JPS6026981B2 - How to measure the static stability of an internal combustion engine - Google Patents

How to measure the static stability of an internal combustion engine

Info

Publication number
JPS6026981B2
JPS6026981B2 JP51012172A JP1217276A JPS6026981B2 JP S6026981 B2 JPS6026981 B2 JP S6026981B2 JP 51012172 A JP51012172 A JP 51012172A JP 1217276 A JP1217276 A JP 1217276A JP S6026981 B2 JPS6026981 B2 JP S6026981B2
Authority
JP
Japan
Prior art keywords
counting
counter
frequency
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51012172A
Other languages
Japanese (ja)
Other versions
JPS51104106A (en
Inventor
ヴオルフ・デイートリツヒ・フローベニウス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPS51104106A publication Critical patent/JPS51104106A/ja
Publication of JPS6026981B2 publication Critical patent/JPS6026981B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/11Testing internal-combustion engines by detecting misfire
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/16Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by evaluating the time-derivative of a measured speed signal
    • G01P15/165Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by evaluating the time-derivative of a measured speed signal for measuring angular accelerations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/489Digital circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/56Devices characterised by the use of electric or magnetic means for comparing two speeds
    • G01P3/60Devices characterised by the use of electric or magnetic means for comparing two speeds by measuring or comparing frequency of generated currents or voltages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals

Description

【発明の詳細な説明】 本発明は、例えば内燃機関の運転を希薄混合気の運転限
界で制御するために、内燃機関の非静しゆく度(ないし
特性不安定性)を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention relates to a method for determining the degree of instability (characteristic instability) of an internal combustion engine, for example in order to control the operation of the engine at the lean operating limit.

現在非常に厳しい排気ガス規制および通常の燃料不足に
対処しかつ通常自動車を経済的に運転するために、有害
な排気ガス成分をできるだけ少なくし、燃料消費を小さ
く保持できる作動範囲で内燃機関を運転できるようにす
るために多大の努力が払われている。
In order to cope with the currently very strict exhaust gas regulations and the usual fuel shortages, and to generally drive the car economically, the internal combustion engine is operated in an operating range that keeps harmful exhaust gas components as low as possible and fuel consumption low. Great efforts are being made to make this possible.

斯様に内燃機関を運転できるようにするために、内燃機
関をできるだけ薄い燃料−空気−混合気で作動する。
In order to be able to operate the internal combustion engine in this way, it is operated with as lean a fuel-air mixture as possible.

即ち内燃機関をできるだけ“希薄混合気”の方向に調節
する。それはその場合希薄混合気の範囲で排気ガスの有
害成分および燃料消費量を少くできるからである、した
がって場合によっては所定の程度まで窒素酸化物の増加
を甘受しなければならない。それ故内燃機関の薄い混合
気の運転限界の作動点を、例えばそれぞれの内燃機関の
シリソダにおける圧力変化の変動に基づき、できるだけ
正確に測定することは非常に重要である。また大概内燃
機関の静しゆく度は、化学量論的比率(空気過剰率入ら
1)付近から離れるにつれて減少することは公知である
。本発明は、シリンダ内の圧力変化の変動がそれぞれの
シリンダで生ずるトルクによってクランク軸の回転数変
動として現われるので、内燃機関の非静しゆく度はクラ
ンク鞠の回転数変動によって測定できるという認識に基
づいている。先ずわかり易くするために次に数式を用い
て詳述する。
That is, the internal combustion engine is adjusted to be as "lean" as possible. This is because in this case the harmful components of the exhaust gas and the fuel consumption can be reduced in the range of lean mixtures, so that an increase in nitrogen oxides may have to be accepted to a certain degree. It is therefore of great importance to determine as precisely as possible the operating point of the lean operating limit of an internal combustion engine, for example on the basis of the fluctuations of the pressure change in the cylinder of the respective internal combustion engine. It is also known that the degree of quietness of an internal combustion engine generally decreases as the engine moves away from the stoichiometric ratio (excess air ratio: 1). The present invention is based on the recognition that the degree of non-quietness of an internal combustion engine can be measured by the fluctuation in the rotational speed of the crankshaft, since fluctuations in the pressure inside the cylinders appear as fluctuations in the rotational speed of the crankshaft due to the torque generated in each cylinder. Based on. First, in order to make it easier to understand, a detailed explanation will be given below using mathematical formulas.

ただしM=エンジントルク T=周期 0=エンジンの慣性モーメント の=回転数 J=1回転の角度、360o 一般にM・T=8・△仇の式が成立する。However, M = engine torque T=period 0 = engine moment of inertia = rotation speed J = angle of one rotation, 360o In general, the formula M・T=8・△en holds true.

その場合帆=者小=乾び △の=◇生さ=毛・△T:T対2 そこで次の式が得られる。In that case sail = person = dry △ = ◇ Rawness = hair △T: T vs. 2 Therefore, the following formula is obtained.

△M●Tニ8,△(△の) ここで△のの値を代入すると次の式が縛られる。△M●T Ni8, △ (△) Here, by substituting the value of △, the following expression is bound.

△M‐T=o‐者△(△T) 最終的には、 △M〜△会T)、 即ちトルク変動は三鼻2に比例することになる。△M-T=o-person△(△T) eventually, △M~△kaiT), That is, the torque fluctuation is proportional to the three noses 2.

