JPS6027701A - Energy recovery device through reciprocating air flow - Google Patents

Energy recovery device through reciprocating air flow

Info

Publication number
JPS6027701A
JPS6027701A JP58135736A JP13573683A JPS6027701A JP S6027701 A JPS6027701 A JP S6027701A JP 58135736 A JP58135736 A JP 58135736A JP 13573683 A JP13573683 A JP 13573683A JP S6027701 A JPS6027701 A JP S6027701A
Authority
JP
Japan
Prior art keywords
energy recovery
air flow
straight
turbine
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58135736A
Other languages
Japanese (ja)
Other versions
JPH0119041B2 (en
Inventor
Izumi Ushiyama
泉 牛山
Yoshimi Okiguchi
沖口 好巳
Hiroshi Miyazaki
弘志 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP58135736A priority Critical patent/JPS6027701A/en
Publication of JPS6027701A publication Critical patent/JPS6027701A/en
Publication of JPH0119041B2 publication Critical patent/JPH0119041B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/215Rotors for wind turbines with vertical axis of the panemone or "vehicle ventilator" type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To contrive effective use of the kinetic energy of reciprocating air flow, by fixing both ends of a linear blade arranged within a passage wherein air flows vary alternately on a stationary disc having a driving shaft on the center. CONSTITUTION:A linear blade 2 is arranged within a passage wherein air flows vary alternately, both ends of the linear blade 2 is fixed on a stationary disc 3 having a driving shaft 4 on the center and the driving shaft 4 is connected with an energy recovery machine 6. An ingredient of lift facing front is formed on the linear blade 2 through action of the air flow, and a turbine 5 is turned in one direction centering around the driving shaft 4. Kinetic energy of a reciprocating air flow can be put to use effectively in this manner.

Description

【発明の詳細な説明】 本発明L;L tl復ΔY気流によるエネルギー回収装
置に関づるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an energy recovery device using L;L tl return ΔY airflow.

新しいエネルギどして波のト十動を空気の流れに変えて
エネルギを取り出して例えば発電機のJ、うなエネルギ
ー回収1段の駆動力と彩るエネルギー回収方法が研究1
1発されている。
Research 1: An energy recovery method that uses new energy to extract energy by converting the motion of waves into air flow, such as the J of a generator, and the driving force of the first stage of energy recovery.
One shot was fired.

すなわら波の上下動による水位変化を空気の移動に変換
して箱体内の空気を吸排さゼ、この空気の移動する途上
に配置された種々の形状のタービンを回転さけ、このタ
ービンの回転ツノを発電機へ供給していた。
In other words, the change in water level due to the vertical movement of waves is converted into the movement of air, which sucks and exhausts the air inside the box.The turbines of various shapes placed in the path of this air movement are avoided, and the rotation of this turbine is controlled. The horns were being supplied to the generator.

ところが従来のタービンは空気の移動方向が一定Cな【
プれば発電用の回転が得られなかった。
However, in conventional turbines, the direction of air movement is constant C [
If I pulled it, I couldn't get the rotation for power generation.

従って往復動する空気の流れを一方向に規制Mる整流弁
を組み込まなければならず、装置が大型となり装置が高
額なものであった。
Therefore, it is necessary to incorporate a rectifier valve that regulates the flow of reciprocating air in one direction, making the device large and expensive.

また弁の開閉によってエネルギ損失が発生し効率が低い
ものであった。
Additionally, energy loss occurs due to opening and closing of the valve, resulting in low efficiency.

本発明は以上のような点を改善づる為になされたもので
構造が簡単で空気の移動方向に影響されずに常に運動エ
ネルギを取り出1事ができる往復空気流によるエネルギ
ー回収装置を提供りる事をに1的とηる。
The present invention has been made to improve the above points, and provides an energy recovery device using reciprocating airflow that has a simple structure and can always extract kinetic energy without being affected by the direction of air movement. I think it's the first thing to do.

すなわら本発明は空気流が交−bに変化りる通路内に、
通路横断方向に複数枚の直線92を位防uしめ、この直
線9ンは加速どWの回転速度との合成速度にj、って揚
力の前向きの成分を作り出り一形状に形成し、この直線
翼の両端を、中心に駆動軸を有りる固定ディスクに固定
し、駆動軸の回転をエネルギー回収機へQ供り゛るj:
う1t1成りる、uE復空気流t、二、J、るエネルギ
ー回収装置に関するものである。
That is, in the present invention, in the passage where the air flow changes to AC-b,
A plurality of straight lines 92 are arranged in a direction across the passage, and these straight lines 9 create a forward component of lift force at a composite speed of acceleration and the rotational speed of W, and are formed into a shape. Both ends of this straight wing are fixed to a fixed disk with a drive shaft in the center, and the rotation of the drive shaft is transmitted to the energy recovery machine:
The present invention relates to an energy recovery device in which the return air flow t, 2, and J is made up of t1 and uE.

