JPS602697A - Formation of wear resistant coated layer - Google Patents

Formation of wear resistant coated layer

Info

Publication number
JPS602697A
JPS602697A JP11016083A JP11016083A JPS602697A JP S602697 A JPS602697 A JP S602697A JP 11016083 A JP11016083 A JP 11016083A JP 11016083 A JP11016083 A JP 11016083A JP S602697 A JPS602697 A JP S602697A
Authority
JP
Japan
Prior art keywords
layer
plating
film
particles
coated layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11016083A
Other languages
Japanese (ja)
Inventor
Makoto Shirokane
白兼 誠
Michio Sato
道雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11016083A priority Critical patent/JPS602697A/en
Publication of JPS602697A publication Critical patent/JPS602697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form a wear resistant homogeneous coated layer in a high product yield by forming a composite plated film contg. deposited hard particles with a high m.p. on the surface of a metallic substrate and by melting the film and the surface layer of the substrate by heating. CONSTITUTION:A composite plated film 2 contg. deposited hard particles with a high m.p. is formed on the surface of a metallic substrate 1 of oxygen-free copper or the like using a plating bath prepd. by dispersing alumina particles or the like in a nickel plating bath. The film 2 and the surface layer of the substrate 1 are melted by heating 4 with laser light 5 or electron beams to form a wear resistant coated layer 3 on the outside of the substrate 1. By this method the coated layer with superior wear resistance can be simply formed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は耐摩耗性が優れた被覆層の形成方法に関し、更
に詳しくは摺動部品等の基材表面に形成された場合に長
期間に亘って優れた耐摩耗性が発揮される被覆層の形成
方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for forming a coating layer with excellent wear resistance, and more specifically, the present invention relates to a method for forming a coating layer with excellent wear resistance, and more specifically, when formed on the surface of a base material such as a sliding part, the coating layer lasts for a long period of time. The present invention relates to a method for forming a coating layer that exhibits excellent wear resistance.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

各種の電子部品、機械、機構々どにおいては、その動作
の構造上、互いに摺動あるいは接触することが余儀なく
される構成部品が多く存在するがそれらを構成する金属
体表面は当然高度の耐摩耗性を有することが要求される
In various electronic parts, machines, mechanisms, etc., there are many components that are forced to slide or come into contact with each other due to the structure of their operation, and the metal surfaces that make up these components naturally have a high degree of wear resistance. It is required to have gender.

このような要求を満たすために、基材表面に高硬度を有
し、耐摩耗性が優れた被覆層を形成する方法としては、
溶射法、溶射溶着法および焼結法などがあるが、まだ充
分満足すべき性能を有するものは得られていない。すな
わち溶射法は被処理表面のサンドブラスト処理、溶射に
よる耐摩耗性金属粉末の吹きつけ溶着処理などの工程が
必要で処理工程が長い上に、被覆金属層に空孔が生じ易
いために歩留りが低いという欠点があった。溶射溶着法
は、自溶性合金を用いて金属粉末の吹き付は一溶着工程
で行なうため極めて処理効率が低くまたやはり被覆金属
に空孔が生じ易く、歩留りが低い(高々80チ)という
欠点があった。焼結法は耐摩耗性金属粉末を基材上に塗
付した後、真空あるいは不活性雰囲気中で焼結すると同
時に基材表面部と接着させるものであるが、焼結層には
微細な空孔が残ること、焼結層の厚さを均一にするのが
困難という欠点があった。
In order to meet these demands, methods for forming a coating layer with high hardness and excellent wear resistance on the surface of the base material include:
There are thermal spraying methods, thermal spray welding methods, and sintering methods, but none with sufficiently satisfactory performance has yet been obtained. In other words, the thermal spraying method requires steps such as sandblasting the surface to be treated and spraying and welding wear-resistant metal powder by thermal spraying, which not only takes a long time, but also tends to cause pores in the coated metal layer, resulting in a low yield. There was a drawback. The thermal spray welding method uses a self-fluxing alloy and sprays the metal powder in one welding process, so it has extremely low processing efficiency and also tends to create pores in the coated metal, resulting in a low yield (80cm at most). there were. In the sintering method, wear-resistant metal powder is applied onto the base material, then sintered in a vacuum or inert atmosphere, and simultaneously bonded to the surface of the base material. There were disadvantages in that pores remained and it was difficult to make the thickness of the sintered layer uniform.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した問題に対処し、製品歩留りの高い均
質な耐摩耗性被覆層の形成方法の提供を目的とする。
The present invention addresses the above-mentioned problems and aims to provide a method for forming a homogeneous wear-resistant coating layer with a high product yield.

