JPS6027505A - Manufacture of ceramic structure - Google Patents

Manufacture of ceramic structure

Info

Publication number
JPS6027505A
JPS6027505A JP13518383A JP13518383A JPS6027505A JP S6027505 A JPS6027505 A JP S6027505A JP 13518383 A JP13518383 A JP 13518383A JP 13518383 A JP13518383 A JP 13518383A JP S6027505 A JPS6027505 A JP S6027505A
Authority
JP
Japan
Prior art keywords
groove
mold
firing
molded product
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13518383A
Other languages
Japanese (ja)
Inventor
菊池 紀實
市森 栄吉
江上 春利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13518383A priority Critical patent/JPS6027505A/en
Publication of JPS6027505A publication Critical patent/JPS6027505A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、セラミック構造物の製造方法に関する。詳し
くは、複数個の未焼結(グリーン)セラミック材を組合
せ、それらを焼結することによって、一体構造化させる
セラミック構造物の製造方法、に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a ceramic structure. Specifically, the present invention relates to a method of manufacturing a ceramic structure in which a plurality of green ceramic materials are combined and sintered to form an integral structure.

〔発明の技術的背景とその問題′点〕[Technical background of the invention and its problems]

最近のセラミック材料は、その有する特性を有効に活用
すべく、種々の用途が開発されてきている。それに伴な
って、従来は、単に、板状あるいは棒、円柱あるいは多
角状、等の形状物で使用されていたが、最近では板状の
積層体あるいは板と棒、の組合せ、さらには板状物の垂
直組合せ等が要求されてきている。これらの要求に対し
、板状の積層物は、たとえばドクターブレード法で作っ
たグリーン・シートを複数板、加熱圧着した後、焼成す
る事によって任意の厚さの板状物を得る事は公知である
。また、第1図及び第2図に示すような板と棒、あるい
は板上に凸部を有する構造物は、金型による一体成形、
あるいはブロックとして焼結後、機械的加工によって研
削する等の方法で製造されており、これらの方法も、公
知の方法である。
Various uses of recent ceramic materials have been developed in order to effectively utilize their properties. Along with this, in the past, it was used simply in the shape of a plate, a rod, a cylinder, a polygon, etc., but recently it has been used as a laminate of plates or a combination of plates and rods, and even in the form of a plate. There is a growing demand for vertical combinations of objects. In response to these demands, it is known that a plate-shaped laminate of any thickness can be obtained by hot-pressing a plurality of green sheets made by the doctor blade method and then firing them. be. In addition, structures having a plate and a rod or a convex portion on a plate as shown in Figs. 1 and 2 can be formed by integral molding with a mold,
Alternatively, it is manufactured by sintering it as a block and then grinding it by mechanical processing, and these methods are also known methods.

しかし、従来法では、たとえば上記の板と欅、あるいは
、板上に凸部を有する構造物でも、セラミンク材がアル
ミナ質の如く、硬い物では、次のような問題があった。
However, in the conventional method, for example, in the case of the above-mentioned plate and zelkova, or even in a structure having a convex portion on the plate, when the ceramic material is a hard material such as alumina, the following problems occur.

即ち焼結後の機械加工で研削する事はその硬さの為に極
めて困難で、その製造コストも大幅に高くなる。一方、
予め、金型を作って、成形する場合でも、最近のように
、少量多品種になってくると、金型代金が高価な上に、
品種によって多数の金型を用意しなければならない、さ
らには、金型を作る迄の時間的ロスも大きいその一ヒ、
焼結によるセラミック材の収縮に伴ない、時として、予
想した寸法の焼結物が得られない場合は、高価な金型が
使えないという問題点があった。
That is, it is extremely difficult to grind by machining after sintering due to its hardness, and the manufacturing cost is also significantly increased. on the other hand,
Even if you make a mold in advance and perform the molding, the cost of the mold is expensive as well as the cost of the mold is high as we have been producing a wide variety of products in small quantities recently.
A large number of molds must be prepared depending on the product type, and there is also a large amount of time wasted in making the molds.
Due to shrinkage of the ceramic material due to sintering, if a sintered product of the expected dimensions cannot be obtained, there is a problem in that expensive molds cannot be used.

このような従来の問題点は、機械的研削加工のff1f
ELさは主に、アルミナ材のような硬い材質に顕著であ
ったが、金型に関する問題は、他の一般的材aに共通す
る問題であった。
These conventional problems are caused by the ff1f mechanical grinding process.
Although EL was mainly noticeable in hard materials such as alumina materials, problems related to molds were common to other general materials.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した問題点を解決し、容易に、かつ強度
的に優れた複雑形状のセラミック構造物を得る製造方法
を提供するものである。
The present invention solves the above-mentioned problems and provides a manufacturing method for easily obtaining a complex-shaped ceramic structure with excellent strength.

