JPS6026792A - Window assembly - Google Patents

Window assembly

Info

Publication number
JPS6026792A
JPS6026792A JP58135663A JP13566383A JPS6026792A JP S6026792 A JPS6026792 A JP S6026792A JP 58135663 A JP58135663 A JP 58135663A JP 13566383 A JP13566383 A JP 13566383A JP S6026792 A JPS6026792 A JP S6026792A
Authority
JP
Japan
Prior art keywords
window
far
frame
glass
window assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58135663A
Other languages
Japanese (ja)
Other versions
JPH0115679B2 (en
Inventor
吉原 謙次郎
五十嵐 久博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshihara and Co Ltd
Original Assignee
Yoshihara and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshihara and Co Ltd filed Critical Yoshihara and Co Ltd
Priority to JP58135663A priority Critical patent/JPS6026792A/en
Publication of JPS6026792A publication Critical patent/JPS6026792A/en
Publication of JPH0115679B2 publication Critical patent/JPH0115679B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Special Wing (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Building Environments (AREA)
  • Door And Window Frames Mounted To Openings (AREA)
  • Specific Sealing Or Ventilating Devices For Doors And Windows (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は建物の窓部に取9+1けられる窓組立体に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a window assembly that is installed in a window of a building.

従来建物の窓部に取シ付けられる窓組立体は、窓枠とこ
の窓枠に取り付けられた窓ガラスとからなっている。
A window assembly conventionally attached to a window of a building consists of a window frame and a window glass attached to the window frame.

一般的に建物の窓部に取り付けられる窓組立体は種々の
重要な機能を果している。その代表的なものとして、採
光、換気、通風、温度調節、外部とのコンタクト、出入
口、非常用侵入、脱出口などがある。また窓組立体は建
物の外観、内装上でも重要なアクセントとなっている。
Window assemblies, which are typically installed in the windows of buildings, serve a variety of important functions. Typical examples include lighting, ventilation, ventilation, temperature control, contact with the outside world, entrances and exits, emergency entry, and escape exits. Window assemblies also serve as important accents on the exterior and interior of buildings.

しかしながら窓組立体は上述したように窓枠と窓が2ス
からなっているため断熱性能が悪く、室内の暖房時この
窓組立体を通して大量の熱ロスが発生し、熱エネルギー
の浪費を招くという欠点があった。
However, as mentioned above, the window assembly has poor insulation performance because it consists of two parts, the window frame and the window, and a large amount of heat loss occurs through the window assembly when heating a room, resulting in wasted thermal energy. There were drawbacks.

また窓組立体の断熱性能を、熱貫流率(K(!a4/@
”’QHr)で具体的に見ると、例えばオフィスビルの
シングルガラスサツシの場合約5.5〜10 Kcat
/1rL2’QHrでアク、一般的なオフィスビルの壁
体の熱貫流率(Kca/7g2℃Hr )約0−5〜1
. OKaat/m2℃Hrに比べ5〜20倍の悪い値
で、壁体の断熱性能に対して大きなアンバランスとなっ
ていた。従って、。
In addition, the thermal insulation performance of the window assembly is determined by the thermal conductivity (K(!a4/@
For example, in the case of a single glass sash in an office building, it is approximately 5.5 to 10 Kcat.
/1rL2'QHr, the heat transmission coefficient of the wall of a typical office building (Kca/7g2℃Hr) is approximately 0-5 to 1
.. The value was 5 to 20 times worse than OKaat/m2°CHr, which was a large imbalance with respect to the heat insulation performance of the wall. Therefore,.