〔発明の概要〕[Summary of the invention]

本発明の方法は、高硬度・高融点粒子を分散せしめた金
属メッキ浴を用いて、金属基材表面に前記メッキ用金属
と共に高硬度・高融点粒子を共析せしめる複合メッキ被
膜を得る第一工程と、該複合メッキ被膜および金属基材
を溶融加熱する第二工程により、高硬度O高融点粒子が
均一に分散された厚さの均一な複合メッキ被膜と金属基
材の合金層を得ることを特徴とするものである。以下に
おいて本発明を更に詳しく説明する。
The method of the present invention uses a metal plating bath in which particles with high hardness and high melting point are dispersed to obtain a composite plating film in which particles with high hardness and high melting point are eutectoided with the metal for plating on the surface of a metal substrate. and a second step of melting and heating the composite plating film and the metal base material to obtain an alloy layer of the composite plating film and the metal base material with a uniform thickness in which high hardness O high melting point particles are uniformly dispersed. It is characterized by: The invention will be explained in more detail below.

本発明第一工程において使用される高硬度・高融点粒子
は、酸化物・炭化物・窒化物・硼化物など、あるいはと
れらの組合せが好ましく粒径は、10μ痛以下であるこ
とが好ましい。更に好ましくは1〜5μ島である。粒径
は、形成される被膜の耐摩耗性に影響を与え、粒径が大
きくなると耐摩耗性が向上し、摩耗量は減少するが摺動
部あるいは接触部相手材の損傷及び摩耗量が多くなる。
The high hardness/high melting point particles used in the first step of the present invention are preferably oxides, carbides, nitrides, borides, etc., or a combination thereof, and preferably have a particle size of 10 μm or less. More preferably, the island size is 1 to 5 μm. The particle size affects the abrasion resistance of the coating that is formed, and as the particle size increases, the abrasion resistance improves and the amount of wear decreases, but the damage and amount of wear to the mating material of sliding parts or contact parts increases. Become.

高硬度・高融点粒子と共に共析によシ形成される金属メ
ッキ被膜は被膜の内部応力が小さく、被膜形成速度があ
る程度大きなものであればいかなるもノテもヨく、例え
ばNi、Or、Co、Ou、Fe。
The metal plating film formed by eutectoid together with high hardness and high melting point particles can be applied to any film as long as the internal stress of the film is small and the film formation rate is fast to a certain extent.For example, Ni, Or, Co, Ou, Fe.

Al、Au、Pb、Zn、N1−P更にそれらの合金等
であれば、本発明の効果を損なうことはない。更に基材
表面上に被膜形成する層は、必ずしも一層である必要は
なく、組成の異なる積層被膜層であっても良い。
Al, Au, Pb, Zn, N1-P, alloys thereof, etc. will not impair the effects of the present invention. Further, the layer formed on the surface of the base material does not necessarily have to be a single layer, and may be a laminated film layer having different compositions.