〔発明の概要〕[Summary of the invention]

本発明方法では、第3図に、例示する如くまず同一の無
機材質、溶剤、バインダーから成る未焼成(グリーン)
成形物1.2を複数個用意し、少なくとも、一つの成形
物1に、別の接着成形物2の入る間隔を有する隙間の溝
3を作る。次に、これら未焼成成形物と同一の無機材質
で溶剤、Aイングー成分が近似であるスリップ(泥漿)
を溝部3及び別の接着成形物2の接着部分に塗布した後
、接着成形物2を、溝3にはさみ固定する。
In the method of the present invention, as shown in FIG.
A plurality of molded products 1.2 are prepared, and a groove 3 is formed in at least one of the molded products 1 at a gap that allows another adhesive molded product 2 to fit therein. Next, slip (sludge) is made of the same inorganic material as these unfired molded products and has a solvent and A-ingu component similar to that of the unfired molded product.
is applied to the groove 3 and the adhesive portion of another adhesive molded product 2, and then the adhesive molded product 2 is sandwiched and fixed in the groove 3.

さらに、第4図の如く、箱型の一体構造物を作る場合に
は、溝部6の他に、各々の未焼成成形物2.3,4.5
・が接する部分7.8,9.10にも1.前述したスリ
ップを塗布し、その塗布部が相互に接するようにする。
Furthermore, when making a box-shaped integral structure as shown in FIG.
・Also 1. Apply the slip described above so that the coated areas are in contact with each other.

このようにした未焼成成形物を、焼成炉に入れて、焼成
する事によって、肉厚が任意の複雑形状セラミック構造
物を特別な金型も用いる事なく、簡単に、低価格で、か
つ強度的に優れたものを製造する事が出来る。
By putting the unfired molded product in this way into a firing furnace and firing it, complex-shaped ceramic structures with arbitrary wall thicknesses can be manufactured easily, at low cost, and with high strength without using any special molds. We can manufacture products of superior quality.

〔発明の効果〕〔Effect of the invention〕

本発明は次の如き効果がある。 The present invention has the following effects.

イ)従来、第3,4図に示すような複雑形状セラミック
構造物を焼成によって一体化し、強固に作ろう、とする
と専用で高価な金型が、必要となりあるいは、他の流し
込み法で成形体を得ようとしてもやはりす用の高価な型
が必要であった。しかし本発明では、そのような金型は
一切不要である。単に未焼成成形物を、必要厚さと大き
さに作り、そのうちの一つに、必要形状に応じた溝部を
作る治工具があればユーザーからのどのような寸法形状
にも対応出来、従ってそれだけ容易かつ低価格に製造出
来る。
b) Conventionally, when attempting to integrate complex-shaped ceramic structures such as those shown in Figures 3 and 4 and make them strong by firing, a dedicated and expensive mold was required, or other casting methods were used to form the molded product. In order to obtain this, an expensive mold was required. However, the present invention does not require any such mold. If you simply make an unfired molded product to the required thickness and size, and one of them has a jig to create a groove according to the required shape, you can respond to any size and shape requested by the user, and therefore it is that much easier. And it can be manufactured at low cost.

口)粕別の型が不要である、という事は、1重2ケ月も
要する金型な作製する時間的ロスが無くなり、それだけ
短時間製造が出来る。
Mouth) The fact that a separate mold for the lees is not required means that there is no time loss in making a mold, which takes two months per layer, and production can be completed in a correspondingly shorter time.

ハ)たとえば、第3図のような構造物、あるいは第3図
で2の部分の高さが比較的低くその肉厚が、厚い場合は
、その構造物は特別の金型な用いず、直方体形状に全体
を大きなブロックに成形、焼成しその後、機械研削で不
要部を切断研削で作る事も可能ではあるがその研削費用
は莫大な値となる。特にアルミナ製品では、その付値の
固さ故、特別金型を作るのと同程度かそれ以上の費用が
かかる。
c) For example, if the structure is as shown in Figure 3, or if the height of the part 2 in Figure 3 is relatively low and the wall thickness is thick, the structure can be made into a rectangular parallelepiped without using a special mold. Although it is possible to shape the entire block into a large block, fire it, and then cut and grind the unnecessary parts using mechanical grinding, the grinding cost would be enormous. Particularly for alumina products, because of the high price tag, the cost is about the same as or more than making a special mold.