それ故内燃機関の非静しゆく度に関する量は△(△T)
であり、またその値は次の式によって3つの時間的に連
続するクランク鼠回転の周期から求めることができる。
Therefore, the quantity related to the non-quietness of the internal combustion engine is △(△T)
, and its value can be determined from three temporally consecutive crank rotation cycles using the following equation.

l△(△T)l=l(T‘xT…)−(TM−T,十2
)l 上述の式の右側の項で示すように、“非静しゆく度−値
”△(△T)を3つの連続するクランク藤回転の周期T
から求めることができる。
l△(△T)l=l(T'xT...)-(TM-T, 12
)l As shown in the right-hand term of the above equation, the “non-quiescent degree-value” △(△T) is defined as the period T of three consecutive crank rotations.
It can be found from

本発明の基礎とする課題は、できるだけ僅かな回路費用
で内燃機関の非静しゆく度値△(△T)を測定する方法
を提供することである。本発明によれば、この課題は次
のようにして解決される。
The problem on which the invention is based is to provide a method for measuring the non-quiescent power value Δ(ΔT) of an internal combustion engine with as little circuit outlay as possible. According to the present invention, this problem is solved as follows.

すなわち、昌頭で述べた方法において、クランク軸が蓮
競して3回転する間に内燃機関の回転数変動を測定する
ため、クランク軸回転から導出される周期ごとに、所定
の計数周波数で第1の順方向計数を行ない、これと同時
に該所定計数周波数の2倍の計数周波数で第2の逆方向
計数を行ない、これらとは別に前記所定の計数周波数で
第3の順万向計数を行ない、またその都度得られた計数
状態を、新たな各周期の開始時に初期計数状態として転
送し、その場合、第1の順方向計数過程を計数状態0か
ら開始し、所定計数周波数の2倍の計数周波数で行なわ
れる第2の逆方向計数過程を第1の順方向計数過程の最
終計数状態から開始し、第3の順方向計数過程を前記逆
方向計数過程の最終計数状態から開始する、のである。
また本発明の実施例によれば、内燃機関の回転数変動を
3つの連続するクランク軸回転で測定する際、所定の計
数周波数を周期毎にその都度第1アップカゥンタと第3
のアップカゥンタとに供給しかつ前記計数周波数の2倍
の計数周波数を第2のダウンカウンタに供給し、かつ内
燃機関が1回転する毎にその都度計数値を後段の計数器
に転送し、その際第1のアップカウンタが内容宅をとる
ようにする。
In other words, in the method described in Masato, in order to measure the fluctuation in the rotational speed of the internal combustion engine while the crankshaft makes three revolutions, the number of rotations is calculated at a predetermined counting frequency for each cycle derived from the crankshaft rotation. 1 forward counting is performed, at the same time a second backward counting is performed at a counting frequency twice the predetermined counting frequency, and apart from these, a third forward counting is performed at the predetermined counting frequency. , and the counting state obtained in each case is transferred as the initial counting state at the start of each new period, in which case the first forward counting process starts from counting state 0 and doubles the predetermined counting frequency. A second backward counting process carried out at the counting frequency starts from the final counting state of the first forward counting process, and a third forward counting process starts from the final counting state of said backward counting process. be.
Further, according to the embodiment of the present invention, when measuring the rotational speed fluctuation of the internal combustion engine in three consecutive crankshaft rotations, the predetermined counting frequency is set to the first up-counter and the third up-counter for each cycle.
A counting frequency twice as high as the counting frequency is supplied to a second down counter, and each time the internal combustion engine rotates, the counted value is transferred to the subsequent counter, and at that time, Let the first up counter take up the contents.

アップカウンタとして構成された第3の計数器の出力側
によって、直接出力値△(△T)をクランク軸の1回転
毎にまたは周期毎に内燃機関の非静しゆく度を表わす量
として供給するようにする非常に有利である。
The output of the third counter, which is configured as an up-counter, provides a direct output value Δ(ΔT) as a quantity representing the degree of non-quietness of the internal combustion engine for each revolution of the crankshaft or for each period. It is very advantageous to do so.

またこの場合所要の計数器容量を絶対値によって決めず
に計数器容量の大きさを△(△T)−値の最大値だけに
合うようにすると、一方で非常に高い周波数によって尖
鋭な分解館を得ることができ、また他方では次に詳しく
説明するように回路に要する費用を少なくすることがで
きるので非常に有利である。また本発明の実施例におい
て、前述のように求めた非静しゆく度値を、ディジタル
的に内燃機関の希薄混合気の運転限界を制御するために
利用できる。
In addition, in this case, if the required counter capacity is not determined by the absolute value, but the size of the counter capacity is made to match only the maximum value of △(△T) - value, on the other hand, a very high frequency causes a sharp decomposition This is very advantageous because it allows us to obtain the desired values and, on the other hand, to reduce the cost of the circuit, as will be explained in more detail below. Also, in embodiments of the invention, the non-quiescent power values determined as described above can be used to digitally control the lean operating limits of the internal combustion engine.

次に本発明を図示の実施例につき詳しく説明する。The invention will now be explained in detail with reference to the illustrated embodiments.

第1図は内燃機関の非静しゆく度を測定する場合、連続
する回転数一周期から例えば符号を有する差を形成する
、即ち△(△T)を求めるディジタル評価回路を示す。
FIG. 1 shows a digital evaluation circuit for forming, for example, a signed difference, ie Δ(ΔT), from successive rotational speed cycles when measuring the degree of non-quietness of an internal combustion engine.

前述の非静しゆく度値△(△T)に関する式の括弧を外
すことによって次の式が得られる:△(△T)=Ti−
2Ti十,十Ti+2′その場合前述のようにTi、T
i+,およびTi+2は3つの連続するクランク軸回転
の周期である。そこで斯様に△(△T)の値を求める際
これを3つの別個に構成された計数器1,2,3によっ
て実施することができ、その場合それぞれのクランク軸
の回転が終了した際、最終段の計数器3の計数状態は直
接所望の非静しゆく度の計数結果を示すようになる。こ
の場合個々に、アップカゥンタとして構成された第1の
計数器1に1〜2MHz間の範囲の比較的高い計数周波
数を供V給するようにしている。
By removing the parentheses from the above equation for the non-quieting degree value △(△T), we obtain the following equation: △(△T)=Ti−
2Ti 10, 10Ti+2' In that case, as mentioned above, Ti, T
i+, and Ti+2 are the periods of three consecutive crankshaft rotations. Therefore, when determining the value of △(△T) in this way, this can be carried out by three separately constructed counters 1, 2, 3, in which case when the rotation of the respective crankshaft is completed, The counting state of the final stage counter 3 directly indicates the desired non-quiet degree counting result. In this case, the first counter 1, which is configured as an up-counter, is individually supplied with a relatively high counting frequency in the range between 1 and 2 MHz.