金属メッキ被膜に含有される高硬度・高融点粒子の量は
、良好な耐摩耗性を得るために全被覆に対して1重量%
以上であることが好ましく、更に好ましくは2.5〜4
.0重量%である。本発明の耐摩耗性が優れた被膜の形
成方法は、上記した金属メッキ被膜を与えるメッキ浴に
前記高硬度高融点粒子を分散せしめ、該メッキ浴に基材
を浸漬し、所定条件で基材表面にメッキ用金属と共に高
硬度高融点粒子を共析せしめるものである。この時メッ
キ浴中に添加される。高硬度・高融点粒子の量は、メッ
キ浴に対して50〜300ダ/lであることが好ましく
、更に好ましくは100〜200y/lである。高硬度
O高融点粒子の添加量が50y/1未満であると、優れ
た耐摩耗性を有する被膜が得難く、一方、3009/l
を越えると添加量に比例した耐摩耗性の向上がみられず
、メッキ条件に悪影響を及ぼすことがある。
The amount of high hardness/high melting point particles contained in the metal plating film is 1% by weight based on the total coating in order to obtain good wear resistance.
It is preferably 2.5 to 4 or more, more preferably 2.5 to 4.
.. It is 0% by weight. The method of forming a film with excellent wear resistance of the present invention includes dispersing the high hardness and high melting point particles in a plating bath that provides the metal plating film described above, immersing the base material in the plating bath, and subjecting the base material to the metal plating film under predetermined conditions. High hardness and high melting point particles are co-deposited with the plating metal on the surface. At this time, it is added to the plating bath. The amount of the high hardness/high melting point particles is preferably 50 to 300 da/l, more preferably 100 to 200 y/l, relative to the plating bath. If the amount of high hardness O high melting point particles added is less than 50y/l, it will be difficult to obtain a coating with excellent wear resistance;
If the amount exceeds 100%, the wear resistance will not improve in proportion to the amount added, and the plating conditions may be adversely affected.

メッキ条件は、各メッキ浴において高硬度・高融点粒子
が共析可能な条件であればよく、例えば電流密度5〜3
0A/dぜ、メッキ液流速0.5〜2.ORI/Sec
、浴温度40〜70℃程度であることが好ましい。
The plating conditions may be such that high hardness and high melting point particles can be eutectoid in each plating bath, for example, a current density of 5 to 3.
0A/dze, plating solution flow rate 0.5-2. ORI/Sec
, the bath temperature is preferably about 40 to 70°C.

このような条件下において、例えばメッキ浴の攪拌を激
しくしてメッキ浴流速を速めると、メッキ被膜の形成速
度は速くなるが高硬度Q高融点粒子の共析量が減少する
ために、メッキ浴の流速等を適宜選択することが好まし
い。
Under such conditions, if the flow rate of the plating bath is increased by vigorously stirring the plating bath, for example, the formation rate of the plating film will increase, but the amount of eutectoid of high hardness Q high melting point particles will decrease, so the plating bath will It is preferable to appropriately select the flow rate and the like.

本発明第二工程においては、第一工程にて鳴られた高硬
度O高融点粒子を共析させたメッキ被膜と金属基材表面
部を溶融加熱する加熱溶融処理には、エネルギー密度1
×1011W/aIL以上の出力を有するものであれば
、いかなるものでも可能であるが、必要なエネルギー密
度が容易に得られかつ、処理時間の短縮・作業効率等を
考慮すると、レーザ光・電子ビームを用いる事が好まし
い。
In the second step of the present invention, the heating and melting treatment of melting and heating the surface portion of the metal base material and the plating film in which the high-hardness O high-melting point particles eutectoided in the first step has an energy density of 1.
Any device with an output of ×1011 W/aIL or higher can be used, but laser beams and electron beams are recommended because they can easily obtain the necessary energy density and take into consideration shortening of processing time and work efficiency. It is preferable to use

エネルギー密度が高いと、照射時間を短かくすることに
よシ被照射材の表面を急速加熱、急速冷却することが出
来、熱影響部を極めて小さく出来るとともに、エネルギ
ー密度及び照射時間の制御によシ、溶融層の厚さ均一で
かつ、任意の厚さが得られる。これらの使用エネルギー
密度は形成すべき合金層の膜厚によシ種々選択すること
が出来例えばlXl0’〜10’ w/c+4程度、ま
た照射時間は10−1〜10 ” sec程度の条件が
挙げられる。
If the energy density is high, the surface of the irradiated material can be rapidly heated and cooled by shortening the irradiation time, and the heat-affected zone can be made extremely small. Furthermore, the thickness of the molten layer is uniform and any thickness can be obtained. The energy density used can be selected in various ways depending on the thickness of the alloy layer to be formed, and examples include conditions such as lXl0' to 10' w/c+4 and irradiation time of about 10-1 to 10'' sec. It will be done.