/′− このような窓組立体を備えた建物の暖房設計においては
、窓部における暖房効果が落ちないように、上記熱貫流
率に基づき窓部及び壁部などの熱ロス計算を個々に行な
い、それぞれの部位に熱ロスに見食った分の熱量が供給
されるように暖房機器の容量を定め、これに適切な熱配
分及び熱制御を加えねばならず、暖房設計が極めて困難
で複雑なもの従来このような窓組立体の断熱性能を少し
でも筒めるために、窓ガラスを二重にした上に、窓枠が
アルミなどの金属製の場合窓枠からの熱の流れを遮断す
るため窓枠を室内側部分と室外側部分とに分割し両者の
間に硬質プラスチック帯を介在させたダブルガラスサツ
シや、窓ガラスを三重にしかつ同様に窓枠を分割して硬
質プラスチック帯を介在させたトリプルガラスサツシな
どが使用されている。しかしながらダブルガラスサツシ
にしても熱貫流率は約2−4〜5. OKca7/H2
°CHr、)リプルガラスサツシでも熱貫流率は約1.
8〜2. Q Kcat/m2°QHr で1、壁体の
約0.5〜’1.OKcat/m”°CHrの熱貫流率
に比べれば依然として約2〜6倍の悪い値であり、熱エ
ネルギの浪費を多少は軽減できても、壁体の断熱性能と
のアンバランスは依然として解決される迄には至ってい
ない。また窓ガラスを二重、三重にしたシ窓枠に硬質プ
ラスチック帯を介在させたりするに従って構造が複雑で
高価なものとなり、さらに窓ガラスの枚数や硬質プラス
チック帯の本数をこれ以上増やすことは、構造的にも価
格的にも限界に来ていた。
/'- When designing a heating system for a building equipped with such a window assembly, heat loss must be calculated for windows and walls individually based on the heat transfer coefficients mentioned above, so as not to reduce the heating effect at the window. , the capacity of the heating equipment must be determined so that the amount of heat equivalent to the heat loss is supplied to each part, and appropriate heat distribution and heat control must be added to this, making heating design extremely difficult and complicated. Conventionally, in order to improve the insulation performance of such window assemblies as much as possible, the window glass was double-glazed, and if the window frame was made of metal such as aluminum, the flow of heat from the window frame was blocked. Therefore, there are double glass sashes in which the window frame is divided into an indoor part and an outdoor part and a hard plastic band is interposed between the two, and a double glass sash is made in which the window frame is divided into three layers and the window frame is divided in the same way and a hard plastic band is interposed between the two. Triple-glazed satsushi is used. However, even with double glass sash, the heat transmission coefficient is about 2-4 to 5. OKca7/H2
°CHr,) Even with ripple glass sash, the heat transmission coefficient is about 1.
8-2. Q Kcat/m2°QHr: 1, wall approximately 0.5~'1. This value is still about 2 to 6 times worse than the heat transfer coefficient of OKcat/m”°CHr, and even if the waste of thermal energy can be reduced to some extent, the imbalance with the insulation performance of the wall still remains unresolved. In addition, as the window glass is made double or triple layered and hard plastic strips are interposed in the window frame, the structure becomes complicated and expensive, and the number of window glasses and the number of hard plastic strips becomes more complicated. Increasing the number of products any further was reaching its limit, both structurally and economically.

また従来の窓組立体は、上述した断熱性能の悪さに加え
て、室内と外気との温度差に起因して結露が発生し易ず
いという欠点もあった。
Furthermore, in addition to the poor insulation performance described above, conventional window assemblies also have the disadvantage of being susceptible to condensation due to the temperature difference between indoor and outdoor air.

本発明の目的は、上述した従来の欠点を解消し、優れた
断熱性能を有し、熱エネルギーの損失を軽減することが
でき、暖房設計を容易にしかつ結露の発生しにくい窓組
立体を提供することである。
The purpose of the present invention is to eliminate the above-mentioned conventional drawbacks, provide a window assembly that has excellent heat insulation performance, can reduce thermal energy loss, facilitates heating design, and is less likely to cause condensation. It is to be.

本発明によれば、窓枠の一辺の室外側以外の部分に、は
ぼその全長に沿って、セラミック粒子層からなる遠赤外
線発生器を、該発生面から放射される遠赤外線が窓ガラ
スに照射されるように取p付けたことを特徴とする窓組
立体が提供される。
According to the present invention, a far infrared ray generator made of a ceramic particle layer is installed along the entire length of one side of the window frame other than the outdoor side, and the far infrared rays emitted from the generation surface are applied to the window glass. A window assembly is provided, characterized in that it is mounted to be illuminated.

