in this direction and can absorb stress from the outside. Since the web part is not in contact with the reinforced material,
Due to the deformation of the reinforced material, bending stress in the direction perpendicular to the reinforcing fibers is not applied to the web.

しかも、二本のフランジの先端が開く方向あるいは閉じ
る方向の応力がかかってもゥェブ取り付け部とフランジ
先端との距離が短いのでそれによるウェプ取り付け部に
かかる応力は小さい。ゥヱブの位置は第8図に模式的に
示すようにフランジの高さa、ウェブの長さb、被補強
材に当接される側のフランジの先端よりウェブ部までの
長さをCとすると、裏a>C>〇の関係が必要であり、
好ましくは暮a≧C≧きaであり、特にC=きa程度が
適当である。
Moreover, even if stress is applied to the tips of the two flanges in the direction of opening or closing, the distance between the web attachment portion and the tip of the flange is short, so the stress applied to the web attachment portion is small. The position of the web is shown schematically in Figure 8, where the height of the flange is a, the length of the web is b, and the length from the tip of the flange to the web part on the side that comes into contact with the reinforced material is C. , there is a need for the relationship a>C>〇,
Preferably, a≧C≧a, and it is particularly appropriate that C=a.

またaとbとの関係は特に限定されないが、松>b>享
a程度が好ましく、特に、1.弦ZbZaが適切である
。具体的な補強ビームとして、ガラス繊維ロービングを
長さ方向に配置した第6図に示したような断面を有する
ガラス繊維強化不飽和ポリエステル樹脂(ガラス繊維含
有率6の重量%)製補強ビームを挙げる。
Further, the relationship between a and b is not particularly limited, but it is preferable that pine>b>kyoa, especially 1. The string ZbZa is suitable. As a specific reinforcing beam, a reinforcing beam made of glass fiber-reinforced unsaturated polyester resin (glass fiber content: 6% by weight) having a cross section as shown in FIG. 6 with glass fiber rovings arranged in the length direction is mentioned. .

この断面は第8図で表わしてa=3.2肌、b=4.5
肌、c=0.7肌でありフランジの厚さ0.5肌、ウェ
ブ部の長さ0.4のである。一方、比較のために同一材
料を用いてc=】.6伽とした以外は上記本発明の補強
ビームと同一の付法を有するH型ビームを製造した。こ
の両者を荷重方向をかえ、支点距離75肌の自由支持台
上で中央部集中荷重による曲げ試験を行い荷重〜榛み作
図から榛み10肌までの仕事量(k9・仇)を測定した
。その結果を下表に示す。ただし、荷重方向mは荷重方
向1とは逆方向の荷重をかけたものであり、c=3.2
一0.7=2.5のに相当するものである。補強ビーム
は繊維強化合成繊維からなる。強化繊維はガラス繊維、
炭素繊維、合属繊維、その他の無機質繊維や高張力合成
繊維、合成繊維、セルロース繊維、その他の有機質繊維
が使用できる。特に、ガラス繊維が好ましく、ロービン
グ、ロービングクロス、クロス、マット、チョップドス
トランド、その他の形態の繊維を単独であるいは組み合
せて使用できる。長さ方向に配置された繊維はその方向
のみの場合は勿論、長さ方向以外の方向に配置された繊
維を合もでし、てもよい。長さ方向繊維として長さ方向
に連続したロービングなどは勿論、長さ方向に配列され
たチョップドストランドなども使用できる。最も好まし
くは長さ方向に配置されたロービングを含む強化繊維で
あり、ロービング単独あるいはロービングとマット、ク
ロス、その他の形態の繊維との組み合せである。合成樹
脂としては、不飽和ポリエステル樹脂、ビニルェステル
樹脂、ェポキシ樹脂あるいはその他の熱硬化性樹脂が適
切である。場合によっては、熱可塑性樹脂を用いること
もできるが、長さ方向に繊維を配置することは熱可塑性
樹脂程容易でない。その他周知の原料を使用して、補強
ビームが成形される。最も一般的な成形方法は引抜成形
方法であるが、その他プレス成形、ハンドレィアップ、
その他の成形方法で成形することもできる。本発明にお
ける被補強材としては、鉄板などの金属板が一般的であ
るが、合成樹脂板、スレート板、木板等各種の材料に適
用できる。
This cross section is shown in Figure 8 where a = 3.2 skin, b = 4.5
The skin, c=0.7 skin, the thickness of the flange is 0.5 skin, and the length of the web portion is 0.4. On the other hand, for comparison, using the same material, c=]. An H-shaped beam having the same attachment method as the reinforcing beam of the present invention described above was manufactured except that the reinforcing beam was 6-shaped. Both were subjected to a bending test with a concentrated load at the center on a free support stand with a fulcrum distance of 75 skin, with the load direction changed, and the amount of work (k9.k) from the load to the shading drawing to the shading 10 skin was measured. The results are shown in the table below. However, the load direction m is a load applied in the opposite direction to the load direction 1, and c=3.2
-0.7=2.5. The reinforcing beams are made of fiber-reinforced synthetic fibers. The reinforcing fiber is glass fiber,
Carbon fibers, composite fibers, other inorganic fibers, high tensile strength synthetic fibers, synthetic fibers, cellulose fibers, and other organic fibers can be used. Glass fibers are particularly preferred, and fibers in rovings, roving cloths, cloths, mats, chopped strands, and other forms can be used alone or in combination. The fibers arranged in the longitudinal direction may of course be arranged only in that direction, or may include fibers arranged in directions other than the longitudinal direction. As the longitudinal fibers, not only rovings continuous in the longitudinal direction, but also chopped strands arranged in the longitudinal direction can be used. Most preferably, reinforcing fibers include longitudinally arranged rovings, either alone or in combination with rovings and mats, cloths, or other forms of fibers. Suitable synthetic resins include unsaturated polyester resins, vinylester resins, epoxy resins, and other thermosetting resins. Thermoplastic resins can be used in some cases, but it is not as easy to arrange the fibers in the longitudinal direction as with thermoplastic resins. Other known materials are used to form the reinforcing beam. The most common molding method is pultrusion, but other methods include press molding, hand lay-up,
It can also be molded by other molding methods. The material to be reinforced in the present invention is generally a metal plate such as an iron plate, but it can be applied to various materials such as a synthetic resin plate, a slate plate, and a wooden plate.

