JPS6027827A - Substrate-temperature measuring method - Google Patents

Substrate-temperature measuring method

Info

Publication number
JPS6027827A
JPS6027827A JP13662683A JP13662683A JPS6027827A JP S6027827 A JPS6027827 A JP S6027827A JP 13662683 A JP13662683 A JP 13662683A JP 13662683 A JP13662683 A JP 13662683A JP S6027827 A JPS6027827 A JP S6027827A
Authority
JP
Japan
Prior art keywords
substrate
light
bimetal
temperature
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13662683A
Other languages
Japanese (ja)
Inventor
Shiro Fukushima
福島 志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp, Anelva Corp filed Critical Canon Anelva Corp
Priority to JP13662683A priority Critical patent/JPS6027827A/en
Publication of JPS6027827A publication Critical patent/JPS6027827A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K5/00Measuring temperature based on the expansion or contraction of a material
    • G01K5/48Measuring temperature based on the expansion or contraction of a material the material being a solid
    • G01K5/56Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid
    • G01K5/62Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid the solid body being formed of compounded strips or plates, e.g. bimetallic strip
    • G01K5/70Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid the solid body being formed of compounded strips or plates, e.g. bimetallic strip specially adapted for indicating or recording
    • G01K5/72Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid the solid body being formed of compounded strips or plates, e.g. bimetallic strip specially adapted for indicating or recording with electric transmission means for final indication

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To detect the temperature of a substrate without contact, by projecting light on a bimetal provided on the surface of the substrate, and detecting the displacement of the reflected light based on the bending of the bimetal due to the change in temperature. CONSTITUTION:A bimetal 45 comprising two kinds of raw metal materials 4 and 5 is formed on a substrate 1. Light emitted from a light projecting device 6 becomes incident light 71 through a light-path changing device 9. The light 71 is reflected by the surface of the substrate 1 and becomes reflected light 72, which is inputted to a position sensor 8. The output is inputted to an amplifier 10 as an output V1 as a function of the position of the incident light. Then the light-path changing device 9 is rotated by a specified angle, and incident light 75 is reflected by the bent surface of the bimetal 45. An output V2 is obtained from reflected light 73. When the temperature of the substrate 1 is changed, the inclination of the bending of the bimetal 45 is changed, the reflected light 73 becomes 74, and an output V3 is obtained. The temperature of the substrate 1 is detected without contact by the difference between V1 and the outputs V2, V3.

Description

【発明の詳細な説明】 本発明は半導体等の製造プロセスにおいて、半導体等を
製造する基板そのもの\温度の測定方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the temperature of the substrate itself used to manufacture semiconductors and the like in the manufacturing process of semiconductors and the like.

半導体等の製造プロセスの基板の諸加工に於いては、基
板温度の確定が1要な条件となることが多い。例えば、
蒸着あるいはスパッタリング時の基板の加熱温度は被蒸
着物がアルミニウムで基板がシリコンの場合には9例え
ばシリコン基板温度う現象があり、この為、シリコン基
板の温度を350℃以下のきめられた範囲にコントロー
ルする必要がある。しかし、この場合蒸着膜を均一に分
布させるためや量産の為に基板を移動9回転させること
が多く、又更に、基板に高電圧を印加する場合もあって
熱血対、サーミスター等を用いる基板温度の直接測定は
不可能である1、熱電対等のほかには赤外線式の無接触
表面温度計を用いる測定法があるがこれには、基板表面
の輻射率のちがいにより測定温度が大きく浮動し表面の
温度を一義的に決め難いという欠点がある。
2. Description of the Related Art In processing substrates in semiconductor manufacturing processes, determining the substrate temperature is often a necessary condition. for example,
The heating temperature of the substrate during evaporation or sputtering is such that when the object to be evaporated is aluminum and the substrate is silicon, there is a phenomenon in which the temperature of the silicon substrate decreases. need to be controlled. However, in this case, the substrate is often moved nine times in order to distribute the deposited film uniformly or for mass production, and in some cases, a high voltage is applied to the substrate, so a hot-blooded coupler, thermistor, etc. Direct measurement of temperature is impossible1.In addition to thermocouples, there is a measurement method that uses an infrared non-contact surface thermometer, but this method does not allow for large fluctuations in the measured temperature due to differences in the emissivity of the substrate surface. The drawback is that it is difficult to determine the surface temperature unambiguously.

本発明はこの問題の克服を目的とするもので、基板の表
面又は裏面に直接に、蒸着又は写真食刻法によって、バ
イメタルを作成し温度によって起るこのバイメタルの屈
曲を、基板外から光を投射して屈曲面から反射してくる
光の変位を電気的に読み取ることによって無接触で検出
し、基板温度を測定するものである。
The purpose of the present invention is to overcome this problem by creating a bimetal directly on the front or back surface of the substrate by vapor deposition or photoetching, and then applying light from outside the substrate to prevent the bending of this bimetal caused by temperature. By electrically reading the displacement of the projected light reflected from the curved surface, it is detected without contact and the substrate temperature is measured.