以下本発明の好適実施例を図面を参照して歇明すると、
第1図及び帛2図において本発明の第1の実施例の窓組
立体が全体的に符号2で示されてい仝0窓組立体2社、
建物の壁体に装着、される固定の外枠4と、外枠4に対
してその一辺で開閉自在にヒンジ結合された可動の内枠
6とからなる窓枠8を有する。窓枠8の内枠6には窓ガ
ラス10が通常の態様で敗り付けられ、外枠4の上辺1
20室内側側面14には取付ボックス16が固設され、
取付ボックス16内には、外枠4の上辺12のtマホ全
長に沿って、セラミック粒子層18(第6図参照)から
なる遠赤外線発生面20を備えた遠赤外線発生器22が
、発生面20を窓が2ス10のガラス面にほぼ直角にし
て取り付けられている。
Preferred embodiments of the present invention will be explained below with reference to the drawings.
In FIGS. 1 and 2, a window assembly according to a first embodiment of the present invention is generally designated by the reference numeral 2.
The window frame 8 includes a fixed outer frame 4 attached to a wall of a building, and a movable inner frame 6 hinged to one side of the outer frame 4 so as to be freely openable and closable. A window glass 10 is attached to the inner frame 6 of the window frame 8 in a normal manner, and the upper side 1 of the outer frame 4
20 A mounting box 16 is fixedly installed on the indoor side surface 14,
Inside the mounting box 16, along the entire length of the upper side 12 of the outer frame 4, a far infrared ray generator 22 is provided with a far infrared ray generating surface 20 made of a ceramic particle layer 18 (see FIG. 6). The window 20 is attached to the glass surface of the 2s 10 at almost a right angle.

遠赤外線発生器22は、第6図に拡大断面図で示すよう
に、基板部分24と相対する側板部分26.28とから
なる断面コ字形のケーシング30を有し、ケーシング3
0は熱伝導性の良好な材料、例えば鋼板でできている。
As shown in an enlarged cross-sectional view in FIG.
0 is made of a material with good thermal conductivity, such as a steel plate.

ケーシング300基板部分24の外側表面には前述の遠
赤外線放射性のセラミック粒子層18が被覆されて遠赤
外線発生面20を構成し、内側表面には面状発熱体32
が接着されている。面状発熱体32としては、ガラス繊
維布にカーボン発熱体(ドータイト)を塗布した発熱要
素32aの両面にポリエステルシ−)321)1320
を全面接着したものを用いることができ、発熱要素32
aの両端には電極32d。
The outer surface of the substrate portion 24 of the casing 300 is coated with the far-infrared emitting ceramic particle layer 18 to constitute the far-infrared generating surface 20, and the inner surface is coated with the sheet heating element 32.
is glued. As the planar heating element 32, a heating element 32a made of glass fiber cloth coated with a carbon heating element (dotite) is coated with a polyester sheet (321) 1320 on both sides of the heating element 32a.
The heat generating element 32 can be
Electrodes 32d are provided at both ends of a.

32θが形成されている。電極3211,328は図示
しない配線及び電気コードを介して電源に接続されてい
る。また電極32a、32θは、電源との接続のオン、
オフの操作及び温度調節のため、図示しないサーモスタ
ットと協働するコントローラに接続することができる。
32θ is formed. The electrodes 3211 and 328 are connected to a power source via wiring and electric cords (not shown). Further, the electrodes 32a and 32θ are connected to the power source,
For switch-off operation and temperature regulation, it can be connected to a controller that cooperates with a thermostat, not shown.

面状発熱体32には温度過昇防止装置などの安全装置を
付設することができる。面状発熱体32の下側には例え
ばガラスウールでてきた断熱材34が設けられ、断熱材
34は、ケーシング30の側板部分26.28にねじな
どで固定されたカバー36によって保持されている。
The planar heating element 32 may be provided with a safety device such as a device for preventing excessive temperature rise. A heat insulating material 34 made of glass wool, for example, is provided below the sheet heating element 32, and the heat insulating material 34 is held by a cover 36 fixed to the side plate portions 26, 28 of the casing 30 with screws or the like. .

セラミック粒子層1Bは、第4図に拡大して示すように
、好ましくはケーシング3oの基板部分24上に耐熱性
の接着剤36を塗布し、この上にセラミック粒子38を
その一部が接着剤6の表面から突出するように埋め込ん
でいる。
As shown in an enlarged view in FIG. 4, the ceramic particle layer 1B is preferably formed by coating a heat-resistant adhesive 36 on the substrate portion 24 of the casing 3o, and placing ceramic particles 38 on top of which some of the ceramic particles 38 are coated with the adhesive. It is embedded so as to protrude from the surface of 6.

耐熱性の接着剤36としては、好ましくはエポキシ系の
接着剤が用いられ、また耐熱塗料も用いることができる
As the heat-resistant adhesive 36, preferably an epoxy adhesive is used, and a heat-resistant paint can also be used.

セラミック粒子としては、好ましくはシリカ系のケイ酸
粗粒子(ケイ砂)が用いられ、その他ジルコニア系、チ
タニア系、アルミナ系などのセラミック材料も用いるこ
とができる。
As the ceramic particles, silica-based silicic acid coarse particles (silica sand) are preferably used, and other ceramic materials such as zirconia-based, titania-based, alumina-based, etc. can also be used.

