JPS6027607A - Preparation of nitrogen by pressure swing adsorption method - Google Patents
Preparation of nitrogen by pressure swing adsorption methodInfo
- Publication number
- JPS6027607A JPS6027607A JP58133051A JP13305183A JPS6027607A JP S6027607 A JPS6027607 A JP S6027607A JP 58133051 A JP58133051 A JP 58133051A JP 13305183 A JP13305183 A JP 13305183A JP S6027607 A JPS6027607 A JP S6027607A
- Authority
- JP
- Japan
- Prior art keywords
- adsorption
- product
- gas
- nitrogen gas
- adsorption column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Of Gases By Adsorption (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
【発明の詳細な説明】
この発明はプレッシャースイング吸着法によって空気か
ら窒素ガスを分離製造する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating and producing nitrogen gas from air by pressure swing adsorption.
従来2カーボンシーブスなどの酸素を吸着する吸着剤を
用いて空気より窒素ガスを製造する、いわゆるプレッシ
ャースイング吸着法による窒素ガス製造方法が知られて
いる。このような窒素ガス製造方法の1つとして、例え
ば第1図に示した特公昭j6−9QQ、、1号公報記載
の方法がある。原料空気は管lより圧縮機2に送られ、
ここで1IKe/−程度に加圧されたのち、切換弁3a
を経て、切替使用されるλ基の吸着塔4a、4bの一方
の吸着塔4aに送り込まれる。吸着塔4a+4bにはカ
ーボンシープスなどの酸素を優先的に吸着する吸着剤が
充填されており、加圧状態で導入された原料空気中の酸
素が吸着され、吸着塔4a出口には窒素を主成分とする
製品窒素ガスが得られる。2. Description of the Related Art Conventionally, a method for producing nitrogen gas using a so-called pressure swing adsorption method is known, in which nitrogen gas is produced from air using an adsorbent that adsorbs oxygen, such as carbon sieves. One such method for producing nitrogen gas is, for example, the method described in Japanese Patent Publication No. 1, No. 1, Showa 6-9QQ, shown in FIG. Raw air is sent to compressor 2 from pipe 1,
After being pressurized to about 1IKe/-, the switching valve 3a
After that, it is sent to one of the adsorption towers 4a and 4b of the λ group which is switched and used. The adsorption towers 4a+4b are filled with an adsorbent such as carbon sheeps that preferentially adsorbs oxygen, and oxygen in the feed air introduced under pressure is adsorbed, and the outlet of the adsorption tower 4a is filled with an adsorbent that preferentially adsorbs oxygen. Product nitrogen gas as a component is obtained.
この製品窒素ガスは管5、弁6a、流量調整弁7を経て
、供給先に送られる。(吸着工程)そして、所定量の酸
素を吸着して飽和寸前となった吸着塔4aは、切換弁3
aの切換によって原料空気の導入が停止され、再生工程
を終え減圧下にある他の吸着塔4bと管8、弁9を通し
て連通される。この操作によって、吸着塔4aの上部に
溜っている窒素ガスが吸着塔4bに流れ、2つの吸着塔
4a、4bの内圧が等しくなる。(均圧工程)
ついで、原料空気は吸着塔4bに送られ、製品窒素ガス
が同様に製造される。また、吸着塔4aは真空ポンプ1
oに接続されて吸引減圧され、吸着剤に吸着された酸素
が脱着され、吸着剤が再生される。(再生工程)
以下同様に、この一連操作を吸着塔4a、4bについて
交互に繰り返すことによって、製品窒素ガスが得られる
。以上の工程をまとめると第1表のようになる。This product nitrogen gas is sent to a supply destination via a pipe 5, a valve 6a, and a flow rate adjustment valve 7. (Adsorption process) Then, the adsorption tower 4a, which has adsorbed a predetermined amount of oxygen and is on the verge of saturation,
By switching a, the introduction of raw air is stopped, and the adsorption tower 4b is communicated with another adsorption tower 4b, which has completed the regeneration process and is under reduced pressure, through a pipe 8 and a valve 9. By this operation, the nitrogen gas accumulated in the upper part of the adsorption tower 4a flows to the adsorption tower 4b, and the internal pressures of the two adsorption towers 4a and 4b become equal. (Pressure equalization step) Next, the raw air is sent to the adsorption tower 4b, and product nitrogen gas is produced in the same way. In addition, the adsorption tower 4a is equipped with a vacuum pump 1.
o, the suction pressure is reduced, oxygen adsorbed on the adsorbent is desorbed, and the adsorbent is regenerated. (Regeneration Step) Similarly, product nitrogen gas is obtained by repeating this series of operations alternately for the adsorption towers 4a and 4b. The above steps are summarized in Table 1.