かかる加熱処理時の雰囲気は、真空(好ましくは10 
’Torr以下)又は不活性雰囲気(例えばアルゴン、
ヘリウムなど)が好ましい。レーザ光又は電子ビームを
複合メッキ被膜表面上に照射するときは、加熱処理面に
溶融加熱が均一に行なわれるように、照射部分を順次移
動させるべくレーザ光又は電子ビームを移動させるか、
神処理金属体を移動させる必要がある。
The atmosphere during this heat treatment is vacuum (preferably 10
'Torr or less) or an inert atmosphere (e.g. argon,
Helium, etc.) is preferred. When irradiating the surface of the composite plating film with a laser beam or electron beam, either move the laser beam or electron beam to sequentially move the irradiated area so that melting and heating are performed uniformly on the heat-treated surface, or
It is necessary to move the divinely processed metal body.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、被覆層の厚さを任意に精成よく
制御出来、かつ高硬度・高融点粒子が均一に分散された
メッキ金属と金属基材との合金層が得られ、その耐摩耗
性は高硬度0高融点粒子の分散と合金化により、向上し
優れた耐摩耗性が長期間に亘って発揮されるものである
。さらに金属基材あるいはメッキ金属の組成を選択する
ことにより、耐食性の向上を企ることか可能となる。又
本発明の形成方法は優れた耐摩耗性を有する被覆を簡便
に形成することが可能なものである。
According to the method of the present invention, the thickness of the coating layer can be arbitrarily and accurately controlled, and an alloy layer of a plated metal and a metal base material in which high hardness/high melting point particles are uniformly dispersed can be obtained. Wear resistance is improved by dispersing and alloying particles with high hardness and high melting point, and excellent wear resistance is exhibited over a long period of time. Furthermore, by selecting the composition of the metal base material or the plating metal, it is possible to improve the corrosion resistance. Further, the forming method of the present invention allows a coating having excellent wear resistance to be easily formed.

〔発明の実施例〕[Embodiments of the invention]

以下において実施例を掲げ、本発明方法を図を用いて更
に詳しく説明する。
The method of the present invention will be explained in more detail below using examples and drawings.

実施例1゜ 金属基材(1)として、外径40rnm内径161m厚
さ10mmを有する無酸素鋼(JIS−01011BB
 )を用いその外周面上に平均流径1μmのアルミナ粒
子が共析したNi複合メッキ被膜(2)を施した。メッ
キ方法はニッケルメッキ浴に平均粒径/μ播を有するア
ルミナ粒子を分散せしめた下記組成のメッキ浴を調製し
た。
Example 1 As the metal base material (1), oxygen-free steel (JIS-01011BB
), and a Ni composite plating film (2) on which alumina particles with an average flow diameter of 1 μm were eutectoid was applied on the outer peripheral surface. In the plating method, a plating bath having the following composition was prepared by dispersing alumina particles having an average particle size/μ distribution in a nickel plating bath.

しアルミナ粒子 200 f//1 上記メッキ浴を使用して無酸素銅を陰極とし、とれに対
向して設置した電解ニッケル材を陽極として、下記メッ
キ条件によシメッキ処理を施して無酸素銅表面にニッケ
ルーアルミナ粒子から成る厚さ約80ptsの複合メッ
キ層を形成した。
Alumina particles 200 f//1 Using the above plating bath, using oxygen-free copper as a cathode and electrolytic nickel material placed opposite the plate as an anode, plating was performed under the following plating conditions to form an oxygen-free copper surface. A composite plating layer of about 80 pts thick made of nickel-alumina particles was formed on the surface.