上述した実施例の窓組立体2の作用について説明すると
、遠赤外線発生器220面状発熱体32に通電し、セラ
ミック粒子層18を例えは約80度Cの温度に加熱する
と、セラミック粒子38はその性質によシ熱エネルギー
を遠赤外線エネルギーに効率的に変換し、8〜10ミク
ロンの波長を主体とする遠赤外線を高密度で放射する。
To explain the operation of the window assembly 2 of the above-described embodiment, when the far-infrared generator 220 and the planar heating element 32 are energized and the ceramic particle layer 18 is heated to a temperature of about 80 degrees Celsius, the ceramic particles 38 Due to its properties, it efficiently converts thermal energy into far-infrared energy, and emits far-infrared rays with a wavelength of 8 to 10 microns at a high density.

またこの時、セラミック粒子38はその一部が接着剤3
6の表面から突出していることによシ、セラミック粒子
38の多面体を構成する突出部分の表面から色々な方向
に遠赤外線を放射する。従って遠赤外線の放射は遠赤外
線発生面20の前方に最大約160度の広角度範囲にわ
たって行なわれる。
Also, at this time, some of the ceramic particles 38 are attached to the adhesive 3.
6, far infrared rays are emitted in various directions from the surface of the protruding portion constituting the polyhedron of the ceramic particle 38. Therefore, far-infrared rays are emitted in front of the far-infrared ray generating surface 20 over a wide angular range of about 160 degrees at most.

従って窓組立体2の窓ガラス10に相当量の遠赤外線が
照射される。一方ガラスは遠赤外線を透過せず、その2
0%以上を吸収し再輻射するという性質がある。従って
窓ガラス10に照射された遠赤外線は窓ガラスにその9
0%以上が吸収されガラス面を温め、再輻射される。
Therefore, the window glass 10 of the window assembly 2 is irradiated with a considerable amount of far infrared rays. On the other hand, glass does not transmit far infrared rays, part 2
It has the property of absorbing 0% or more and re-radiating it. Therefore, the far infrared rays irradiated to the window glass 10
More than 0% is absorbed, warms the glass surface, and is re-radiated.

以上のような窓組立体20作用のため、この窓組立体2
を建物の窓部に取シ付けた時、窓組立体2の窓ガラス1
0や窓枠8の輻射温度を室内の乾球温度より、最大5.
5℃高めることができる。従って窓組立体2の熱ロスは
ほぼ完全に自己補償さル窓部近傍にいる人間はその部分
の暖房を特に強くしなくても寒さを感じない。またこの
時使用されるエネルギー形態は輻射エネルギーでちゃ、
この輻射エネルギーの最初の発生は熱エネルギーを極め
て効率よく輻射エネルギーに変換するセラミック粒子層
18で行ない、かつ窓ガラス1oは照射された輻射エネ
ルギーの90%以上を吸収、再輻射するので、窓組立体
2を通して室外に・逃げる熱量を補なうのに少量の熱エ
ネルギーをセラミック粒子層18に与えてそれを行なう
ことができ、窓部近傍に特別な暖房設備を配置し、或い
は温風吹出口を多く設けるなどその部分の暖房を特に強
めた場合に比べてエネルギーの浪費を相当に軽減するこ
とができる。またセラミック粒子層18は約80度位の
低温度に加熱されればよいので安全であり、取り扱いも
容易である。
Due to the operation of the window assembly 20 as described above, the window assembly 2
When the is installed on the window of the building, the window glass 1 of the window assembly 2
0 and the radiant temperature of the window frame 8 to a maximum of 5.
It can be raised by 5℃. Therefore, heat loss in the window assembly 2 is almost completely self-compensated, and people in the vicinity of the window do not feel cold even if the heating in that area is not particularly strong. Also, the energy form used at this time is radiant energy,
The initial generation of this radiant energy takes place in the ceramic particle layer 18, which converts thermal energy into radiant energy extremely efficiently, and the window glass 1o absorbs and re-radiates more than 90% of the irradiated radiant energy. This can be done by applying a small amount of thermal energy to the ceramic particle layer 18 to compensate for the amount of heat escaping to the outside through the solid body 2, by arranging special heating equipment near the window, or by installing hot air outlets. Energy waste can be significantly reduced compared to when heating in that area is particularly strengthened, such as by installing a large number of heating units. Furthermore, the ceramic particle layer 18 is safe and easy to handle because it only needs to be heated to a low temperature of about 80 degrees.