それに対して、本発明は、第3図の2部材をあらかじめ
任意の高さ、巾に用意しておきそれを底板部材1の溝部
にはさみ込む構造であるので、焼成後の研削加工等は一
切不要であり、それだけ低価格、かつ、短期製造が可能
である。
In contrast, the present invention has a structure in which the two members shown in Fig. 3 are prepared in advance at arbitrary heights and widths and are inserted into the groove of the bottom plate member 1, so that no grinding process etc. is required after firing. This is not necessary, which makes it possible to manufacture at a lower price and in a shorter period of time.

二)さらにこれら複雑形状の構造物と焼成によって作製
しようとすると、焼成前と、焼成後とでは、その寸法が
焼成による収縮により違って、くる。
2) Furthermore, when attempting to manufacture structures with complex shapes by firing, the dimensions before and after firing will differ due to shrinkage due to firing.

そこで、その収縮する度合い(収縮率)を予め実験的に
確認しておき、そこから得たデータを用いて、未焼成成
形物の寸法を決める必要がある。
Therefore, it is necessary to experimentally confirm the degree of shrinkage (shrinkage rate) in advance and use the data obtained to determine the dimensions of the green molded product.

この収縮率を得るには、金型を用いると収縮率をめる為
に、予めテスト用のiU+価な金型が必要となり、その
値に応じて製品用の金型が、更に必要となり、2重の金
型コストがかかる。これに対し、本発明は収縮率をめる
時にも、任意の寸法に切断した未焼成成形体を組合せ、
それを焼成し、その相互の寸法比較から収縮率をめれば
よく、特別な、かつ高価な金型は一つも不要であり、コ
スト而ではるかに有利である。
To obtain this shrinkage rate, if you use a mold, you will need a test mold with iU+ value in advance to determine the shrinkage rate, and according to that value, you will also need a mold for the product. Double mold costs are required. On the other hand, the present invention combines unfired molded bodies cut into arbitrary dimensions even when determining the shrinkage rate,
All you have to do is fire it and find the shrinkage rate by comparing their dimensions, and there is no need for any special and expensive molds, which is much more advantageous in terms of cost.

〔発明の実施例〕[Embodiments of the invention]

酸化アルミニウム(Al、o、) 92 wt%(以下
間じ)無水硅酸(Sin、) 5%、酸化マグネシウム
(Mgo)及びカルシウムを各々1.5%秤量し振動ミ
ルを用いて平均粒径が1.8〜19μmになるように混
合、粉砕し、乾燥した。
Aluminum oxide (Al, o,) 92 wt% (hereinafter referred to as the interval), silicic anhydride (Sin) 5%, magnesium oxide (Mgo), and calcium 1.5% each were weighed and the average particle size was determined using a vibration mill. The mixture was mixed, ground, and dried to a size of 1.8 to 19 μm.

次に、この粉砕粉に、溶剤、バインダー可塑剤2次の割
合で添加しスリップ調整した。
Next, a solvent and a binder plasticizer were added to the pulverized powder in the following proportions to adjust slippage.

アルミナ粉体 100部 トリクロールエチレン 20〃 n−ブタノール 10〃 ブートラクロルエチレン 8〃 ポリビニールブチラール 5〃 T B P 2 # このようにして得たスリップをドクタープレーデ成形法
によって、厚さ0.5關の未焼成シート(グリーン・シ
ート)を得た。
Alumina powder 100 parts Trichlorethylene 20〃 n-butanol 10〃 Bootrachlorethylene 8〃 Polyvinyl butyral 5〃 T B P 2 # The thus obtained slip was molded to a thickness of 0.5 mm by the Doctor Prede molding method. Five unfired sheets (green sheets) were obtained.

このグリーン・シートを4枚重ねて、1(lOKli’
/r! 100℃、40分間、加熱圧着し厚さ18間の
圧着シートを得た。
Stack 4 of these green sheets and make 1 (lOKli')
/r! The material was heat-pressed at 100° C. for 40 minutes to obtain a pressure-bonded sheet with a thickness of 18 mm.

次に第4図の如き構造物を作る為に、底板し、側板2.
、3 、’4 、5を各々第5図、及び第6図、第7図
の如く切断した。
Next, in order to make a structure as shown in Fig. 4, the bottom plate, the side plates 2.
, 3, '4, and 5 were cut as shown in FIG. 5, FIG. 6, and FIG. 7, respectively.