またこれと同じ周波数f,はアップカウンタとして構成
された最終段の計数器3に計数周波数として供給される
。2倍の計数周波数、即ち2,はダウンカウンタとして
構成された中間の計数器2に供給される。
The same frequency f is also supplied as a counting frequency to the final stage counter 3 configured as an up counter. The double counting frequency, ie 2, is fed to an intermediate counter 2 configured as a down counter.

周波数が,を有する所定のシステムクロックを通常の分
周器回路4によって2:1の比に分周することによって
2つの所要の計数周波数f,とf2を得ることができる
。その場合この分周器回路4の出力側は計数器1および
3の計数入力側に接続されている。3つの計数器1,2
および3は、所定のプリセット可能な時点に計数器2が
計数器1の計数値を受取り、同様に計数器3も計数器2
の計数値を受取るように接続されている。
The two required counting frequencies f and f2 can be obtained by dividing a predetermined system clock having a frequency of by a conventional frequency divider circuit 4 in a ratio of 2:1. The output of this frequency divider circuit 4 is then connected to the counting inputs of counters 1 and 3. 3 counters 1, 2
and 3, counter 2 receives the count value of counter 1 at a preset possible time, and similarly, counter 3 also receives the count value of counter 2.
It is connected to receive the count value of .

これは換言すればそれぞれの回転の終りにアップカウン
タ1の内容は計数値出力として並列にダウンカウンタ2
に供V給され、また同様にしてダウンカウンタ2の内容
は計数値出力として並列にアップカウンタ3に供孫合さ
れることを意味する。それ故第1のアップカウンタとし
て構成された計数器1だけはそれぞれのクランク軸回転
の際再び計数値零から計数開始される。計数開始時点と
計数値転送時点とはクランク軸の回転に同期する信号、
例えば上死点信号即ちOT一信号によって制御される。
In other words, at the end of each rotation, the contents of up counter 1 are transferred to down counter 2 in parallel as the count output.
Similarly, the contents of the down counter 2 are supplied to the up counter 3 in parallel as a count value output. Only the counter 1, which is designed as a first up-counter, therefore starts counting again from zero at each crankshaft rotation. The counting start point and the count value transfer point are signals synchronized with the rotation of the crankshaft,
For example, it is controlled by a top dead center signal, ie, an OT signal.

例えばこの信号をクランク軸のフライホイール6に設け
られたマーカ5によって検出可能である。
For example, this signal can be detected by a marker 5 provided on the flywheel 6 of the crankshaft.

その場合マーカ5は、その都度電磁誘導によってそれぞ
れクランク軸の1回転毎に信号を供聯合するようにパル
ス成形装置7を作動する。斯様な回路によって中間のダ
ウンカウンタだけ2倍の計数周波数で作動しかつ計数値
転送制御を行うことによって、最終段の計数器3の出力
信号値が正確に非静しゆく度値△(△T)を示す最後の
左の右側の項に対応することがわかる。
The marker 5 then activates the pulse shaping device 7 in each case by means of electromagnetic induction in such a way that it combines a signal for each revolution of the crankshaft. By using such a circuit, only the intermediate down counter operates at twice the counting frequency and performs count value transfer control, so that the output signal value of the final stage counter 3 accurately changes to the non-quiet degree value △(△ It can be seen that it corresponds to the term on the right of the last left indicating T).

また斯様な回路は個々の計数器を有する計数装置を僅か
な費用で構成できるので非常に有利なことが示されてい
る。
Furthermore, such a circuit has proven to be very advantageous, since a counting device with individual counters can be constructed at low cost.

それはその場合一搬にその都度3つの時間的に連続する
クランク軸回転の回転数の差または周期の差を別個に処
理する必要がなく、また他方では十分正確かつ高い分解
能を得るために計数周波数を非常に大きくすることがで
きるからである。また個々の計数器1,2,3を非常に
小さな回転数においてもクランク軸の1回転の期間に計
数された値を完全に記憶かつ指示できるように構成する
と、16ビット以上の非常に大きな計数容量を必要とす
べきである。それに対して非常に高い計数周波数におい
ても計数値の絶対値ではなく計数値の差だけを処理する
と、差の形成に基づき計数容量を小さくすることができ
る。それ故計数器1,2,3の計数容量を非常に4・さ
く保持できる。例えば1山sの分解熊において8ビット
だけまたは最大でも9ビットまでの計数容量とし、しか
も最終的に△(△T)の符号を表示できる。勿論この場
合計数器を、クランク軸の1回転毎に相応する高い計数
周波数で、場合によっては何度も作動するようにすべき
である。然るにこれは平常作動において、計数器の大き
さまたは計数器の容量が到来する△(△T)−値の最大
値を受取るようになっている限り問題ない。それ故1つ
の計数器につき8〜9ビット、即ち全体として27個の
計数段で非常に大きな計数周波数においても、△(△T
)の符号は最終段の計数器3のMSBによって求められ
る。その場合MSBは“最上位のビット”即ち計数器3
の最大桁ビットを示す。本発明による方法を実施する装
置の別の実施例を第2図に示す。
It is then not necessary to separately process the difference in speed or the period of three temporally consecutive crankshaft revolutions in each case and, on the other hand, in order to obtain a sufficiently accurate and high resolution, it is necessary to This is because it can be made very large. Furthermore, if the individual counters 1, 2, and 3 are configured so that they can completely memorize and indicate the values counted during one revolution of the crankshaft even at very small rotational speeds, very large counts of 16 bits or more can be generated. Capacity should be required. On the other hand, even at a very high counting frequency, if only the difference between the counted values is processed instead of the absolute value of the counted values, the counting capacity can be reduced based on the formation of the difference. Therefore, the counting capacity of counters 1, 2, and 3 can be kept very small by 4. For example, in a decomposition bear of one mountain s, the counting capacity can be set to only 8 bits or at most 9 bits, and finally the sign of △ (△T) can be displayed. Of course, in this case the counter should be operated at a correspondingly high counting frequency, possibly even many times per revolution of the crankshaft. However, this is not a problem in normal operation as long as the counter size or counter capacity is such that it receives the maximum of the incoming Δ(ΔT)-values. Therefore, even at very high counting frequencies with 8-9 bits per counter, i.e. 27 counting stages in total, △(△T
) is determined by the MSB of the counter 3 at the final stage. In that case, the MSB is the "most significant bit", i.e. counter 3
Indicates the most significant bit. Another embodiment of an apparatus for carrying out the method according to the invention is shown in FIG.