また、その形態は平板は勿論、自動車部村のように各種
形状に成形された板状体に適用できる。補強ビームはこ
れらの板状体の裏面に通常は両端を固定して取り付けら
れる。この場合、補強ビームは一本は勿論二本以上を併
用することができ、これらは互いに平行であってもある
いは平行でなくても良い。補強ビームは板状体に加えら
れる応力、たとえば自動車用部材にあっては衝突や接触
の際の外力に対して板状体を補強し、その変形や破壊を
防止する。しかも、従来の補強ビームに比較して軽量で
あるので、自動車の軽量化の目的に適合するものである
In addition, the shape can be applied not only to flat plates but also to plate-shaped bodies formed into various shapes such as automobile parts. The reinforcing beams are usually attached to the back side of these plate-like bodies with both ends fixed. In this case, not only one reinforcing beam but also two or more reinforcing beams can be used in combination, and these beams may or may not be parallel to each other. The reinforcing beam reinforces the plate-shaped body against stress applied to the plate-shaped body, for example, external force at the time of collision or contact in the case of automobile parts, and prevents the plate-shaped body from being deformed or destroyed. Moreover, since it is lighter than conventional reinforcing beams, it is suitable for the purpose of reducing the weight of automobiles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の補強方法を示した正面図と側面図であり
、第2図A,B,Cはこの従来の補強方法で生じる補強
ビームの変形を示す模式図である。 第3図および第4図A,Bはその改良の一過程を示した
未だ不充分な補強ビームである。第5図は本発明補強ビ
ームの斜視図であり、第6図および第7図は本発明補強
ビームで補強した被補強材の断面図と側面図であり、第
8図は本発明補強ビームの断面の榛式図である。6,7
……フランジ、8……ウヱブ、9……補強ビーム、10
・・・・・・被補強材。 多ノ斑 券2図 髪3図 髪4図 髪づ図 務づ隣 髪7図 髪8図
FIG. 1 is a front view and a side view showing a conventional reinforcing method, and FIGS. 2 A, B, and C are schematic diagrams showing deformation of a reinforcing beam caused by this conventional reinforcing method. Figures 3 and 4A and 4B show a still insufficiently reinforced beam showing one step in its improvement. FIG. 5 is a perspective view of the reinforcing beam of the present invention, FIGS. 6 and 7 are cross-sectional views and side views of the reinforced material reinforced with the reinforcing beam of the present invention, and FIG. 8 is a perspective view of the reinforcing beam of the present invention. It is a Hayashiki diagram of a cross section. 6,7
...Flange, 8...Wave, 9...Reinforcement beam, 10
...Reinforced material. Tanomadara ticket 2 figure hair 3 figure hair 4 figure hairzuzutsumuzu neighbor hair 7 figure hair 8 figure

Claims (1)