次に本発明の実施例についてば1明−りる。Next, I will explain some examples of the present invention.

+1 (]全体の説明 本発明のエネルギー回収装置1は直線翼2と固定ディス
ク3と駆動軸4からなるタービン5を、例えば発電機の
ようなエネルギー回収機6に接続して構成する。
+1 (] General Description The energy recovery device 1 of the present invention is constructed by connecting a turbine 5 consisting of a straight blade 2, a fixed disk 3, and a drive shaft 4 to an energy recovery machine 6 such as a generator, for example.

以下タービン5の各部について説′明する。Each part of the turbine 5 will be explained below.

[ロ コ 社11線&号! i白線ν・+2は空気流の右する運動エネルギから揚力
J′3よひ推力という機械的な連動に変換する羽根であ
る。
[Locosha 11th line & issue! The white line ν·+2 is a vane that converts the kinetic energy of the airflow into a mechanical interlock of lift force J'3 and thrust force.

直FA翼2は断面流線形をしに痕1j礪の讐のJ、うな
板体で形成する。
The straight FA blade 2 is formed of a plate body with a streamlined cross-section and a groove 1, a groove 1, and a ridge.

直線翼2は空気流を横断する方向に複数枚配置し、直1
i!ll翼2の両端を空気流と並行に設け1こ固定ディ
スク3に固定する。
A plurality of straight blades 2 are arranged in a direction that crosses the airflow.
i! Both ends of the blade 2 are placed parallel to the airflow and fixed to one fixed disk 3.

直線翼2の断面形状は、例えば中心線に対して上下対象
に構成した「ス・1象翼」 (第4図)、非対象に構成
した「低カンバー翼」(第5図)、および「高カンバー
翼」(第6図〉等を採用づることができる。
The cross-sectional shapes of the straight wing 2 are, for example, "S-1 elephant wing" (Fig. 4) configured vertically symmetrically with respect to the center line, "low camber wing" (Fig. 5) configured asymmetrically, and " A high camber wing" (Fig. 6) etc. can be adopted.

それらの中から用量、加速、回転数、等の諸条件に応じ
て、最適な翼の肉厚、幅、全長を決定する。
From among these, the optimal wing thickness, width, and overall length are determined depending on various conditions such as dosage, acceleration, and rotational speed.

[ハ]゛固定ディスク 固定ディスク3は、空気流を41+1断りる方向に設け
た複数枚の直線翼2を円筒状に配置して固定し、直線翼
2の運動エネルギを回転運動として駆8?1lI4へ伝
達する為の円板である。
[C] Fixed disk The fixed disk 3 has a plurality of straight blades 2 arranged in a cylindrical shape and fixed in a direction that cuts off the airflow by 41+1, and converts the kinetic energy of the straight blades 2 into rotational motion to drive 8? This is a disk for transmitting information to 1lI4.

固定ディスク3は直線翼2が回転中に遠心力を受ける関
係から固定ディスク3を直FA 1.2の両端部たりで
なくその途中に何箇所か配置する場合もある。
The fixed disk 3 may be placed not at both ends of the straight FA 1.2 but at several locations along the way because the straight blade 2 receives centrifugal force while rotating.

また固定ディスクご3(,1図示りる他にリング状の円
環を放q]υ(のスポークで支持1)で直線翼2を固定
リイ)事L)Tり能である。(図示ゼ−4゛)[二]駆
動軸 固定i゛イスクの中心にt、L駆動軸4を岩通して一1
ホに固定ブる。
In addition, it is possible to fix the straight wing 2 with a fixed disk 3 (in addition to the one shown in the figure, a ring-shaped ring q]υ (supported by spokes 1)). (Illustrated at 4) [2] Fixing the drive shaft I
It's fixed on ho.