電解条件 を電流密度 20A/dm’ 同時に比較材として、上記処理においてアルミナ粒子を
含有していないメッキ浴を使用した他は、すべて同様の
操作にてメッキ層を形成したものを得た。
Electrolytic conditions were set to a current density of 20 A/dm'. At the same time, a comparative material was obtained in which a plating layer was formed using the same procedure except that a plating bath containing no alumina particles was used in the above treatment.

上記の複合メッキ材および比較材に対し、メッキ層表面
にレーザ光(5)をAr雰囲気中でエネルギー密度I 
X 10 ’ w/d 1走査速度10mm/sec 
(被処理材を回転)にて照射し、メッキ層および基材表
層部を溶融加熱+4)l、、外周面上に合金層を形成し
た。
For the above composite plating materials and comparative materials, a laser beam (5) was applied to the surface of the plating layer in an Ar atmosphere at an energy density of I
X 10' w/d 1 scanning speed 10mm/sec
(Rotating the material to be treated) to melt and heat the plated layer and the surface layer of the base material +4)l, to form an alloy layer on the outer peripheral surface.

上記処理を施して得られた基材について断面金属組織を
観察したところ、合金層は外表面から約200p%±2
0でほぼ均一な厚さであった。複合メッキ材においては
、アルミナ粒子もほぼ均一に分散していることが確認さ
れた。
When we observed the cross-sectional metallographic structure of the base material obtained through the above treatment, we found that the alloy layer was about 200p%±2 from the outer surface.
The thickness was approximately uniform. It was confirmed that alumina particles were also almost uniformly dispersed in the composite plating material.

上記処理によシ得られたそれぞれの試験片について、ア
ムスラー型摩耗試験機を用いて潤滑油の存在下、以下に
示した条件ですベシ摩耗試験を行なつた。その結果を第
1表に示す。
For each test piece obtained by the above treatment, a wear test was conducted using an Amsler type wear tester in the presence of lubricating oil under the conditions shown below. The results are shown in Table 1.

試験条件 第 1 表 実施例2 金属基材として、外径40mm、内径16闘、厚さ10
 mmを有するみがき棒鋼(JIS 8GDI)を用い
その外周面上に平均粒径/μ島のTiN粒子が共析した
Or複合メッキ被膜を施したメッキ法はクロム酸−硫酸
浴に平均粒径/μ島を有するTiN粒子を分散せしめた
下記組成のメッキ浴を調整した。
Test conditions Table 1 Example 2 As a metal base material, the outer diameter is 40 mm, the inner diameter is 16 mm, and the thickness is 10 mm.
The plating method involves using a polished steel bar (JIS 8GDI) with a diameter of 1.5 mm and applying an Or composite plating film on the outer circumferential surface of the steel bar with an average grain size/μ of TiN particles eutectoid in a chromic acid-sulfuric acid bath. A plating bath having the following composition in which TiN particles having islands were dispersed was prepared.

上記メッキ浴を使用して、みがき棒鋼を陰極として、こ
れに対向して設置した鉛合金材を陽極として、下記メッ
キ条件によシメッキ処理を施してみがき棒鋼表面に0i
−TiN粒子から成る厚さ約70μ痛の複合メッキ層を
形成した。
Using the above plating bath, the surface of the polished steel bar was plated with the following plating conditions using the polished steel bar as a cathode and the lead alloy material placed opposite it as an anode.
- A composite plating layer with a thickness of approximately 70 microns was formed consisting of TiN particles.

電解条件 同時に比較材として上記処理において、TiN粒子を含
有していないメッキ浴を使用した他は、すべて同様の操
作にてメッキ層を形成したものを得た。
At the same time as the electrolytic conditions, a comparative material was obtained in which a plating layer was formed using the same procedure as above except that a plating bath containing no TiN particles was used in the above treatment.