【特許請求の範囲】 1 二本のフランジとそれらを結合する一本のウエブか
らなる断面H形状を有し、強化繊維が補強ビームの長さ
方向に配置された繊維強化合成樹脂製の補強ビームによ
つて被補強材を補強する方法において、該補強ビームの
二本のフランジの先端を該被補強材側に位置させること
、および該補強ビームにおいてウエブを二本の該フラン
ジの高さの中点よりも被補強材側に偏在させるとともに
該フランジの先端に存在させないことを特徴とする繊維
強化合成樹脂製補強ビームによる被補強材の補強方法。 2 繊維強化合成樹脂がガラス繊維強化熱硬化性樹脂で
あることを特徴とする特許請求の範囲1の補強方法。3
フランジの高さをa、被補強材側のフランジの先端と
ウエブとの距離をcとすると3/8a≦c≦1/8aで
あることを特徴とする特許請求の範囲1の補強方法。 4 被補強材が板状体あることを特徴とする特許請求の
範囲1の補強方法。
[Claims] 1. A reinforcing beam made of fiber-reinforced synthetic resin, which has an H-shaped cross section and consists of two flanges and one web connecting them, and in which reinforcing fibers are arranged in the longitudinal direction of the reinforcing beam. In the method of reinforcing a material to be reinforced by A method for reinforcing a material to be reinforced using a fiber-reinforced synthetic resin reinforcing beam, which is characterized in that the reinforcing beam is unevenly distributed on the side of the material to be reinforced rather than the point and is not present at the tip of the flange. 2. The reinforcing method according to claim 1, wherein the fiber-reinforced synthetic resin is a glass fiber-reinforced thermosetting resin. 3
The reinforcing method according to claim 1, wherein 3/8a≦c≦1/8a, where a is the height of the flange, and c is the distance between the tip of the flange on the side of the material to be reinforced and the web. 4. The reinforcing method according to claim 1, wherein the material to be reinforced is a plate-shaped member.
JP53122738A 1978-10-06 1978-10-06 Reinforcement method Expired JPS6027879B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP53122738A JPS6027879B2 (en) 1978-10-06 1978-10-06 Reinforcement method
US06/079,195 US4290641A (en) 1978-10-06 1979-09-26 Metallic panel reinforcing system
EP79103803A EP0010641B1 (en) 1978-10-06 1979-10-04 Reinforcing beam system
DE7979103803T DE2964626D1 (en) 1978-10-06 1979-10-04 Reinforcing beam system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53122738A JPS6027879B2 (en) 1978-10-06 1978-10-06 Reinforcement method

Publications (2)

Publication Number Publication Date
JPS5549226A JPS5549226A (en) 1980-04-09
JPS6027879B2 true JPS6027879B2 (en) 1985-07-01

Family

ID=14843363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53122738A Expired JPS6027879B2 (en) 1978-10-06 1978-10-06 Reinforcement method

Country Status (1)

Country Link
JP (1) JPS6027879B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121974A (en) * 1980-12-26 1982-07-29 Dainippon Ink & Chem Inc Reinforcing method of car body for automobile
JPS5878844A (en) * 1981-11-06 1983-05-12 Toyota Motor Corp Vehicle's bumper reinforcement structure

Also Published As

Publication number Publication date
JPS5549226A (en) 1980-04-09

Similar Documents

Publication Publication Date Title
US20040213952A1 (en) Fiber reinforced plastic structural member
DE102012206032B4 (en) Structural component of a motor vehicle body
CA2390468A1 (en) A pultruded part reinforced by longitudinal and transverse fibers and a method of manufacturing thereof
JPS60233254A (en) Wall element
JPH06101732A (en) Shock absorbing member for composite structure
KR100648542B1 (en) External reinforcement for beams, columns, plates and the like
CA1235154A (en) Plastic leaf spring with at least one spring-eye body or spring-eye section
JP2976913B2 (en) Composite long fiber reinforced thermoplastic resin stampable sheet and bumper beam obtained by molding the same
JPS6027879B2 (en) Reinforcement method
US20050000186A1 (en) Method of manufacturing structural units
EP0010641B1 (en) Reinforcing beam system
JP3123658B2 (en) Trolley made of reinforced plastic
JPH0414307Y2 (en)
JP3623615B2 (en) Pillow
EP1842657A3 (en) A pultruded part reinforced by longitudinal and transverse fibers and a method of manufacturing thereof
JPS6253754B2 (en)
EP0088076A1 (en) Composite element, particularly having the form of a plate
JPS605172B2 (en) Fiber-reinforced synthetic resin reinforcement beam
JPH0462260B2 (en)
JP3978282B2 (en) Reinforced wood
JPS6013732Y2 (en) Reinforcement structure of metal plate
JPH0796833A (en) Vehicle structure body and manufacture thereof
KR0138892B1 (en) Door impact beam for a car
JPS6010840Y2 (en) Composite tensile structure
JPH06344837A (en) Bumper beam made of stampable sheet