駆ir!Il軸4 kL固定j’−rスフ;3の回転運
動を光電機、熱発生機(軸の回転に、1、つ’C1ll
l 1.J:を光9−さけ、そのJ’L 11の油を油
液中へ噴出して熱を発生させるようIJ装置)などのエ
ネルギー回収機へ連絡するための軸である。
Driving! Il axis 4 kL fixed
l 1. This is a shaft for connecting the J'L 11 to an energy recovery machine such as an IJ device (IJ device) that ejects the light 9- into the oil and generates heat.

駆動軸4は増遼機を介在さUることなくエネルギー回収
樋6の回転軸へ接続Jる事も可能である。
The drive shaft 4 can also be connected to the rotating shaft of the energy recovery gutter 6 without intervening a power increaser.

[i1\(回転原理 回転原理はい4つゆるグリウス型風車と同じである。[i1\(Rotation principle The rotation principle is the same as all four Grius-type windmills.

つまり、揚力発4し断面を右して回転中の直線翼2が、
風速と直線翼2の速度の合成速度(相対速度)ににす、
揚力の前向ぎの力の成分が後ろ向きの力の成分より大ぎ
くなる$により1(]力が発生し、加速を伴う連続回転
が得られるのである。
In other words, the straight wing 2 that generates lift 4 and is rotating with its cross section to the right,
To the composite speed (relative speed) of the wind speed and the speed of straight wing 2,
When the forward force component of the lift force becomes larger than the backward force component, a force of 1 (] is generated, and continuous rotation accompanied by acceleration is obtained.

次にエネルギー回収方法について説明する。Next, the energy recovery method will be explained.

[イ]エネルギー回収準備 第2図において71は函体7の空気室であり、この空気
室71の上方には人気ど連通りる連通路72が形成され
ている。
[A] Preparation for energy recovery In FIG. 2, 71 is an air chamber of the box 7, and above this air chamber 71, a communication passage 72 is formed to communicate with the air.

この連通路72の断面積は、実際には函体7の断面積の
数十分の−から数百の−の比率どなる。
The cross-sectional area of this communicating path 72 is actually a ratio of several tenths to several hundreds of the cross-sectional area of the box 7.

連通路72内では水位の変化による吸排の為の空気の移
動が行なわれている。
In the communication passage 72, air is moved for suction and discharge due to changes in the water level.

そしてこの連通路72内には直線翼が連通路72を横断
するように配置し、回転軸4の一端にはエネルギー回収
機6を接続する。
A straight blade is arranged in this communication path 72 so as to cross the communication path 72, and an energy recovery machine 6 is connected to one end of the rotating shaft 4.

[口]吸気時 波が下降すると水位が下がり人気の空気が連通路72を
経て空気室71内へ吸引される。
[Port] When the intake wave falls, the water level falls and the popular air is sucked into the air chamber 71 through the communication path 72.

連通路72内に配?iされlこタービン5)は面線翼2
が揚力と111力を受け゛C駆仙軸4を中心とした一方
向の回転運動を開始Jる。
Arranged within the communication path 72? The turbine 5) has planar blades 2
receives the lift force and the 111 force and starts rotating in one direction around the driving shaft 4.

その結果タービン5の回転は駆動軸4からエネルギー回
収機6の回転軸へ直接伝達され、■ネルー1−回収が行
われる。
As a result, the rotation of the turbine 5 is directly transmitted from the drive shaft 4 to the rotating shaft of the energy recovery machine 6, and Nehru 1 recovery is performed.

[ハ]排気1[′i 波が1・μ4から上昇に変ると空気室71内の空気が連
通路72を紅−(大気へ排出される。
[C] Exhaust 1 ['i When the wave changes from 1·μ4 to rising, the air in the air chamber 71 is exhausted through the communication path 72 to the atmosphere.

IJI気の際t)前述したJ、うな理由により直線翼2
は揚力と推力とを受りてタービン5は吸気の際どIr1
lじ/i向に回転を続【プる。
IJI t) Due to the above-mentioned reason, straight wing 2
receives lift and thrust, and the turbine 5 receives Ir1 at the time of intake.
Continue rotating in the l/i direction.

波の水位が最高もしくは最低になった瞬間は空気が移動
しないのでタービンJへの1す1転力が!jえられない
J、うに考えられるが、惰性によってターじン5は連続
して回転りる3゜ タービン5の回転(よエネルギー回収I幾6へ伝達され
連続したエネルギー回収機行われる。
At the moment when the water level of the wave reaches its highest or lowest level, the air does not move, so the turning force to turbine J is reduced! Although it may be thought that the turbine 5 cannot be recovered by inertia, the rotation of the turbine 5 by 3 degrees due to inertia (energy recovery I) is transmitted to the turbine 6 and a continuous energy recovery machine is performed.