第7表
ところで、上記のような窒素製造方法には下記のような
欠点が指摘されており−その解決が望まれている。Table 7 By the way, the following drawbacks have been pointed out in the above-mentioned nitrogen production method, and a solution thereof is desired.
(イ)上記均圧工程で、吸着操作の終了した吸着塔を減
圧する際、この吸着塔から他方の再生工程を終えた吸着
塔に向けて放出されるガスの酸素含有量が急激に上昇す
るため、充分な圧力平衡を行なってしまうと、一方の吸
着塔から放出されるガス中の含有酸素が他方の再生工程
を終えた吸着塔内の吸着剤に吸着されることになり、高
純度の窒素(1+!lえば95!ワ%)を得ようとする
場合の支障となる。(b) In the above pressure equalization process, when the adsorption tower that has completed the adsorption operation is depressurized, the oxygen content of the gas released from this adsorption tower towards the other adsorption tower that has completed the regeneration process increases rapidly. Therefore, if sufficient pressure equilibrium is achieved, the oxygen contained in the gas released from one adsorption tower will be adsorbed by the adsorbent in the other adsorption tower that has completed the regeneration process, resulting in high purity. This becomes a hindrance when trying to obtain nitrogen (95% if 1+!l).
(ロ)第7図において、管8は弁6a+6bへ向がう製
品吐出用の管路と一部共用した状態にある。(b) In FIG. 7, the pipe 8 is in a state in which a part of the pipe 8 is shared with the pipe line for discharging the product toward the valves 6a+6b.
従って管8中に保持される均圧ガス中の含有酸素が製品
吐出用の管路中に残存することになり、製品吐出が開始
されて初めに供給先に送られる製品ガス中に酸素ガスが
混入されることになり、初めの製品ガスの純度が低下し
てしまう。Therefore, the oxygen contained in the pressure equalized gas held in the pipe 8 remains in the product discharge pipe line, and oxygen gas is present in the product gas sent to the supply destination when product discharge is started. As a result, the purity of the initial product gas decreases.
上記(イ)←)の理由によって、上1己従来の窒素製造
方法において、高純度の窒素を発生させようとするため
には、均圧工程における圧力平衡を充分安定するまで行
なわず途中で止めて、次工程に移らなければならない。For the reasons mentioned above (a) ←), in the conventional nitrogen production method, in order to generate high purity nitrogen, it is necessary to stop the pressure equalization process midway through the pressure equalization process without achieving sufficient stability. Then, you have to move on to the next process.
このように、従来の窒素製造方法では、回収ガス量が得
ようとする製品純度によって限定される仕組となってい
るので、製品純度を向上させる程、収率が大きく低下し
てしまうという欠点がある。In this way, in conventional nitrogen production methods, the amount of recovered gas is limited by the desired product purity, so the disadvantage is that the yield drops significantly as the product purity is improved. be.
この発明は上記事情に鑑みてなされたもので、プレッシ
ャースイング吸着法によって窒素を製造するに際して、
製品窒素ガスの純度を低下させることなく、製品窒素ガ
スの収量を上げることのできる窒素製造方法ケ提祖する
ことを目的とするものである。This invention was made in view of the above circumstances, and when producing nitrogen by pressure swing adsorption method,
The purpose of this invention is to propose a nitrogen production method that can increase the yield of product nitrogen gas without reducing the purity of the product nitrogen gas.
以下、この発明を図面を参照して詳しく説明する。第一
図はこの発明を実施するに好適な装置の一例を示すもの
で、第1図に示した装置と共通する部分には同一符号を
付して説明を簡略化する。Hereinafter, the present invention will be explained in detail with reference to the drawings. FIG. 1 shows an example of a device suitable for carrying out the present invention, and parts common to the device shown in FIG. 1 are given the same reference numerals to simplify the explanation.