即ち本発明の第1の実施例でダウンカウンタ2を詳しく
調べると、ダウンカウンタの最小の計数段即ち直接2倍
の計数周波数が,で制御される計数段は、基本的に計数
器1の計数値を並列に受取ることに基づき始めからの所
定の時間経過の後の値を指示するだけである。またそれ
故上述の最小の計数段を周波数が.で制御する必要はま
った〈なく、第2図の実施例に相応して最小限の次の段
を直接計数周波数f,で制御することによって、第1図
で必要な分周装置4を省略することができる。第2図の
実施例においてダウンカウンタ2′として示したダウン
カウンタの最小の計数段はフリップフロップ記憶装置の
作用を有するだけでよい。またそのため第2図の装置を
1つの周波数f,だけで作動できることにより、相応し
てf,を増加することによって分解能をかなり高くでき
るので非常に有利である。一般にディジタル技術で用い
られるように処理結果△(△T)の符号はMSBの値に
よって求められる。第3図に第1図または第2図の回路
を用いた制御菱贋を示し、その場合制御装置は、非静し
ゆく度測定値を用いて内燃機関の希薄混合気の運転限界
値を測定し、相対する設定値との比較を行うことによっ
て内燃機関を制御するように構成されている。
That is, if we examine the down counter 2 in detail in the first embodiment of the present invention, we can see that the minimum counting stage of the down counter, that is, the counting stage whose counting frequency is directly controlled by the double counting frequency, is basically the counting stage of the counter 1. It only indicates the value after a predetermined time has elapsed from the beginning based on receiving the numbers in parallel. Also, therefore, the frequency of the above-mentioned minimum counting stage is . By directly controlling the next minimum stage with the counting frequency f, corresponding to the embodiment of FIG. 2, the frequency divider 4 required in FIG. 1 is omitted. be able to. The smallest counting stage of the down-counter, designated as down-counter 2' in the embodiment of FIG. 2, need only have the function of a flip-flop memory. It is therefore also very advantageous to be able to operate the device of FIG. 2 at only one frequency f, since the resolution can be increased considerably by correspondingly increasing f. Generally used in digital technology, the sign of the processing result Δ(ΔT) is determined by the MSB value. FIG. 3 shows a control system using the circuit of FIG. 1 or 2, in which case the control device measures the lean operating limit value of the internal combustion engine using the non-quiet measurement value. and is configured to control the internal combustion engine by comparing it with a relative set value.

そこで内燃機関を制御する際、内燃機関をそれぞれの作
動状態、において、直接内燃機関の燃料を供給する装置
を制御して、所望の非静しゆく度値に保持するようにす
る。即ち第3図の回路を、希薄混合気の運転限界制御を
行うように構成し、その場合任意の燃料供V給装置を作
動する調節信号を発生するようにする。また前述のよう
に第1図および第2図の回路は内燃機関の非静しゆく度
絶対値を供総合するように構成されている。
When controlling the internal combustion engine, the device for directly supplying the internal combustion engine with fuel is controlled in each operating state of the internal combustion engine in order to maintain it at a desired non-quiescent power value. That is, the circuit of FIG. 3 is configured to provide lean operating limit control, in which case it generates an adjustment signal that activates any fuel supply system. Also, as mentioned above, the circuits of FIGS. 1 and 2 are configured to combine the absolute value of the degree of non-quietness of the internal combustion engine.

そこで測定された非静しゆく度絶対値△(△T)は制御
のために設定値と比較され、かつ設定値を上回った際信
号を発生するようにする。またこの設定値を一定にでき
ないことはすぐにわかる、即ち当然非静しゆく度は回転
数が異なると異なるので、設定値をも相応して変化すべ
きである。非常に低い回転数(または大きな周期)にお
いてクランク軸の作動パルスは大きな時間間隔で生ずる
ので、これに基づき低い回転数に対して大きな設定値、
換言すれば大きな“許容”非静しゆく度値とすべきであ
る。
The measured absolute value Δ(ΔT) of the non-quiet phase is then compared with a set value for control purposes, and a signal is generated when the set value is exceeded. It is also immediately obvious that this set value cannot be constant; ie, the degree of non-quietness naturally differs for different rotational speeds, so the set value should be varied accordingly. Since at very low speeds (or large periods) the actuation pulses of the crankshaft occur at large time intervals, this makes it possible to use large setpoints for low speeds.
In other words, there should be a large "acceptable" non-quiet degree value.

第4図は周期に依存して変化する設定値を示し、その場
合設定値は回転数nに依存して1/n3で変化する。
FIG. 4 shows a setting value that varies depending on the period, in which case the setting value changes by 1/n3 as a function of the rotational speed n.

第3図に示した本発明の実施例において斯様な設定値−
実際値の比較を簡単に行い、その場合同時に設定値を回
転数に依存してそれぞれ実際の所望の関数で表わすこと
ができるので有利である。
In the embodiment of the present invention shown in FIG.
It is advantageous that a comparison of the actual values can be carried out in a simple manner, and at the same time the set value can be expressed as a function of the actual desired value as a function of the rotational speed.