に]その他の実施例(第31剛) タービン5の回転11シ率を向上させるために連通路7
2内にストリームガイド8を突設して通路を絞る場合も
ある。
Other embodiments (31st rigid) In order to improve the rotation rate of the turbine 5, the communication passage 7 is
In some cases, a stream guide 8 is provided protruding inside 2 to narrow the passage.

つまりス]・リームガイド8を突RQ ’lる事ににっ
てストリームガイド8を通過づる際空気の流速を高め、
かつ、その送用が直線翼2の回転Ir向に対し衝突する
方向に集中づるようにタービン5の前後にそれぞれ配置
する。
In other words, by pushing the stream guide 8, the flow velocity of the air is increased as it passes through the stream guide 8,
Further, they are arranged before and after the turbine 5, respectively, so that the feed thereof is concentrated in the direction of collision with the direction of rotation Ir of the straight blade 2.

その結果直線翼2には常に揚力の前向きの力が発生し空
気流の進行方向に逆行覆る方向に回転を持続する。
As a result, a forward force of lift is always generated in the straight wing 2, and the wing continues to rotate in a direction opposite to the direction of travel of the airflow.

本発明は以上説明したJ、うになるから次のにうな効果
を期待する事ができる。
Since the present invention achieves the above-described effects, the following effects can be expected.

くイタタービンは空気流の方向が正逆いずれの場合にも
一方向の回転運動が得られる。
Kuita turbines can obtain rotational motion in one direction regardless of whether the airflow direction is forward or reverse.

したがって空気流の運動エネルギの有効利用を図ること
ができる。
Therefore, it is possible to effectively utilize the kinetic energy of the air flow.

く口、〉風向きが変化してbタービンの回転方向は変化
しない。
〉The direction of the wind changes, but the direction of rotation of the b-turbine does not change.

そのため従来のような整流弁等のイリ加装置が不要とな
って装置全体の小型化、エネルギの有効利用が図れコス
トの低減が可能となる。
This eliminates the need for a rectifying device such as a conventional rectifying device, making it possible to downsize the entire device, make effective use of energy, and reduce costs.

くハ〉タービンは揚力型であるため高速回転が容易に得
られるので、増加速度装置を介在せずにエネルギー回収
機へ直接接続づることもできる。
Because the turbine is a lift type, high-speed rotation can be easily obtained, so it can be directly connected to an energy recovery machine without intervening a speed increasing device.

その結果エネルギー回収システムを簡易化する事ができ
る。
As a result, the energy recovery system can be simplified.

〈二〉タービンは複数枚の向I5j!翼とこの直線翼を
支持する固定ディスクおよび駆動軸だけで構成されるの
で構造がシンプルであり製作が容易である。
<2> The turbine has multiple direction I5j! The structure is simple and easy to manufacture since it consists of only the blade, a fixed disk that supports the straight blade, and a drive shaft.

【図面の簡単な説明】[Brief explanation of drawings]

第1図:エネルギー回収装置の一実施例の説明同第2因
二回転時の説明図 第3図:その他の実施例の説明図 第4〜6図:各種の直線翼の断面図 2:直FA翼 3:固定デスク 4:駆動軸 6:エネルギー回収機 出願人 大 成 建 設 株 式 会 社手続補正書 昭和58年12月23日 特許庁長官 若 杉 和 夫 殿 1、事件の表示 特願昭58−135736号 2、発明の名称 事件との関係 特許出願人 住 所 東京都新宿区西新宿1丁目25番1号4、代理
人 〒105 住 所 東京都港区新橋三丁目1番10号 丸藤ビル9
F別紙のとおり
Figure 1: Explanation of one embodiment of the energy recovery device. Explanation of the same when the energy recovery device rotates. Figure 3: Explanation of other embodiments. Figures 4 to 6: Cross-sectional views of various straight blades. FA wing 3: Fixed desk 4: Drive shaft 6: Energy recovery machine Applicant: Taisei Construction Co., Ltd. Procedural Amendments December 23, 1981 Kazuo Wakasugi, Commissioner of the Japan Patent Office 1, Patent Application for Indication of Case No. 58-135736 No. 2, Relationship with the title of invention case Patent applicant address: 1-25-1-4 Nishi-Shinjuku, Shinjuku-ku, Tokyo Agent: 105 Address: 3-1-10 Shinbashi, Minato-ku, Tokyo Marufuji Building 9
As per Appendix F