吸着塔4&に導入された加圧原料空気は、酸素が吸着除
去されて、製品窒素ガスとなり、切換弁6a、管5を経
て製品槽11に送られる〔吸着工程〕。The pressurized raw material air introduced into the adsorption tower 4& has oxygen adsorbed and removed to become a product nitrogen gas, which is sent to the product tank 11 via the switching valve 6a and the pipe 5 [adsorption step].
製品窒素ガス中の酸素濃度が所望する製品濃度よりも増
加した時点で、弁6aが閉じられるとともに弁9が開け
られて吸着塔4a内のガスは真空再生済みのもう一方の
吸着塔4b上部に導入する。When the oxygen concentration in the product nitrogen gas increases above the desired product concentration, the valve 6a is closed and the valve 9 is opened, so that the gas in the adsorption tower 4a is transferred to the upper part of the other adsorption tower 4b which has been vacuum regenerated. Introduce.
この時、原料空気は吸着塔4aに供給し続ける。At this time, raw air continues to be supplied to the adsorption tower 4a.
そして吐出口酸素濃度が空気組成と同等に到達するまで
、吸着塔4aに原料空気を供給し続ける。Then, feed air is continued to be supplied to the adsorption tower 4a until the outlet oxygen concentration reaches the same level as the air composition.
しかし、高純度の製品窒素ガスを得る場合には。However, when obtaining high purity product nitrogen gas.
得るべき製品窒素ガスの純度の仕様に合わせて原料空気
の吸着塔4aへの供給曖が限定される。つまり、均圧時
間が加減される。この操作では弁3a、弁9以外の弁は
、閉の状態にある〔均圧(1)工程〕。The supply of raw material air to the adsorption tower 4a is limited depending on the purity specifications of the product nitrogen gas to be obtained. In other words, the pressure equalization time is adjusted. In this operation, the valves other than valve 3a and valve 9 are in a closed state [pressure equalization (1) step].
上記吸着塔4aからの出口酸素濃度がある所定の許容値
に到達したら、弁3a、9が閉じられると同時に弁12
が開けられ、吸着塔4a中のガスを該塔4aの下部原料
入口より放出し、吸着塔4bの下部より塔4b内に導入
する〔均圧(旧工程〕。When the outlet oxygen concentration from the adsorption tower 4a reaches a certain permissible value, the valves 3a and 9 are closed, and at the same time the valve 12 is closed.
is opened, the gas in the adsorption tower 4a is discharged from the lower raw material inlet of the tower 4a, and introduced into the tower 4b from the lower part of the adsorption tower 4b [pressure equalization (old process)].
上記操作で完全に2塔が平衡な圧力にされる。By the above operation, the pressures of the two towers are completely brought to equilibrium.
この均圧工程が終了すると、弁12が閉じられるととも
に弁3bが開けられ、吸着塔4aが真空ポンプ10によ
シ再生される〔再生工程〕。When this pressure equalization step is completed, the valve 12 is closed and the valve 3b is opened, and the adsorption tower 4a is regenerated by the vacuum pump 10 [regeneration step].
一方、吸着塔4bでは弁6bが開けられて、短詩1&’
l 、製品槽11からの製品窒素が逆流させられ、製品
吐出口の管路の洗い流しが行なわれ、吸着工程の準備が
なされる。この時の製品ガスの加圧量は、均圧による平
衡圧力以上から吸着の開始圧力まで有効である〔製品加
圧工程〕。On the other hand, in the adsorption tower 4b, the valve 6b is opened and the short poem 1&'
1. The product nitrogen from the product tank 11 is caused to flow back, flushing out the product outlet line and preparing for the adsorption step. The amount of pressurization of the product gas at this time is effective from above the equilibrium pressure due to pressure equalization to the start pressure of adsorption [product pressurization step].
この製品加圧工程が終了すると、弁3cが開けられ、吸
着塔4bは吸着工程に進む。When this product pressurization step is completed, the valve 3c is opened and the adsorption tower 4b proceeds to the adsorption step.