例えばこのために第1図または第2図の回路で示した第
1のアップカウソタ1は付加計数器laを付加すること
によって所定数のビットだけ拡大される。例えば付加計
数器laを有する計数器1はn=100仇hin−1の
最長周期を計数できるように拡大されている。計数器1
およびlaは連続して計数し、個々の計数段においてi
個の異つた部分周波数(i=計数位置の数)を取出せる
ので、そこで生ずる部分周波数を相応して選択すること
によって、近似的かつ回転数に依存して1つまたは場合
によっては複数の周波数を選択するようにする。その場
合例えばこの周波数を、前述の設定値計数器に所定の単
位時間で回転数に依存する設定値を形成するために計数
可能である。然るに回転数に依存して求められた周波数
(回転数に依存する周波数を求める方法を略示した第5
図参照)を、直ちに処理結果計数器7′の計数のために
用いるようにすると有利である。それによって処理結果
計数器は断続的に異つた周波数でカウントダウンされる
。それ故設定値一実際値の比較を行う処理結果計数器7
′は最終段のアップカウンタ3に後層接続されており、
その都度例えばOT−信号によって制御されて計数器3
の内容を受取り、その内容を周期の期間に亘つて保持し
、回転数に依存する周波数で計数することによって設定
値−実際値の比較を行なう。
For this purpose, for example, the first upcounter 1 shown in the circuit of FIG. 1 or 2 is enlarged by a predetermined number of bits by adding an additional counter la. For example, the counter 1 with the additional counter la is enlarged so that it can count the longest period of n=100 hin-1. Counter 1
and la are counted continuously and in each counting stage i
Since it is possible to take different partial frequencies (i = number of counting positions), by selecting the partial frequencies that occur accordingly, one or possibly several frequencies can be selected approximately and depending on the rotational speed. be selected. In this case, for example, this frequency can be counted in the aforementioned setpoint counter in order to form a rotational speed-dependent setpoint in a predetermined time unit. However, the frequency determined depending on the rotational speed (the fifth section that outlines the method for determining the frequency dependent on the rotational speed)
It is advantageous if the processing result counter 7' is used immediately for the counting of the processing result counter 7'. Thereby, the result counter is counted down intermittently at different frequencies. Therefore, the processing result counter 7 performs a comparison between the set value and the actual value.
' is connected to the last stage up counter 3,
In each case, the counter 3 is controlled, for example, by an OT-signal.
The setpoint-actual value comparison is carried out by receiving the contents of , retaining the contents for the period of the cycle and counting at a frequency dependent on the rotational speed.

そこで同じ計数器で、一方で設定値を導き、他方では実
際値−設定値の比較を行うようにする。その場合処理結
果計数器でカウントダウンするようにする。そこで処理
結果計数器は零位置をオーバフローすると設定値は超過
されないことになる。処理結果計数器が零位置に達しな
い場合実際値が設定値を上回っている。この状態はMS
Bによって指示され、かつ1回転毎に後直接碗された1
ビット−信号記憶装置8に記憶される。それ故処理結果
計数器を回転数に依存して計数する際設定値閥値の超過
は処理結果計数器のMSBの値によって求められ、その
値は信号記憶装置8に転送される。
Therefore, with the same counter, the set value is determined on the one hand, and the actual value-set value is compared on the other hand. In that case, count down using the processing result counter. Therefore, if the processing result counter overflows the zero position, the set value will not be exceeded. If the processing result counter does not reach the zero position, the actual value exceeds the set value. This condition is MS
1 directed by B and bowled directly after each rotation
Bit-signal storage 8 is stored. Therefore, when counting the process result counter as a function of the rotational speed, the excess of the set value threshold is determined by the value of the MSB of the process result counter, which value is transferred to the signal storage 8.

その場合内燃機関に燃料を供V給する際効果的に制御す
べき一方または他方の方向での設定値の超過頻度が示さ
れる。それ故信号記憶装置8に積分素子を後層接続する
かまたは直接信号記憶装置で積分調節素子を作動すると
有利である。また公知の燃料噴射装置において噴射パル
スの短縮または延長のために直接積分素子の出力信号で
乗算装置を作動することができる。それ故第3図の実施
例において先ず計算を実行し、計数器1,2,3によっ
て非静しゆく度に関する△(△T)−値を求め、更に後
続の周期で回転数に依存する周波数を選択しかつ設定値
−実際値の比較を行っている。然るにこれによって回転
数に同期して作動される全体の装置の速度は影響を受け
ない。第4図に示すように処理結果計数器7′の計数周
波数は部分的に周期Tに依存して変化し、かつ近似則こ
破線で示した回転数に依存する設定値関数の曲線が得ら
れる。
In this case, the frequency with which the setpoint value is exceeded in one or the other direction is indicated, which is to be effectively controlled when supplying fuel to the internal combustion engine. It is therefore advantageous to connect the integration element downstream to the signal storage 8 or to actuate the integration adjustment element directly in the signal storage. In known fuel injection systems, it is also possible to actuate a multiplier device directly with the output signal of the integrating element for shortening or lengthening the injection pulse. Therefore, in the embodiment of FIG. 3, calculations are first carried out to determine the Δ(ΔT)-value for the non-quiet degree by means of counters 1, 2, 3, and then in subsequent periods the frequency dependent on the rotational speed. is selected and a comparison between the set value and the actual value is performed. However, the speed of the entire device, which operates synchronously with the rotational speed, is not affected thereby. As shown in FIG. 4, the counting frequency of the processing result counter 7' partially changes depending on the period T, and according to the approximation law, a curve of the set value function depending on the rotation speed is obtained as shown by the broken line. .