Claims (1)

【特許請求の範囲】 ゛クコ気流が交互に変化する通路内に、通路横断方向に
複数枚の直線翼を位置せしめ、この直線翼はj蚤l′U
と翼の回転速度との合成速度に、1、って揚力の前向き
の成分を作り出づ形状に形成し、 この直線翼群の両端を、中心に駆動軸を設(プた固定デ
ィスクに固定し、 駆動軸の回転をエネルギー回収(浅へ提供するようJM
成りる、 II (I3空気)んにJ:る王ネルギー回+1W装置
[Claims] ゛A plurality of straight blades are positioned in the cross direction of the passage in a passage where the wolf airflow alternately changes.
The combined velocity of the blade rotational speed and the rotational speed of the blade are formed into a shape that creates a forward component of lift, and both ends of this straight blade group are fixed to a fixed disk with a drive shaft in the center. JM recovers energy from the rotation of the drive shaft (provides it to the shallows).
Nariru, II (I3 Air) Nni J: Ruo energy times + 1W device.
JP58135736A 1983-07-27 1983-07-27 Energy recovery device through reciprocating air flow Granted JPS6027701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58135736A JPS6027701A (en) 1983-07-27 1983-07-27 Energy recovery device through reciprocating air flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58135736A JPS6027701A (en) 1983-07-27 1983-07-27 Energy recovery device through reciprocating air flow

Publications (2)

Publication Number Publication Date
JPS6027701A true JPS6027701A (en) 1985-02-12
JPH0119041B2 JPH0119041B2 (en) 1989-04-10

Family

ID=15158664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58135736A Granted JPS6027701A (en) 1983-07-27 1983-07-27 Energy recovery device through reciprocating air flow

Country Status (1)

Country Link
JP (1) JPS6027701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116816579A (en) * 2023-08-24 2023-09-29 华南理工大学 Multiple wave-collecting oscillation water column type wave energy power generation device array based on energy-collecting plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139978A (en) * 1979-04-18 1980-11-01 Haruichi Izuki Blade wheel turbine
JPS58220973A (en) * 1982-06-17 1983-12-22 Mitsubishi Electric Corp Turbine device rotating in the same direction in shuttle flow

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139978A (en) * 1979-04-18 1980-11-01 Haruichi Izuki Blade wheel turbine
JPS58220973A (en) * 1982-06-17 1983-12-22 Mitsubishi Electric Corp Turbine device rotating in the same direction in shuttle flow

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116816579A (en) * 2023-08-24 2023-09-29 华南理工大学 Multiple wave-collecting oscillation water column type wave energy power generation device array based on energy-collecting plate
CN116816579B (en) * 2023-08-24 2023-11-07 华南理工大学 Multiple wave-collecting oscillation water column type wave energy power generation device array based on energy-collecting plate

Also Published As

Publication number Publication date
JPH0119041B2 (en) 1989-04-10

Similar Documents

Publication Publication Date Title
US4295783A (en) Fluid turbine
US4234289A (en) Fluid turbine
JP5289770B2 (en) Omnidirectional wind turbine
US7018166B2 (en) Ducted wind turbine
US1433995A (en) Turbine motor
US8128337B2 (en) Omnidirectional vertical-axis wind turbine
US5709419A (en) Wind energy collection
US8358026B2 (en) Wave energy turbine for oscillating water column systems
US4368007A (en) Fluid driven turbine
GB2125113A (en) Turbine rotatable in one direction in a reciprocating flow
US4141219A (en) Method and turbine for extracting kinetic energy from a stream of two-phase fluid
US4209281A (en) Wind driven prime mover
JPH09242658A (en) Twin windmill type power generator
JPS61167175A (en) Propeller for windmill
JPS6027701A (en) Energy recovery device through reciprocating air flow
AU2004235276B2 (en) Wind power plant of cyclone type and method of obtaining energy from such
US20090053057A1 (en) Wind powered rotor mechanism with means to enhance airflow over rotor
US4422832A (en) Liquid ring pump with vanes in liquid ring
CA2349443C (en) Wind turbine design
RU2231679C2 (en) Windmill electric generating plant
US20060275122A1 (en) Aerovortex mill 2
FI83692C (en) Device for generating power in a streaming medium
RU2108488C1 (en) Vortex machine
RO135399A2 (en) Wind turbine
JP2023537307A (en) Improved horizontal wind turbine