第1回は本発明の実施例であって1は基板、245のバ
イメタル部を拡大したものである。
The first one is an example of the present invention, in which numeral 1 is a substrate and 245 is an enlarged view of a bimetal part.

第2図に於いて、45は基板1上に形成された。In FIG. 2, 45 is formed on the substrate 1. In FIG.

線膨張係数の異なる二種の金属素材4と5を用いて多層
構造に形成されたバイメタルである。その人 形式方法については後述する。投光器6より投射された
光は光路変換器(例えば薄い屈折プリズム)9を経て入
射光71となり、これが基板1の面で反射され反射光7
2となって位置センサー8に入る。
It is a bimetal formed into a multilayer structure using two types of metal materials 4 and 5 having different coefficients of linear expansion. The form of the person will be described later. The light projected from the projector 6 passes through an optical path converter (for example, a thin refractive prism) 9 and becomes incident light 71, which is reflected by the surface of the substrate 1 and becomes reflected light 7.
2 and enters the position sensor 8.

位置センサー8はこれへの入射光の入射位置の関数で増
幅器10の出力v1がきまるよう構成されている。基相
1の反射光72は位置センサー8の出力の基準をきめる
ものである。次いて光路変換器9を例えば5°回転し投
光器の光7を75に変え。
The position sensor 8 is configured such that the output v1 of the amplifier 10 is determined as a function of the position of the incident light thereon. The reflected light 72 of the base phase 1 determines the reference for the output of the position sensor 8. Next, the optical path changer 9 is rotated, for example, by 5 degrees, and the light 7 of the projector is changed to 75.

入射光75がバイメタルの屈曲面上で反射されて来た反
射光73の位置を位置センサー8で検出してその出力■
2がまる。基や1の温度が上昇又は下降するとバイメタ
ルは屈曲の傾きを変えこのため入射光75の反射光は7
4となって位置センサー8に入り出力■3がえられる。
A position sensor 8 detects the position of the reflected light 73 where the incident light 75 is reflected on the curved surface of the bimetal, and the output is
2 is full. When the temperature of the base 75 increases or decreases, the bimetal changes its bending angle, so that the reflected light of the incident light 75 becomes 7
4 and enters the position sensor 8, giving an output ■3.

従って、V3−V2゜■2−■1.v2−v0.V2−
■1トソノトキどq ノ基aia度との関係をあらかじ
め較正しておくことにより■3.v2.■1を測定する
ことにより基板温度を測定円ることができる。次には、
バイメタルの形成方法の1例を述べる。
Therefore, V3-V2゜■2-■1. v2-v0. V2-
■1 By calibrating the relationship with the degree of aia in advance, ■3. v2. (1) By measuring 1, the substrate temperature can be measured. Next,
An example of a method for forming a bimetal will be described.

を用いて(b1図の如くパターン11を作る。次いでメ
タルマスクを(c)図の12の如くあてる。次いで真空
中で蒸着法、又はスパッタリング法によりN、に次いで
Cu、又はNi−Mn−Fe合金についでN、−Feの
合金等を4,5の如く付着しくd1図のバイメタル45
を形成する。(e)EV+はメタルマスクを除去した図
である。これをハクリ液、又はアセトン中に数分〜数十
分浸し、静かにレジストを溶解除去しくf)図の片持梁
状に露出したバイメタル45を得る。
(b1) to form a pattern 11 as shown in Figure (b1). Next, a metal mask is applied as shown in Figure (c) as shown in Figure 12.Next, N, then Cu, or Ni-Mn-Fe is deposited by vapor deposition or sputtering in a vacuum. Next to the alloy, attach N, -Fe alloys, etc. as shown in 4 and 5 to form bimetal 45 in the d1 diagram.
form. (e) EV+ is a diagram with the metal mask removed. This is immersed in a peeling solution or acetone for several minutes to several tens of minutes to gently dissolve and remove the resist, thereby obtaining the bimetal 45 exposed in the shape of a cantilever as shown in the figure.

尤も、上記以外の縦知の通常の処理9例えば食刻法を利
用する方法でも9本発明に用いるバイメタルの作成は可
能である。
Of course, it is also possible to produce the bimetal used in the present invention using conventional processes other than those described above, such as etching.

本発明はバイメタルを如何に作成するかに、限定される
ものではない。バイメタルの形状についても同様である
。かつまた、バイメタルの構造もこれを二層に限定する
ものではない。三層以上にすることによって測定精度、
耐久性を向上させることが可能である。
The present invention is not limited to how the bimetal is made. The same applies to the shape of the bimetal. Furthermore, the bimetal structure is not limited to two layers. Measurement accuracy can be improved by using three or more layers.
It is possible to improve durability.