以下、同様にして上記の一連の操作が吸着塔4a、4b
について交互に繰り返されることによって、製品窒素ガ
スが連続して得られる。以上の工程をまとめると下記の
第−表のようになる。Hereinafter, the above series of operations are carried out in the same manner as in the adsorption towers 4a and 4b.
By repeating the steps alternately, the product nitrogen gas is continuously obtained. The above steps can be summarized as shown in the table below.
第 2 表
この発明では、均圧工程を一つに分けたこと、そして新
らたに製品加圧工程を組み入れたことによって、製品窒
素ガスの純度の安定性と、その収量忙同上させることが
できている。このことを上記第、2総を用いてさらに詳
しく説明する。Table 2 In this invention, by dividing the pressure equalization process into one process and incorporating a new product pressurization process, it is possible to improve the stability of the purity of the product nitrogen gas and increase its yield. is made of. This will be explained in more detail using the above-mentioned section No. 2.
均圧(1)工程では、すでに吸着工程を終了した吸着塔
に原料空気を供給しながら、塔内の窒素に富むガスを再
生済みの吸着塔上部に流入させている。これは、従来性
なわれていた均圧による欠点、すなわち吸着工程を終了
した吸着塔を減圧させると、吸着剤(カーボンシープス
)自身の特性からこの吸着剤に吸着している酸素が窒素
よりも速く脱着されるため、均圧回収量を充分に取れな
いという欠点を改良するためのものである。すなわち、
均圧(I)工程は、減圧?はとんど行なわず、吸着塔下
部に供給する空気で塔内のガスを押し出すことにより塔
内の窒素に富むガスを光分に回収することを目的として
いるものである。In the pressure equalization (1) step, while supplying raw air to the adsorption tower that has already completed the adsorption step, nitrogen-rich gas in the tower is made to flow into the upper part of the regenerated adsorption tower. This is due to the drawback of the conventional pressure equalization, that is, when the adsorption tower is depressurized after the adsorption process, the oxygen adsorbed on the adsorbent (carbon sheep) becomes more concentrated than nitrogen due to the characteristics of the adsorbent (carbon sheep) itself. This is intended to improve the drawback that a sufficient amount of pressure equalization recovery cannot be obtained because the pressure is quickly desorbed. That is,
Is the pressure equalization (I) process reduced pressure? The purpose of this is to recover the nitrogen-rich gas inside the tower into optical components by pushing out the gas inside the tower with air supplied to the lower part of the adsorption tower.
また、均圧(旧工程は、再生済みの吸着床を出来るだけ
汚さないことを目的としたもので、均圧(1)工程を終
了した両塔の吸着塔の下部同志を連通し、完全に圧力を
等しくさせる。このことにより充分な圧力回収が行なわ
れ、製品窒素ガスの収量を増すことを可能としたもので
ある。゛さらに、製品加圧工程は均圧工程終了後、吸着
工程に移る前の吸着塔VCg品槽からの製品窒素ガスに
より、吐出方向と逆方向への加圧を実施するものである
。これによって、均圧(I)工程で吸着塔上部の吐出管
路に製品窒素ガスの純度よりも酸素含有散の多いガスが
滞っているのを高濃度な窒素含有ガス(製品窒素ガス)
で洗い流すと同時に、均圧(n)工程で回収され、未だ
吸着されずに吸着床を上昇した酸素を製品窒素ガスで吸
着床下部へ押し戻し、吸着させることにより、製品純度
の安定性を高めることを可能にしたものである。In addition, the pressure equalization (old process) was aimed at keeping the regenerated adsorption bed as clean as possible. The pressure is made equal.This allows sufficient pressure recovery to be performed and increases the yield of product nitrogen gas.Furthermore, after the product pressure equalization process is completed, the product pressurization process moves to the adsorption process. Pressurization is carried out in the opposite direction to the discharge direction using the product nitrogen gas from the previous adsorption tower VCg product tank.As a result, product nitrogen is supplied to the discharge pipe at the top of the adsorption tower in the pressure equalization (I) step. Highly concentrated nitrogen-containing gas (product nitrogen gas) indicates that gas with a higher oxygen content than the purity of the gas is stagnant.
At the same time, the oxygen recovered in the pressure equalization (n) step and rising up the adsorption bed without being adsorbed is pushed back to the bottom of the adsorption bed with product nitrogen gas and adsorbed, thereby increasing the stability of product purity. This is what made it possible.