上記の複合メッキ材および比較材に対し、メッキ層表面
に電子ビームを2X ’Torrの真空中でエネルギー
密度2 X 10 ’ w/d s走査速度25u/s
ec (被処理材を回転)にて照射し、メッキ層および
基材表面部を溶融加熱し、外周面上に合金層を形成した
For the above composite plating materials and comparative materials, an electron beam was applied to the surface of the plating layer in a vacuum of 2X' Torr at an energy density of 2 X 10' w/d s and a scanning speed of 25 u/s.
ec (rotating the material to be treated) to melt and heat the plated layer and the surface of the base material to form an alloy layer on the outer peripheral surface.

上記処理を施して得られた基材について、断面金属組織
を観察したところ、合金層は外表面から約400μ蕩±
30でほぼ均一な厚さであった。このことよりOr濃度
は約17チとなシ、中Orフェライト系スステンレス鋼
組成となっておシ、耐食性の向上が期待される。複合メ
ッキ材においては、TiN粒子もほぼ均一に分散してい
ることが確認された。
When we observed the cross-sectional metallographic structure of the base material obtained through the above treatment, we found that the alloy layer extends approximately 400 μm from the outer surface.
30 and had a substantially uniform thickness. As a result, the Or concentration is approximately 17%, resulting in a medium-Or ferritic stainless steel composition, which is expected to improve corrosion resistance. It was confirmed that TiN particles were also almost uniformly dispersed in the composite plating material.

上記処理によシ得られた、それぞれの試験片についてア
ムスラー型摩耗試験機を用いて潤滑油の存在下、以下に
示した条件ですべり摩耗試験を行なった。その結果を第
2表に示す。
Each test piece obtained by the above treatment was subjected to a sliding wear test using an Amsler type wear tester in the presence of lubricating oil under the conditions shown below. The results are shown in Table 2.

試験条件 第 2 表 以上の結果から明らかなように、本発明の表面処理法に
よれば、耐摩耗性に優れた高硬度・高融点粒子が均一に
分散され、かつ均一な厚さを持つ合金層を比較的簡便な
操作により付与せしめられることが確認された。
Test Conditions Table 2 As is clear from the results shown above, the surface treatment method of the present invention produces an alloy in which high-hardness, high-melting-point particles with excellent wear resistance are uniformly dispersed and has a uniform thickness. It was confirmed that the layer could be applied by a relatively simple operation.

【図面の簡単な説明】 第1図は本発明方法を説明する断面図。 +11・・・金属基材、(2)・・・被膜(複合メッキ
層)、(3)・・・耐摩耗被覆層、(4)・・・溶融加
熱領域、(5)・・・レーザ光。 代理人 弁理士 則 近 憲 佑 (他1名)第1図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view illustrating the method of the present invention. +11... Metal base material, (2)... Coating (composite plating layer), (3)... Wear-resistant coating layer, (4)... Melting heating area, (5)... Laser light . Agent Patent attorney Kensuke Chika (and 1 other person) Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)金属基材表面上にメッキ用金属と共に、高硬度Q
高融点粒子を共析せしめた被膜を形成する第一工程と、
該被膜および金属基材表面層を溶融加熱する第二工程か
らなることを特徴とする耐摩耗性被覆層の形成方法。 (2、特許請求の範囲第1項において、第二工程として
レーザ光あるいは電子ビームにより溶融加熱することを
特徴とする、耐摩耗性被覆層の形成力°法。
(1) High hardness Q along with plating metal on the surface of the metal base material
A first step of forming a film in which high melting point particles are eutectoid;
A method for forming a wear-resistant coating layer, comprising a second step of melting and heating the coating and the metal substrate surface layer. (2. A method for forming a wear-resistant coating layer according to claim 1, characterized in that the second step is melting and heating with a laser beam or an electron beam.
JP11016083A 1983-06-21 1983-06-21 Formation of wear resistant coated layer Pending JPS602697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11016083A JPS602697A (en) 1983-06-21 1983-06-21 Formation of wear resistant coated layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11016083A JPS602697A (en) 1983-06-21 1983-06-21 Formation of wear resistant coated layer

