JPS6027152B2 - Lithium-iodine solid electrolyte battery - Google Patents

Lithium-iodine solid electrolyte battery

Info

Publication number
JPS6027152B2
JPS6027152B2 JP5054278A JP5054278A JPS6027152B2 JP S6027152 B2 JPS6027152 B2 JP S6027152B2 JP 5054278 A JP5054278 A JP 5054278A JP 5054278 A JP5054278 A JP 5054278A JP S6027152 B2 JPS6027152 B2 JP S6027152B2
Authority
JP
Japan
Prior art keywords
lithium
iodine
battery
solid electrolyte
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5054278A
Other languages
Japanese (ja)
Other versions
JPS54140940A (en
Inventor
正 外邨
聰 関戸
宗明 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5054278A priority Critical patent/JPS6027152B2/en
Publication of JPS54140940A publication Critical patent/JPS54140940A/en
Publication of JPS6027152B2 publication Critical patent/JPS6027152B2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明は、金属リチウムを負極活物質、沃素もしくは沃
素錆体を正極活物質とするりチウム−沃素系固体電解質
電池の改良に関し、沃素もしくは沃素錯体正極に接する
面を窒化リチウムで被ったりチウム負極とすることによ
り電池保存時における内部抵抗増加の少ない電池を提供
するものである。
Detailed Description of the Invention The present invention relates to the improvement of a lithium-iodine solid electrolyte battery in which metallic lithium is used as a negative electrode active material and iodine or iodine rust is used as a positive electrode active material. By covering the battery with lithium nitride or using a lithium negative electrode, it is possible to provide a battery with less increase in internal resistance during battery storage.

リチウムを負極活物質、沃素もしくは沃素鈴体を正極活
物質とするりチウムー沃素系固体電解質電池は、リチウ
ムと沃素もしくは沃素鍵体を直接接触するだけで、接触
面にリチウムイオン導電性の沃化リチウムを主体とする
固体電解質層が形成され、この層が隔離層の役目をして
内部短絡を起こすことなく、容易に起電力が3.0ボル
ト程度の高エネルギー密度電池を構成できる特徴を有し
ている。
A lithium-iodine solid electrolyte battery that uses lithium as the negative electrode active material and iodine or an iodine element as the positive electrode active material can produce lithium ion conductive iodide on the contact surface by simply contacting lithium and iodine or an iodine element directly. A solid electrolyte layer mainly composed of lithium is formed, and this layer acts as an isolation layer and has the characteristic that it can easily construct a high energy density battery with an electromotive force of around 3.0 volts without causing internal short circuits. are doing.

エー・エー・シユナイダー(A・A. Schneider)らによれば、この電池の放電時に
おける端子電圧VTは次式で表される。
According to A.A. Schneider et al., the terminal voltage VT during discharge of this battery is expressed by the following equation.

VTニV肌f−(R。VT Ni V skin f-(R.

i+Rti2)なお、Vemfは起電力、R。i+Rti2) In addition, Vemf is electromotive force, R.

は放電前の内部抵抗、iは放電々流の大きさ、tは放電
経過時間である。すなわち、この電池の放電篤性は、電
池構成時にリチウム負極と正極の接触面に形成し、かつ
電池保存時に成長する固体電解質層によって決まる。放
電前の内部抵抗R。と、放電時に成長する固体電解質層
による内部抵抗Rに支配される。電池保存時の固体電解
質の生長は、沃素正極から、固体電解質層を通しての沃
素のリチウム負極への拡散による電池自己放電によると
言われている。また、成長速度は金属の腐食現象と類似
の法則に従い、R。
is the internal resistance before discharge, i is the magnitude of the discharge current, and t is the discharge elapsed time. That is, the discharge characteristics of this battery are determined by the solid electrolyte layer that is formed on the contact surface between the lithium negative electrode and the positive electrode during battery construction and grows during battery storage. Internal resistance R before discharge. It is dominated by the internal resistance R due to the solid electrolyte layer that grows during discharge. The growth of the solid electrolyte during battery storage is said to be due to battery self-discharge due to diffusion of iodine from the iodine positive electrode to the lithium negative electrode through the solid electrolyte layer. In addition, the growth rate follows a law similar to the corrosion phenomenon of metals, and R.