次に、この発明の実施例を示す。Next, examples of this invention will be shown.
第一図に示したこの発明の実施に好適な装+rt4にお
いて、吸着塔4m、4bにgKfのカーボンシープスを
充填して運転した、その運転条件を第3表に示した。そ
の結果、92・95gの高純度なfu品窒素ガスを得る
ことができた。Table 3 shows the operating conditions in which the adsorption towers 4m and 4b were filled with gKf of carbon sheep in the equipment +rt4 shown in FIG. 1, which is suitable for carrying out the present invention. As a result, 92.95 g of highly pure fu nitrogen gas could be obtained.
第3表
なお、この実施例によりこの発明のJ&4運転条件をめ
ることができた。そ7Lを第夕衆に示した。Table 3 Note that the J&4 operating conditions of the present invention were determined by this example. I showed 7L to the evening crowd.
(12) ・ (;0
以上説明したように、この発明に係るプレッシャースイ
ング吸着法による窒素製造方法は、均圧工程を、減圧を
ほとんど行なわず吸着塔下部に供給する空気で塔内のガ
スを押し出すことにより塔内の窒素に富むガスを再生済
の吸着塔に回収する均圧(1)。工程と、再生済みの吸
着床を出来るだけ汚さないことを目的に上記均圧(I)
工程を終了した両吸着塔を連通させて完全に圧力を等し
くさせる均圧(II)工程とから構成し、さらにその後
に製品窒素ガスにより再加圧する製品加圧工程を組み入
れたものなので、製品窒素ガスの純度を低下させること
なく、製品窒素ガスの収量を大幅に増加させることがで
きる。(12) ・ (;0 As explained above, in the nitrogen production method using the pressure swing adsorption method according to the present invention, the pressure equalization step is performed by using air supplied to the lower part of the adsorption tower without almost reducing the pressure. Pressure equalization (1) in which the nitrogen-rich gas in the column is recovered into the regenerated adsorption tower by extrusion.
It consists of a pressure equalization (II) step in which both adsorption towers that have completed the process are communicated to completely equalize the pressure, and then a product pressurization step in which product nitrogen gas is repressurized. The yield of product nitrogen gas can be significantly increased without reducing the purity of the gas.
第1図は従来のプレッシャースイング吸着法による窒素
製造方法に使われていた装置の構成図、M、2図はこの
発明を実施するに好適な装置の一例を示す構成図である
。
2・・・・・・圧縮機、3a−3b、3c、3d、6a
、6b、9.12−・・・・・切換弁、4a、4b・・
・・・・吸着塔、lO・・・・・・真空ポンプ、11・
・・・・・製品槽。
出願人 日本e素株式会社FIG. 1 is a block diagram of an apparatus used in a conventional pressure swing adsorption method for producing nitrogen, and FIGS. 2A and 2B are block diagrams showing an example of a suitable apparatus for carrying out the present invention. 2...Compressor, 3a-3b, 3c, 3d, 6a
, 6b, 9.12-...Switching valve, 4a, 4b...
...Adsorption tower, lO...Vacuum pump, 11.
...Product tank. Applicant Nippon e-So Co., Ltd.