次に第3図の実施例においてブロック9によって示した
回転数に依存する周波数を発生する方法につき、第5図
を用いて簡単に説明する。第5図の実施例において主計
数器1と付加計数器laとの個々の計数位鷹で値×,,
X2・・・・・・・・・X,6で示した1成因の部分周
波数が生ずる。
Next, a method of generating the frequency dependent on the rotational speed indicated by block 9 in the embodiment of FIG. 3 will be briefly explained using FIG. 5. In the embodiment shown in FIG.
X2 . . . One factor partial frequency indicated by X, 6 is generated.

計数器1にIMHzの周波数が供給されるとX,は50
皿町zの周波数、X2は25皿Hzの周波数というよう
に対応する。第5図の実施例において選択された周波数
X8,X9,X,3および×,6はAND−ゲート1
0,10a,10bなどに供給され、またANDゲート
の別の入力側は2安定マルチパイプレータ11,11a
,11bなどによって制御される。
When a frequency of IMHz is supplied to counter 1, X, becomes 50
The frequency of Saramachi z, X2 corresponds to the frequency of 25 dish Hz, and so on. The selected frequencies X8, X9, X,3 and X,6 in the embodiment of FIG.
0, 10a, 10b, etc., and another input side of the AND gate is a bistable multipipulator 11, 11a.
, 11b, etc.

更に2安定マルチパイプレータの切換過程は個々の計数
段の出力側によって制御される。設定値を回転数に依存
して発生することは重要である。それはその場合本発明
の有利な実施例において設定値を回転数に依存する周波
数によってシミュレートする、即ちこの周波数を回転数
に依存して選択すべきであるからである。然るに前述の
ように計数終了時点と新たな計数開始時点とはクランク
藤のOT−信号によって制御されるので、個々の付加計
数器laを有する計数器1の計数位置の出力側に生ずる
出力信号は回転数に依存して変化する。それ故2安定マ
ルチパイプレータまたはフリップフロップ1 1,1
1a,11bに対する切換信号として計数状態自体を利
用するだけですむ。それ以外に個々にフリップフロツプ
段11,11a,11bの入力側を計数位置の出力側に
接続する際これをその都度の設定直に依存して変化する
必要はない。また回路はその都度切襖フリップフロップ
11,11aの出力側で後続のフリップフロツプの入力
側を制御するように構成されている。
Furthermore, the switching process of the bistable multipipulator is controlled by the outputs of the individual counting stages. It is important that the set value is generated as a function of the rotational speed. This is because, in a preferred embodiment of the invention, the setpoint value is then simulated with a frequency that is dependent on the rotational speed, ie, this frequency is to be selected as a function of the rotational speed. However, as mentioned above, since the counting end point and the new counting start point are controlled by the OT- signal of the crankshaft, the output signal generated at the output side of the counting position of the counter 1 having each additional counter la is as follows. It changes depending on the rotation speed. Hence the bistable multipipulator or flip-flop 1 1,1
It is sufficient to simply use the counting state itself as a switching signal for 1a and 11b. In addition, when connecting the inputs of the individual flip-flop stages 11, 11a, 11b to the outputs of the counting positions, it is not necessary to change this depending on the respective setting. The circuit is also constructed in such a way that the output of the flip-flop 11, 11a in each case controls the input of the following flip-flop.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明よる方法を実施する装置の実施例を簡単
に示すブロック図、第2図は本発明の方法による1つの
制御計数周波数だけを必要とする装置の実施例を示すブ
ロック図、第3図は本発明による所定の内燃機関を希薄
混合気の運転限界で作動する方法を実施する制御回路の
実施例を示すフロック図、第4図は内燃機関の非静しゆ
く度一設定値を回転数または周期に依存して示す線図、
第5図は本発明に供する設定値シミュレート用周波数合
成回路のブロック図である。 1,la,2,2′,3・・・・・・計数器、4…・・
・分周回略、5・・…・マーカ、6…・・・フライホイ
ール、7……パルス成形装置、7′……処理結果計数器
、8・・・・・・信号記憶装置。 Fig.l Fig.2 Fig.3 Fi9・ム Fig.5
1 is a block diagram briefly illustrating an embodiment of an apparatus for carrying out the method according to the invention; FIG. 2 is a block diagram illustrating an embodiment of an apparatus according to the invention requiring only one control counting frequency; FIG. 3 is a block diagram illustrating an embodiment of a control circuit implementing a method according to the invention for operating a predetermined internal combustion engine at the lean operating limit; FIG. a diagram showing the rotation speed or period dependence,
FIG. 5 is a block diagram of a frequency synthesis circuit for setting value simulation used in the present invention. 1, la, 2, 2', 3... Counter, 4...
- Frequency division circuit omitted, 5... Marker, 6... Flywheel, 7... Pulse shaping device, 7'... Processing result counter, 8... Signal storage device. Fig. l Fig. 2 Fig. 3 Fi9・muFig. 5

Claims (1)