第5図に於いて、溝6側板の厚さ+Q、 3 nrrn
程度の巾であり被加工材は未焼成グリーン・シートであ
るので、簡単に加工出来た。第5図の溝部6及び第6図
、第7図の側板で溝部6に挿入される部分及び、第6図
、第7図で組立てられる時、相互に接する部分、即ち第
4図の7.8,9.10部には、1゛(1記振動ミル粉
砕で得た平均粒径]、8〜19μmのアルミナ粉体を、
テレピネ・オールで泥漿状にしたスリップ塗布する。し
かる後、溝部6に側板2゜3.4.5を挿入し、相互の
接着も行なう。こ・うして、組立てた構造物を+400
°C〜1500’Cの焼成温度で、脱バインダー、焼成
、徐冷を約30時間かりてIjtc ・)tHによって
底板と側板が密着性良く、一体17j醤古化された。
In Figure 5, the thickness of the groove 6 side plate +Q, 3 nrrn
It was easy to process because it was about the same width and the material to be processed was an unfired green sheet. The groove portion 6 in FIG. 5, the portion of the side plate inserted into the groove portion 6 in FIGS. 6 and 7, and the portion that contacts each other when assembled as shown in FIGS. 6 and 7, that is, the portion 7 in FIG. In 8,9.10 parts, 1゛(average particle size obtained by vibration mill grinding in Section 1), alumina powder of 8 to 19 μm,
Apply a slip made of terpine all. Thereafter, the side plates 2.degree. 3.4.5 are inserted into the grooves 6 and bonded to each other. In this way, the assembled structure +400
At a firing temperature of 1500°C to 1500°C, the binder was removed, fired, and slowly cooled for about 30 hours, and the bottom plate and side plate had good adhesion and were aged as one piece.

(、’!’6 l屯に31こる収縮率は、あらかじめ底
板及び側板、及び溝部等の寸法を正確に設定値に定めた
テスト品を作り、それを組立て、焼成する事によって、
特別の金型を用いる事なく筒中に得るりfが出来た。
(,'!' The shrinkage rate of 31 ton per 6 liters can be achieved by making a test product in which the dimensions of the bottom plate, side plate, groove, etc. are set accurately to the set values, assembling it, and firing it.
It was possible to obtain a hole in the cylinder without using a special mold.

つまり11−1定個所の焼成前の寸法■、と焼成後の寸
法eを!It!l 7i:する事によってヅ+ρ成によ
る収縮の度合いを筒中に得て、この(n’4を用いて、
岐路的に必要とするli1品寸法を割り出した。
In other words, the dimensions before firing of the fixed points in 11-1, ■, and the dimensions after firing, e! It! l 7i: By doing this, we obtain the degree of contraction due to ヅ+ρ formation in the cylinder, and using this (n'4,
We determined the dimensions of one li item required at a crossroads.

また第8[ン1、第91ネ1に示すような三角筒、ある
いは円筒状、等の形状も簡elfに本実施例を応用する
事に、J−って製造出来る。
Furthermore, shapes such as triangular tubes or cylindrical shapes as shown in No. 8 (1) and No. 91 (1) can also be easily manufactured by applying this embodiment.

さらに、本発明法は、セラミュlり材ネ1全搬につい−
C実施可能である。
Furthermore, the method of the present invention is applicable to the entire transportation of ceramic material 1.
C is possible.

【図面の簡単な説明】[Brief explanation of drawings]