的ノ時間であると言われている。この成長速度は、特に
45℃以上の高温保存時においては、沃素の拡散速度の
増大が起こり、電池の保存劣化が著しく、この電池を実
用に供するための難点のひとつとなっている。本発明は
、沃素もしくは沃素錯体正極と接する面を窒化リチウム
で被った負極リチウムを用いることにより、このような
難点を除き、保存時における内部抵抗増加の少ないリチ
ウム−沃素系電池を提供するものである。
It is said to be the perfect time. This growth rate, especially when stored at a high temperature of 45° C. or higher, causes an increase in the diffusion rate of iodine, resulting in significant storage deterioration of the battery, which is one of the difficulties in putting this battery into practical use. The present invention eliminates these drawbacks and provides a lithium-iodine battery with less increase in internal resistance during storage by using a lithium negative electrode whose surface in contact with iodine or an iodine complex positive electrode is covered with lithium nitride. be.

以下、本発明をその実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to examples thereof.

第1図は、本発明の効果をみるために用いた外径11.
6肋、厚さ2.5肋のIJチウムー沃素系電池の半裁断
面図である。
FIG. 1 shows the outer diameter 11.0 mm used to see the effects of the present invention.
FIG. 2 is a half-cut cross-sectional view of an IJ thiium-iodine battery having six ribs and a thickness of 2.5 ribs.

1は金属リチウム負極、2は、沃化−1ーブチルピリジ
ニウム1分子につき沃素が1封固付加した沃素付加電荷
移動錯体1重量部に対して、75%が325メッシュの
ふるいを通過するクロマトグラフ用Si02ゲル0.2
重量部を混合してなる正極合剤、3は汎用のステンレス
綱よりなる負極集電体兼封口板、4はクロム含量3の重
量%、モリブデン含量2重量%のスーパーフェライトス
テンレス鋼よりなる電池姿器、5はポリプロピレン等の
樹脂よりなる絶縁体である。
1 is a metal lithium negative electrode, 2 is a chromatograph in which 75% of 1 part by weight of an iodine-added charge transfer complex in which one iodine is fixedly added to one molecule of -1-butylpyridinium iodide passes through a 325 mesh sieve. Si02 gel 0.2 for
3 is a negative electrode current collector/sealing plate made of general-purpose stainless steel; 4 is a battery made of superferrite stainless steel with a chromium content of 3% by weight and a molybdenum content of 2% by weight. The container 5 is an insulator made of resin such as polypropylene.

6は、本発明に従って金属リチウム極の正極と接する面
を被う窒化リチウム層である。
6 is a lithium nitride layer covering the surface of the metal lithium electrode in contact with the positive electrode according to the present invention.

この層は、五酸化リンにより除湿された密閉容器中にお
いて、封口坂3の凹部にリチウム負極1および周緑部に
絶縁体5を配置して負極モジュールとした後、この負極
モジュールを、例えば、60午0、大気圧下で、五酸化
リンにより除湿され、かつ、高純度(99.99%)窒
化ガスの定常的な供給によって内弐を窒化ガスふん囲気
に置換された容器中に、3雌ン〜2時間放置して金属リ
チウムの表面層を窒化することにより形成される。この
ようにして形成された窒化リチウム層は、厚さ50〜2
00ミクロン程度の赤色を帯びた外観を有している。金
属リチウムと窒素の直接の反応によって得うれる窒化リ
チウムのイオン伝導性について、本発明者らが、先述し
た方法で、100ミクロン厚さの金属リチウムを完全に
窒化リチウムとし、この粉末について伝導性を測定した
ところ、10‐60‐1程度の伝導度値を得ている。な
お、ュー・ヴィ・アルペン(U・V・AIpen)らに
よれば、窒化リチウムの単結晶では、伝導度値は10‐
3〜10‐50‐1・弧‐1である。従来のリチウム−
沃素系電池では、電池構成時に、第1図の6の位置に沃
化リチウム固体電解質層が生成し、第3図に示したよう
に、沃化リチウム層9は、電池放電反応の進行に伴って
、8で示たれるように沃素系正極2側に成長するととも
に電池保存時においては沃化リチウム層を通って正極剤
である沃化リチウム負極1側に拡散移動して、自己放電
反応(汎十12一幻il)を起こし、7で示されるよう
にリチウム負極1側にも成長する。
This layer is formed by arranging the lithium negative electrode 1 in the recess of the sealing slope 3 and the insulator 5 around the green part to form a negative electrode module in a closed container dehumidified with phosphorus pentoxide. At 6:00 am, 3 hours were placed in a container under atmospheric pressure, which had been dehumidified with phosphorus pentoxide and whose interior had been replaced with an atmosphere of nitriding gas by constantly supplying high-purity (99.99%) nitriding gas. It is formed by nitriding the surface layer of metallic lithium by leaving it for 2 hours. The lithium nitride layer thus formed has a thickness of 50 to 2
It has a reddish appearance of about 0.00 microns. Regarding the ionic conductivity of lithium nitride obtained by the direct reaction of metallic lithium and nitrogen, the present inventors used the method described above to completely convert metallic lithium 100 microns in thickness into lithium nitride, and found that this powder has conductivity. When measured, a conductivity value of about 10-60-1 was obtained. According to U.V. AIpen et al., the conductivity value of a single crystal of lithium nitride is 10-
3~10-50-1/arc-1. Conventional lithium
In an iodine-based battery, a lithium iodide solid electrolyte layer is formed at the position 6 in Figure 1 during battery construction, and as shown in Figure 3, the lithium iodide layer 9 grows as the battery discharge reaction progresses. As shown in 8, the iodine-based cathode 2 grows on the iodine-based positive electrode 2 side, and during battery storage, it diffuses through the lithium iodide layer to the lithium iodide negative electrode 1 side, which is the cathode material, and causes a self-discharge reaction ( As shown in 7, it also grows on the lithium negative electrode 1 side.