【特許請求の範囲】 1 内燃機関の非静しゆく度を測定する方法において、
クランク軸が連続して3回転する間に内燃機関の回転数
変動を測定するため、クランク軸回転から導出される周
期ごとに、所定の計数周波数で第1の順方向計数を行な
い、これと同時に該所定計数周波数の2倍の計数周波数
で第2の逆方向計数を行ない、これらとは別に前記所定
の計数周波数で第3の順方向計数を行ない、またその都
度到達した計数状態を、新たな各周期の開始時に切期計
数状態として転送し、その場合、第1の順方向計数過程
を計数状態0から開始し、所定計数周波数の2倍の計数
周波数で行なわれる第2の逆方向計数過程を第1の順方
向計数過程の最終計数状態から開始し、第3の順方向計
数過程を前記逆方向計数過程の最終計数状態から開始す
る、ことを特徴とする内燃機関の非静しゆく度を測定す
る方法。 2 内燃機関の回転数変動を3つの連続するクランク転
回転で測定するため、所定の計数周波数を周期毎にその
都度第1のアツプカウンタと第3のアツプカウンタとに
供給しかつ前記計数周波数の2倍の計数周波数を第2の
ダウンカウンタに供給し、かつ内燃機関が1回転する毎
にその都度計数値を後段の計数器に転送し、その際第1
のアツプカウンタが内容零をとるようにした、特許請求
の範囲第1項記載の内燃機関の非静しゆく度の測定方法
。 3 第2のダウンカウンタを2倍の計数周波数で作動す
るために、前記ダウンカウンタの最小の計数段の次の計
数段に通常の周波数f_1を供給するようにした特許請
求の範囲第2項記載の内燃機関の非静しゆく度を測定す
る方法。 4 設定値−実際値の比較を行うために非静しゆく度を
示す最終段のアツプカウンタの計数値を処理結果計数器
に転送し、前記処理結果計数器をクランク軸の1回転の
期間にその都度回転数に依存する周波数で計数し、その
場合回転数に依存する周波数を、拡大された第1のアツ
プカウンタの部分周波数を受取ることによつて得るよう
にした、希薄混合気の運転限界を制御する特許請求の範
囲第1項から第3項までのいずれか1項記載の内燃機関
の非静しゆく度を測定する方法。
[Claims] 1. A method for measuring non-quietness of an internal combustion engine, comprising:
In order to measure the rotation speed fluctuation of the internal combustion engine during three consecutive rotations of the crankshaft, a first forward count is performed at a predetermined counting frequency for each cycle derived from the crankshaft rotation, and at the same time A second backward count is performed at a counting frequency twice the predetermined counting frequency, and apart from these, a third forward count is performed at the predetermined counting frequency, and the counting state reached each time is converted into a new count state. transferred as a dead-end counting state at the beginning of each period, in which case the first forward counting step starts from counting state 0, and the second backward counting step is carried out at a counting frequency twice the predetermined counting frequency. starts from the final counting state of the first forward counting process, and starts the third forward counting process from the final counting state of the backward counting process. How to measure. 2. In order to measure the rotation speed fluctuation of the internal combustion engine by three consecutive crank rotations, a predetermined counting frequency is supplied to the first up counter and the third up counter each time in each period, and the counting frequency is A double counting frequency is supplied to the second down counter, and each time the internal combustion engine rotates, the counted value is transferred to the subsequent counter.
2. A method for measuring non-quietness of an internal combustion engine according to claim 1, wherein the up counter is set to zero. 3. In order to operate the second down counter at twice the counting frequency, the normal frequency f_1 is supplied to the counting stage next to the smallest counting stage of the down counter. How to measure the non-quietness of an internal combustion engine. 4. In order to compare the set value and the actual value, the count value of the final stage up counter indicating the degree of non-quietness is transferred to the processing result counter, and the processing result counter is counted during one revolution of the crankshaft. Operating limits for lean mixtures, in each case counting at a speed-dependent frequency, in which case the speed-dependent frequency is obtained by receiving the enlarged partial frequency of the first up-counter. A method for measuring non-quietness of an internal combustion engine according to any one of claims 1 to 3.
JP51012172A 1975-02-19 1976-02-06 How to measure the static stability of an internal combustion engine Expired JPS6026981B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19752507057 DE2507057A1 (en) 1975-02-19 1975-02-19 METHOD AND DEVICE FOR DETERMINING THE RUNNING OF AN COMBUSTION ENGINE
DE2507057.9 1975-02-19

Publications (2)

Publication Number Publication Date
JPS51104106A JPS51104106A (en) 1976-09-14
JPS6026981B2 true JPS6026981B2 (en) 1985-06-26

Family

ID=5939241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51012172A Expired JPS6026981B2 (en) 1975-02-19 1976-02-06 How to measure the static stability of an internal combustion engine

Country Status (7)