Publications (1)

Publication Number Publication Date
JPS602697A true JPS602697A (en) 1985-01-08

Family

ID=14528566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11016083A Pending JPS602697A (en) 1983-06-21 1983-06-21 Formation of wear resistant coated layer

Country Status (1)

Country Link
JP (1) JPS602697A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260855A (en) * 1985-09-09 1987-03-17 Toyota Motor Corp Manufacture of disc rotor
JPS6376886A (en) * 1986-09-18 1988-04-07 Chiyoda Chem Eng & Constr Co Ltd Airtight ceramic coated film and its production
JPH04365894A (en) * 1991-06-12 1992-12-17 Shimizu:Kk Heat treatment of plated film
EP1329533A1 (en) * 2002-01-22 2003-07-23 Federal-Mogul Nürnberg GmbH Lasernitriding of aluminium-based composites
US7022419B2 (en) * 2000-12-20 2006-04-04 Honda Giken Kogyo Kabushiki Kaisha Composite plating film and a process for forming the same
CN103917692A (en) * 2011-08-31 2014-07-09 钴碳化钨硬质合金公司 Methods of forming wear resistant layers on metallic surfaces

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260855A (en) * 1985-09-09 1987-03-17 Toyota Motor Corp Manufacture of disc rotor
JPS6376886A (en) * 1986-09-18 1988-04-07 Chiyoda Chem Eng & Constr Co Ltd Airtight ceramic coated film and its production
JPH04365894A (en) * 1991-06-12 1992-12-17 Shimizu:Kk Heat treatment of plated film
US7022419B2 (en) * 2000-12-20 2006-04-04 Honda Giken Kogyo Kabushiki Kaisha Composite plating film and a process for forming the same
EP1329533A1 (en) * 2002-01-22 2003-07-23 Federal-Mogul Nürnberg GmbH Lasernitriding of aluminium-based composites
CN103917692A (en) * 2011-08-31 2014-07-09 钴碳化钨硬质合金公司 Methods of forming wear resistant layers on metallic surfaces

Similar Documents

Publication Publication Date Title
US2386951A (en) Method of making bearings
US4508396A (en) Method of producing bearing component
US4772773A (en) Methods for preparation of overlaid amorphous alloy layers
JP2002527618A (en) Sputter target / back plate assembly and method of manufacturing the same
EP0556065B1 (en) Method for manufacturing ejection powder for mechanical plating and mechanical plating method using the same
JPS602697A (en) Formation of wear resistant coated layer
KR100545731B1 (en) Silver-Containing Copper Alloys for Journal Bearings
JPS6117912B2 (en)
US4236940A (en) Wear resistant titanium alloy coating
Sheldon et al. Characteristics of Ni-Ti surface alloys formed by electrospark deposition
JP3009527B2 (en) Aluminum material excellent in wear resistance and method for producing the same
JPS60110851A (en) Laser hardening method
JPS59232297A (en) Production of particle dispersed metal coated material
JPS5950177A (en) Surface treatment of metal giving superior adhesive property
US3420689A (en) Method for forming an oxidation resistant coating on a substrate
US3915665A (en) Coated cemented carbides for brazing
JPS61113757A (en) Treatment of film of different metals formed on surface of metallic substrate with laser
US2079482A (en) Welding rod and the like
JPS62112769A (en) Formation of thermally sprayed film having superior wear and corrosion resistance and durability
Nagai et al. Pulsed laser driven deposition of spattered molten particles and its application to the manufacturing of wear-resistant coatings
JPS61170578A (en) Heat resistant al alloy member
JPH04120280A (en) Production of surface-hardened aluminum material
JPH0372057A (en) Structural member made of titanium or titanium alloy
JPH01136960A (en) Cu-base material
SU704720A1 (en) Method of making laminated products