ところが、本発明の電池では、第2図に示すように、第
3図の9に相当する部分が窒化リチウム層6であるため
に、電池保存時においての正極2側から負極1側への沃
素の拡散移動は少なく、沃化リチウム層の負極側での成
長が少ないため、電池保存中における内部抵抗の増加は
わずかなものとなる。
However, in the battery of the present invention, as shown in FIG. 2, since the portion corresponding to 9 in FIG. 3 is the lithium nitride layer 6, iodine does not flow from the positive electrode 2 side to the negative electrode 1 side during battery storage. Since there is little diffusion and movement of the lithium iodide layer and little growth of the lithium iodide layer on the negative electrode side, the internal resistance increases only slightly during battery storage.

このような状況を、本発明の効果を見るために行なった
第4図に示される電池保存試験により示す。
This situation is illustrated by a battery storage test shown in FIG. 4, which was conducted to examine the effects of the present invention.

電池Aは、第1図に示される構造を有し、6が沃化リチ
ウム層である従来のリチウム−沃素系電池であり、電池
Bは、本発明に従い、6が、負極リチゥムーを6ぴ0の
窒素ふん園気に4流ご間放置することで形成された窒化
リチウム層であるリチウム−沃素系電池である。電池A
・Bのそれぞれについて、60q○および25℃保存下
での内部抵抗の経時変化を示している。
Battery A is a conventional lithium-iodine battery having the structure shown in FIG. This is a lithium-iodine battery with a lithium nitride layer formed by leaving it in a nitrogen atmosphere for four cycles. Battery A
- For each of B, the change in internal resistance over time under storage at 60q○ and 25°C is shown.

なお、内部抵抗の測定は、25qo以下において、電池
圧が2.Wを下回らない程度の直流電流により数秒間電
池放電を行ない、その際の電位降下値と、流した直流電
流値により求めた。第4図で明らかなように、本発明に
従し、窒化リチウム層を有する電池Bは、従来の電池A
に比べ構成直後の内部抵抗値は高いが、保存時間の経過
に伴う増加は、R。
The internal resistance was measured when the battery pressure was 2.5 qo or less. The battery was discharged for several seconds using a direct current that did not fall below W, and the value was determined based on the potential drop value at that time and the value of the DC current that was passed. As is clear in FIG. 4, battery B having a lithium nitride layer according to the invention is different from conventional battery A.
The internal resistance value immediately after configuration is higher than that of R, but it increases with the passage of storage time.