Country Link
US (1) US4044235A (en)
JP (1) JPS6026981B2 (en)
BR (1) BR7601032A (en)
DE (1) DE2507057A1 (en)
FR (1) FR2341867A1 (en)
GB (1) GB1544275A (en)
SE (1) SE7601848L (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2642738C2 (en) * 1976-09-23 1986-08-07 Robert Bosch Gmbh, 7000 Stuttgart Method for regulating the operating behavior of an internal combustion engine in a specified operating range
US4092955A (en) * 1976-10-04 1978-06-06 The Bendix Corporation Roughness sensor
US4140083A (en) * 1976-11-19 1979-02-20 Robert Bosch Gmbh Method and apparatus for lean burn mixture control of an internal combustion engine
GB2024462B (en) * 1978-05-08 1983-03-30 Bendix Corp Integrated closed loop engine control system
US4380800A (en) * 1978-05-08 1983-04-19 The Bendix Corporation Digital roughness sensor
EP0017328B1 (en) * 1979-03-14 1984-12-19 LUCAS INDUSTRIES public limited company Fuel control system for an internal combustion engine
US4379333A (en) * 1979-08-29 1983-04-05 Nippondenso Co., Ltd. Method and system for operating a power-producing machine at maximum torque under varying operating conditions
US4337647A (en) * 1979-12-07 1982-07-06 The Bendix Corporation Engine roughness sensor
US4461257A (en) * 1980-03-28 1984-07-24 Nissan Motor Company, Limited Method and system for controlling engine ignition timing
EP0044656A1 (en) * 1980-07-10 1982-01-27 LUCAS INDUSTRIES public limited company Method of and apparatus for optimising the operation of an internal combustion engine
US4344140A (en) * 1980-09-15 1982-08-10 The Bendix Corporation Closed loop engine roughness control
US4433381A (en) * 1980-09-19 1984-02-21 The Bendix Corporation Control system for an internal combustion engine
JPS5759138A (en) * 1980-09-27 1982-04-09 Toyota Motor Corp Method and device for inspecting engine rough idling
US4372269A (en) * 1980-10-24 1983-02-08 Coles Donald K Internal combustion engine
FR2498255B1 (en) * 1981-01-21 1986-02-28 Inst Francais Du Petrole QUICK ADJUSTING DEVICE, IN ACCELERATION PERIOD, FOR THE IGNITION ADVANCE OF A CONTROLLED IGNITION ENGINE
MX154828A (en) * 1981-12-24 1987-12-15 Lucas Ind Plc IMPROVEMENTS IN A FUEL INJECTION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
US4418669A (en) * 1982-07-19 1983-12-06 The Bendix Corporation Fuel distribution control system for an internal combustion engine
JPS59141750A (en) * 1983-01-19 1984-08-14 Diesel Kiki Co Ltd Apparatus for generating data relating to speed of rotation of internal-combustion engine
US4535406A (en) * 1983-02-22 1985-08-13 Allied Corporation Fuel distribution control for an internal combustion engine
DE3421640A1 (en) * 1983-06-10 1985-01-31 Diesel Kiki Co. Ltd., Tokio/Tokyo DEVICE FOR DETECTING THE CHANGE VALUE IN THE SPEED OF AN INTERNAL COMBUSTION ENGINE
DE3336028C3 (en) * 1983-10-04 1997-04-03 Bosch Gmbh Robert Device for influencing control variables of an internal combustion engine
DE3420870A1 (en) * 1984-06-05 1985-12-05 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh, 7990 Friedrichshafen ELECTRONIC SPEED MEASUREMENT OF PISTON COMBUSTION ENGINES
DE58908423D1 (en) * 1989-07-07 1994-10-27 Siemens Ag METHOD AND DEVICE FOR SPEED CONTROL OF A SLOW-RUNNING, MULTI-CYLINDRICAL DIESEL ENGINE.
DE4009285A1 (en) * 1989-08-23 1990-12-20 Audi Ag METHOD FOR CYLINDER SELECTIVE MONITORING OF ENERGY REVENUE IN A MULTI-CYLINDER INTERNAL COMBUSTION ENGINE
JP2982381B2 (en) * 1991-06-12 1999-11-22 株式会社デンソー Misfire detection device for internal combustion engine
DE69425375T2 (en) * 1994-10-31 2001-02-15 Motorola Inc Detection of misfires due to accelerations in one cycle
DE19955250B4 (en) 1999-11-17 2005-05-04 Robert Bosch Gmbh Method and device for monitoring the function of a variable cylinder compression
RU2674817C1 (en) * 2017-07-18 2018-12-13 Открытое акционерное общество холдинговая компания "Коломенский завод" Revolution marker of crankshaft of internal combustion engine of ships

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2842108A (en) * 1955-11-15 1958-07-08 Sanders John Claytor Closed-loop acceleration control system
DE1235051B (en) * 1962-09-20 1967-02-23 Siemens Ag Device for the digital determination of changes in the movement of vehicles over time
FR2180182A5 (en) * 1972-04-12 1973-11-23 Sopromi Soc Proc Modern Inject
US3820198A (en) * 1972-06-21 1974-06-28 Int Harvester Co Switching circuitry for sequential fuel injection
DE2401936A1 (en) * 1973-01-17 1974-07-18 Auray Didier DEVICE FOR CALCULATING THE SUCCESSIVE DERIVATIVES OF A FUNCTION OF A VARIABLES, IN PARTICULAR FOR REGULATING OR CONTROLLING THE FUNCTION
GB1465052A (en) * 1973-02-20 1977-02-23 Lucas Electrical Ltd Fuel control systems
US3789816A (en) * 1973-03-29 1974-02-05 Bendix Corp Lean limit internal combustion engine roughness control system
FR2242566B2 (en) * 1973-08-28 1978-01-27 Sopromi Soc Proc Modern Inject

Also Published As

Publication number Publication date
FR2341867A1 (en) 1977-09-16
US4044235A (en) 1977-08-23
GB1544275A (en) 1979-04-19
DE2507057A1 (en) 1976-09-02
JPS51104106A (en) 1976-09-14
SE7601848L (en) 1976-08-20
BR7601032A (en) 1976-09-14

Similar Documents

Publication Publication Date Title
JPS6026981B2 (en) How to measure the static stability of an internal combustion engine
US4044234A (en) Process and apparatus for controlling engine operation near the lean-running limit
US4044236A (en) Method and apparatus for controlling the operation of an internal combustion engine
US4064846A (en) Method and apparatus for controlling an internal combustion engine
US4787354A (en) Ignition control system for internal combustion engines with simplified crankshaft sensing and improved coil charging
US4127091A (en) Internal combustion engine ignition electronic control device and method
JPH0756454B2 (en) Angular position detector
US4321580A (en) Process and apparatus for adjustment of the angular position of a part in rotational motion
US4056778A (en) Digital tachometer
US4354239A (en) Fuel injection control system for an internal combustion engine
US4254744A (en) Method and apparatus for measuring air quantity in relation to engine speed
US4898025A (en) Method for determining the mean effective torque of an internal combustion engine
US3725794A (en) Interpolating apparatus
US3943898A (en) Electronic timing circuit for engine ignition
US4292941A (en) Electronic ignition control systems
US4119069A (en) Electronic ignition with angular transcoder
US4284045A (en) Simplified electronic ignition timing and A/D conversion
US4337744A (en) Ignition system for internal combustion engines
US4160429A (en) Electronically controlled fuel injection system for internal combustion engines
JPH0765556B2 (en) Ignition control device for internal combustion engine
EP0341975B1 (en) Electronic ignition control system for internal combustion engines
US4238692A (en) Method and device for producing start pulses in periodic motion process
RU99108635A (en) METHOD FOR DETERMINING THE TECHNICAL CONDITION OF INTERNAL COMBUSTION ENGINES AND AN EXPERT SYSTEM FOR ITS IMPLEMENTATION
JPH04213016A (en) Circuit device for obtaining rotary-angle position of rotary body
JPS583607B2 (en) frequency converter