Claims (1)
吸着塔を切換弁により、吸着・均圧・再生・均圧・製品
再加圧、の各工程に順次切換えることにより連続的に製
品窒素ガスを製造する方法において、 前記均圧工程を、すでに吸着工程を終了した吸着塔に原
料空気を供給してこの吸着塔内の窒素に富むガスを再生
済みの他の吸着塔上部に流入する均圧(1)工程と、そ
の後、前記原料供給を停止して前記両吸着塔を連通して
同圧にする均圧(II)工程とから構成するとともに、 吸着塔と製品窒素ガスの供給先との間に設けた製品槽よ
り製品窒素ガスを再生済みで前記均圧工程した後の吸着
塔に送り込んで再加圧する一方、吸着工程終了をした吸
着塔を減圧再生することを特徴とするプレッシャースイ
ング吸着法による窒素製造方法。[Claims] A plurality of adsorption towers filled with an adsorbent that adsorbs oxygen in raw air are sequentially switched to the following processes using a switching valve: adsorption, pressure equalization, regeneration, pressure equalization, and product repressurization. In this method, the pressure equalization step is performed by supplying raw air to an adsorption tower that has already completed the adsorption step, and converting the nitrogen-rich gas in the adsorption tower into another regenerated gas. It consists of a pressure equalization step (1) in which the material flows into the upper part of the adsorption tower, and then a pressure equalization step (II) in which the supply of the raw material is stopped and the two adsorption towers are communicated with each other to have the same pressure. The product nitrogen gas is sent from the product tank installed between the product nitrogen gas supply destination to the adsorption tower that has been regenerated and has undergone the pressure equalization process and is repressurized, while the adsorption tower that has completed the adsorption process is depressurized and regenerated. A method for producing nitrogen by pressure swing adsorption method, which is characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58133051A JPS6027607A (en) | 1983-07-21 | 1983-07-21 | Preparation of nitrogen by pressure swing adsorption method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58133051A JPS6027607A (en) | 1983-07-21 | 1983-07-21 | Preparation of nitrogen by pressure swing adsorption method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6027607A true JPS6027607A (en) | 1985-02-12 |
JPH0379049B2 JPH0379049B2 (en) | 1991-12-17 |
Family
ID=15095665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58133051A Granted JPS6027607A (en) | 1983-07-21 | 1983-07-21 | Preparation of nitrogen by pressure swing adsorption method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6027607A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6391475A (en) * | 1986-10-01 | 1988-04-22 | ザ・ビーオーシー・グループ・インコーポレーテッド | Simultaneous manufacture of argon and nitrogen |
JPS63107805A (en) * | 1986-10-27 | 1988-05-12 | Nippon Sanso Kk | Process for producing nitrogen by pressure-swing adsorption process |
-
1983
- 1983-07-21 JP JP58133051A patent/JPS6027607A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6391475A (en) * | 1986-10-01 | 1988-04-22 | ザ・ビーオーシー・グループ・インコーポレーテッド | Simultaneous manufacture of argon and nitrogen |
JPH0310868B2 (en) * | 1986-10-01 | 1991-02-14 | Boc Group Inc | |
JPS63107805A (en) * | 1986-10-27 | 1988-05-12 | Nippon Sanso Kk | Process for producing nitrogen by pressure-swing adsorption process |
Also Published As
Publication number | Publication date |
---|---|
JPH0379049B2 (en) | 1991-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4070164A (en) | Adsorption-desorption pressure swing gas separation | |
JP3492869B2 (en) | Single bed pressure swing adsorption method for oxygen recovery from air | |
EP0273723A2 (en) | Separating a gas enriched in oxygen | |
US5441558A (en) | High purity nitrogen PSA utilizing controlled internal flows | |
JPH04330913A (en) | Absorption process for separating gaseous mixture | |
JPH09851A (en) | Pressure swing adsorption method recirculating void gas | |
US5985003A (en) | Oxygen production process by pressure swing adsorption separation | |
KR100221006B1 (en) | Nitrogen psa with intermediate pressure transfer | |
US5403385A (en) | Serial flow pressure swing adsorption process for gas separation | |
JPS6027607A (en) | Preparation of nitrogen by pressure swing adsorption method | |
JPH0810551A (en) | Method for removing carbon dioxide from raw gas | |
JPH0379048B2 (en) | ||
JP3287607B2 (en) | Method for producing an oxygen-enriched product stream | |
JPS63103805A (en) | Production of nitrogen by pressure swing adsorption process | |
GB2154895A (en) | Process for producing oxygen-rich gas | |
JPS61133115A (en) | Preparation of oxygen-enriched gas | |
JPS60161308A (en) | Production of o2-enriched gas | |
KR19980016382A (en) | Pressure swing adsorption method for producing high purity carbon dioxide | |
JPS6238281B2 (en) | ||
JPS61133114A (en) | Preparation of oxygen-enriched gas | |
JPH034244B2 (en) | ||
GB2163669A (en) | Apparatus for the separation of a gaseous mixture by pressure swing adsorption (PSA) | |
JP2540137B2 (en) | Oxygen production method by presser-swing adsorption method | |
KR930005315B1 (en) | Process for preparing oxygen by pressure swing adsorption | |
JPH0429408B2 (en) |