f(’、 1図及び第2図は、従来、主に金型等を用い
て作られていたセラミック構造物の斜視図、第3図及び
第4図は本発明り法による箱型のセラミック4:11 
)j’j物のg゛11視図5図乃至第7図は第4図の構
造物部材の正面図、第8図及び給9図は本発明方法によ
り得るセラミック構造物の斜視図。 1:底板、2,3,4.!5:側板、6:(イ々部、7
.8,9.io :側板相互間の接着部。 第 1 図 第3図 第5図 第8図 第2図 第4図 第9図
f(', Figures 1 and 2 are perspective views of ceramic structures conventionally made mainly using molds, etc., and Figures 3 and 4 are box-shaped ceramic structures made by the method of the present invention. 4:11
5 to 7 are front views of the structural member of FIG. 4, and FIGS. 8 and 9 are perspective views of the ceramic structure obtained by the method of the present invention. 1: Bottom plate, 2, 3, 4. ! 5: Side plate, 6: (I part, 7
.. 8,9. io: Adhesion between side plates. Figure 1 Figure 3 Figure 5 Figure 8 Figure 2 Figure 4 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 同一の無機材料、溶剤、バインダーから成る未焼成成形
物を複数個用意する工程と、当該成形物の少なくとも1
つに他の成形物を挿入可能な溝部を形成する工程と、前
記、無機材料を、泥漿状にし、300℃〜400℃で飛
散する溶剤でスリップを作る工程と、当該スリップを、
前記溝部及び成形物の相互密着部に塗布する工程と、そ
の後、溝部に、成形物を挿入し、成形物を相互に密着さ
せる工程と、それらを焼成する工程、とを有する事を特
徴とするセラミック構造物の製造方法。
A step of preparing a plurality of unfired molded products made of the same inorganic material, solvent, and binder, and at least one of the molded products.
forming a groove into which another molded product can be inserted; a step of turning the inorganic material into a slurry and creating a slip with a solvent that scatters at 300°C to 400°C;
It is characterized by comprising the steps of applying the adhesive to the groove and the mutually adhering portion of the molded product, then inserting the molded product into the groove and bringing the molded products into close contact with each other, and firing them. Method of manufacturing ceramic structures.
JP13518383A 1983-07-26 1983-07-26 Manufacture of ceramic structure Pending JPS6027505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13518383A JPS6027505A (en) 1983-07-26 1983-07-26 Manufacture of ceramic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13518383A JPS6027505A (en) 1983-07-26 1983-07-26 Manufacture of ceramic structure

Publications (1)

Publication Number Publication Date
JPS6027505A true JPS6027505A (en) 1985-02-12

Family

ID=15145771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13518383A Pending JPS6027505A (en) 1983-07-26 1983-07-26 Manufacture of ceramic structure

Country Status (1)

Country Link
JP (1) JPS6027505A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166767A (en) * 1986-12-26 1988-07-09 京セラ株式会社 Manufacture of sintered body for structure
JPS63240764A (en) * 1986-12-15 1988-10-06 グラハム コーポレーション Method and apparatus for sterilizing food
JPH02258205A (en) * 1989-03-30 1990-10-19 Kubota Ltd Method for joining ceramic formed body
JP2002254420A (en) * 2001-02-27 2002-09-11 Kyocera Corp Method for manufacturing cemented body and cemented body manufactured by using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240764A (en) * 1986-12-15 1988-10-06 グラハム コーポレーション Method and apparatus for sterilizing food
JPS63166767A (en) * 1986-12-26 1988-07-09 京セラ株式会社 Manufacture of sintered body for structure
JPH02258205A (en) * 1989-03-30 1990-10-19 Kubota Ltd Method for joining ceramic formed body
JP2002254420A (en) * 2001-02-27 2002-09-11 Kyocera Corp Method for manufacturing cemented body and cemented body manufactured by using it

Similar Documents

Publication Publication Date Title
JP3291049B2 (en) Zirconia ceramic and method for producing the same
US5053092A (en) Method for producing a sinterable extruded laminated article
US4526635A (en) Process for manufacturing heat exchangers from ceramic sheets
JPS6027505A (en) Manufacture of ceramic structure
JPH0629664A (en) Multilayered ceramic wiring board
JP4674397B2 (en) Manufacturing method of ceramic body
JPS58125661A (en) Alumina group ceramic compound and substrate obtained by said compound
JPH059393B2 (en)
JP3038425B2 (en) Manufacturing method of laminated ceramic sheet
JPS62100479A (en) Manufacture of aluminum nitride sintered sheet
JPS6060971A (en) Manufacture of ceramic sintered body
JPS6054984A (en) Manufacture of silicon carbide sintered body
JPS5832075A (en) Method of baking ceramic thin plate
JPS60243483A (en) Bedplate for baking
JPH02239157A (en) Production of ceramic substrate
JPS60192605A (en) Manufacture of ceramic sludge
JPS608990B2 (en) Method for manufacturing piezoelectric sintered sheet
JPS6114186A (en) Enhanced sintered body and manufacture
JPH03191322A (en) Production of light valve
WO2020076279A1 (en) Precursor powder and binder for manufacturing ceramic items by three-dimensional printing
DE2031526B2 (en) Porous ceramic radiant heating element and process for its manufacture
JP2020157649A (en) Sheet member and method of manufacturing ceramic substrate
JPH0365568A (en) Production of sintered ceramic body
EP0670189A2 (en) Slurry compositions for cast molding purposes, a method of molding cast moldings wherein these slurry compositions are used, and sinters wherein these moldings have been fired.
JPH05124872A (en) Production of lead-containing ceramics