的ノ時間の関係からはずれ、小さい。このことは、窒化
リチウム層が、沃素の拡散移動の阻止壁として有効に作
用していることを示している。以上のように、本発明に
従い、窒化リチウム層を有するリチウム−沃素系電池は
、窒化リチウム層が、沃化リチウムと匹適するぐらいの
良好なLiナィオン伝導体であるとともに、沃化リチウ
ムに比べ沃素の拡散移動が起こり難いため、電池の放電
に際して障害を与えることなく、電池保存中における内
部抵抗の増加を有効に押さえることができる。
It is small and out of proportion to the target time. This indicates that the lithium nitride layer effectively acts as a barrier for the diffusion and movement of iodine. As described above, in the lithium-iodine battery having a lithium nitride layer according to the present invention, the lithium nitride layer is a good Li ion conductor comparable to that of lithium iodide, and is a good lithium ion conductor compared to lithium iodide. Since the diffusion and movement of ions is difficult to occur, an increase in internal resistance during battery storage can be effectively suppressed without causing problems during battery discharge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における電池の要部を欠教し
た正面図、第2図はその要部の保存、放電中の状態を示
す図、第3図は従来の電池の要部の保存、放電中の状態
を示す図、第4図は電池保存中における内部抵抗の変化
を比較した図である。 1・・・・・・負極、2・・・・・・正極、6・・・・
・・窒化リチウム層。 第1図 第2図 第3図 第4図
Fig. 1 is a front view showing the main parts of a battery according to an embodiment of the present invention, Fig. 2 is a diagram showing the state of storage and discharging of the main parts, and Fig. 3 is a diagram showing the main parts of a conventional battery. FIG. 4 is a diagram comparing changes in internal resistance during battery storage. 1...Negative electrode, 2...Positive electrode, 6...
...Lithium nitride layer. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 沃素もしくは沃素錯体を活物質とする正極と、前記
正極と接する面に窒化リチウムを形成したリチウム負極
を備えることを特徴とするリチウム−沃素系固体電解質
電池。 2 正極活物質が、沃素付加1−ブチルピリジニウム電
荷移動錯体である特許請求の範囲第1項記載のリチウム
−沃素系固体電解質電池。
[Scope of Claims] 1. A lithium-iodine solid electrolyte battery comprising: a positive electrode using iodine or an iodine complex as an active material; and a lithium negative electrode having lithium nitride formed on the surface in contact with the positive electrode. 2. The lithium-iodine solid electrolyte battery according to claim 1, wherein the positive electrode active material is an iodine-added 1-butylpyridinium charge transfer complex.
JP5054278A 1978-04-26 1978-04-26 Lithium-iodine solid electrolyte battery Expired JPS6027152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5054278A JPS6027152B2 (en) 1978-04-26 1978-04-26 Lithium-iodine solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5054278A JPS6027152B2 (en) 1978-04-26 1978-04-26 Lithium-iodine solid electrolyte battery

Publications (2)

Publication Number Publication Date
JPS54140940A JPS54140940A (en) 1979-11-01
JPS6027152B2 true JPS6027152B2 (en) 1985-06-27

Family

ID=12861890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5054278A Expired JPS6027152B2 (en) 1978-04-26 1978-04-26 Lithium-iodine solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPS6027152B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08105065A (en) * 1994-10-07 1996-04-23 Natl House Ind Co Ltd Footing structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112566U (en) * 1988-12-12 1989-07-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08105065A (en) * 1994-10-07 1996-04-23 Natl House Ind Co Ltd Footing structure

Also Published As

Publication number Publication date
JPS54140940A (en) 1979-11-01

Similar Documents

Publication Publication Date Title
JPH0222982B2 (en)
Ijomah Electrochemical behavior of some lead alloys
JPS58126679A (en) Formation of electrode for thin-film lithium battery
US3060256A (en) Low temperature dry cell
JPS6027152B2 (en) Lithium-iodine solid electrolyte battery
JPS63121272A (en) Chargeable electrochemical device
JPH0425676B2 (en)
US4315975A (en) Solid-state lithium-iodine primary battery
US2852591A (en) Potential producing cell and battery pile
JPS5772272A (en) Solid lithium battery and its manufacture
JPS58137975A (en) Nonaqueous electrolyte secondary battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JPS6386266A (en) Manufacture of lead acid battery
JPS6027151B2 (en) Lithium-iodine solid electrolyte battery
JP3498374B2 (en) Method for producing current collector for lead-acid battery and positive electrode plate for lead-acid battery
JPS62274556A (en) Nonaqueous electrolyte battery
JPH01302661A (en) Lead acid battery and its manufacture
JPS6228545B2 (en)
JPS59146157A (en) Nonaqueous electrolyte secondary cell
JPH03165453A (en) Organic electrolyte secondary cell
EP0077169A1 (en) Solid-state batteries
JPS588558B2 (en) Positive electrode grid for lead-acid batteries
JPS6012677A (en) Solid electrolyte secondary battery
JP2808685B2 (en) Lead storage battery
JPS6386353A (en) Lead storage battery