さて9本発明の方法は以上に説明した通りであって、基
板温度を無接触で測定することを可能にし。
Now, the method of the present invention is as described above, and makes it possible to measure the substrate temperature without contact.

■基板に高電圧を印加してもよい。■High voltage may be applied to the substrate.

■移動中の基板温度も測定できる。■Can also measure substrate temperature during movement.

■多量に形成できるので、1ケのみ較正すればよい。■Since a large amount can be formed, only one need be calibrated.

■熱容量が小さい為、はぼ表面温度の測定となる。■Because the heat capacity is small, the surface temperature is measured.

゛ 1、 ■較正を厳密にすることにより精密な温度の測定が可能
である。
゛ 1. ① Precise temperature measurement is possible by strict calibration.

などのすぐれた長所をもつものである。本発明によって
半導体デバイス等の品質9歩溜りは太い設備した基板の
実施例の斜視図。
It has excellent advantages such as: FIG. 1 is a perspective view of an embodiment of a substrate equipped with a high-quality semiconductor device according to the present invention.

第2図は本発明の方法を実施例で説明する図。FIG. 2 is a diagram illustrating the method of the present invention using an example.

第3図はバイメタルの作成方法を例示する1゜1:基板 45:バイメタル 8:位置にセンサー子 9:光路変換器 特許出願人 日電アネルバ株式会社 FIG、2 FIG、3Figure 3 shows an example of how to create a bimetal. 1゜1: Substrate 45: Bimetal 8: Sensor element in position 9: Optical path converter Patent applicant: Nichiden Anelva Co., Ltd. FIG.2 FIG.3

Claims (1)

【特許請求の範囲】 半導体デバイス等を製造する基板上の適所に。 それぞれ異なる線膨張係数を有する二種以上の金属材料
を用いて多層構造のバイメタルを形成し。 該バイメタルの温度による屈曲面上に該基板外から光を
投じ、該投光の反射光の変位を検出することにより該基
板の温度を測定することを特徴とする基板温度測定方法
[Claims] At a suitable location on a substrate for manufacturing semiconductor devices, etc. A multilayer bimetal structure is formed using two or more metal materials each having a different coefficient of linear expansion. A method for measuring the temperature of a substrate, characterized in that the temperature of the substrate is measured by projecting light from outside the substrate onto a temperature-curved surface of the bimetal and detecting the displacement of the reflected light of the projected light.
JP13662683A 1983-07-26 1983-07-26 Substrate-temperature measuring method Pending JPS6027827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13662683A JPS6027827A (en) 1983-07-26 1983-07-26 Substrate-temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13662683A JPS6027827A (en) 1983-07-26 1983-07-26 Substrate-temperature measuring method

Publications (1)

Publication Number Publication Date
JPS6027827A true JPS6027827A (en) 1985-02-12

Family

ID=15179698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13662683A Pending JPS6027827A (en) 1983-07-26 1983-07-26 Substrate-temperature measuring method

Country Status (1)

Country Link
JP (1) JPS6027827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235627A2 (en) * 1986-03-06 1987-09-09 Robert Bosch Gmbh Device for touch-free temperature measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235627A2 (en) * 1986-03-06 1987-09-09 Robert Bosch Gmbh Device for touch-free temperature measurement

Similar Documents

Publication Publication Date Title
US5102231A (en) Semiconductor wafer temperature measurement system and method
US3664942A (en) End point detection method and apparatus for sputter etching
JP2891332B2 (en) Phase grating and method of manufacturing phase grating
GB2181298A (en) Platinum resistance thermometer and manufacture thereof
JPS6027827A (en) Substrate-temperature measuring method
KR100421177B1 (en) Micro heat flux sensor by using electroplating, and method of making the same
JPH1032233A (en) Silicon wafer, glass wafer and measurement of stress using them
KR100300285B1 (en) Micro Meat Flux Sensor and Method For Fabricating The Sensor
JP2000131147A (en) Infrared sensor
JPH09289149A (en) X-ray mask and manufacture thereof
JP4282204B2 (en) Heat treatment method
JPS61181103A (en) Platinum temperature measuring resistor
JPH1114449A (en) Infrared sensor
JPH06258149A (en) Thin-film thermocouple element
JP3013393B2 (en) Photoresist coating means
JP2007017263A (en) Sensing element, vacuum gauge and vacuum tube
JP2005303093A (en) Heat treatment evaluating method and development processing evaluating method
JPH1180974A (en) Method for measuring etching rate
JPH0714895A (en) Coating member for film thickness measurement and mounting method therefor
JP2849248B2 (en) Optical vibration sensor
JPS62139338A (en) Temperature-measuring wafer
JPS5952706A (en) Displacement measuring method
Candela et al. Film thickness and refractive index Standard Reference Material calibrated by ellipsometry and profilometry
JP2717221B2 (en) Temperature measurement method
JPH03270122A (en) Wafer alignment