なお暖房時窓組立体2を通して室外に逃げる熱量を遠赤
外線発生器22による遠赤外線エネルギーで補なう時、
室外に逃げる熱量の割合が壁体を通して室外に逃げる熱
量の割合とほぼ同じになるように遠赤外線発生器22の
容量を決定することにより、窓組立体2と壁体との熱貫
流率を実質的に同じにし、断熱性能を同じにすることが
できる。
Note that when the amount of heat escaping outdoors through the window assembly 2 during heating is supplemented with far-infrared energy from the far-infrared generator 22,
By determining the capacity of the far-infrared generator 22 so that the proportion of heat escaping outdoors is almost the same as the proportion of heat escaping outdoors through the wall, the heat transfer coefficient between the window assembly 2 and the wall can be substantially reduced. It is possible to make the thermal insulation performance the same.

これによシ建物の外壁は窓部があろうとなかろうと断熱
性能の均一な壁体と見なすことができるので、暖房設計
が極めて容易とな9、また暖房設備の施行も容易となる
As a result, the outer wall of a building can be regarded as a wall with uniform insulation performance regardless of whether there are windows, making heating design extremely easy9 and installation of heating equipment also easy.

さらに窓組立体2は窓ガラス10に照射される遠赤外線
の加熱作用により、室内と室外に温度差があっても結露
はほとんど発生しない。
Further, in the window assembly 2, due to the heating effect of far infrared rays irradiated to the window glass 10, almost no dew condensation occurs even if there is a temperature difference between indoors and outdoors.

さらに上記実施例の窓組立体2によれば、遠赤外線発生
器22のセラミック粒子層18から放射された遠赤外線
の一部は室内に直接照射され暖房用として使用すること
ができるので、暖房のエネルギーを一層軽減することが
できるものである。
Furthermore, according to the window assembly 2 of the above embodiment, a part of the far infrared rays emitted from the ceramic particle layer 18 of the far infrared generator 22 is directly irradiated into the room and can be used for heating. This makes it possible to further reduce energy consumption.

第5図及び第6図は本発明の窓組立体の第2の実施例を
示す。この実施例において全体的に符号50で示された
窓組立体は、建物の壁体に装着される固定の外枠52と
、外枠52に対してその一辺で開閉自在にヒンジ結合さ
れた可動の内枠54とからなる窓枠56を有する0窓枠
56の内枠54には2枚の窓ガ2ス58.60が通常の
態様で取り付けられ、ダブルガラスサツシを構成してい
る。内枠54の上辺62の窓ガラス58.60の取υ付
は部分の間には凹所64内に取付ボックス66が固設さ
れ、この取付ボックス66内には、内枠54の上辺62
のほぼ全長に沿って、上2ミツ名粒子層からなる遠赤外
線発生面68々備えた遠赤外線発生器TOが、発生面6
8を窓ガラス58.60のガラス面にほぼ直角に取シ付
けられている。
5 and 6 illustrate a second embodiment of the window assembly of the present invention. The window assembly, generally designated 50 in this embodiment, includes a fixed outer frame 52 attached to a wall of a building, and a movable frame 52 hinged to the outer frame 52 on one side so as to be openable and closable. Two window gases 58 and 60 are attached to the inner frame 54 of the window frame 56 in a normal manner to form a double glass sash. For mounting the window glass 58, 60 on the upper side 62 of the inner frame 54, a mounting box 66 is fixed in a recess 64 between the parts.
A far-infrared generator TO is provided with far-infrared ray generating surfaces 68 consisting of the upper two particle layers along almost the entire length of the generating surface 6.
8 is attached to the glass surface of the window glass 58, 60 at approximately right angles.

遠赤外線発生器10の具体的構造は第1の実施例の遠赤
外線発生器22と実質的に同じであるので説明は省略す
る。
The specific structure of the far-infrared generator 10 is substantially the same as the far-infrared generator 22 of the first embodiment, so a description thereof will be omitted.

この実施例の窓組立体50において、遠赤外線発生器7
0からの遠赤外線はそのほぼ全てが2枚の窓ガラス58
.60に照射される。照射された遠赤外線は窓Wラスな
透過することなく、窓ガラス58.60で相互に吸収、
反射及び再輻射を行い、窓組立体50全体の輻射温度を
高めると共に、同組立体内部に閉じ込められている空気
温度(乾球温度)を、室内の暖房空気温度(乾球温度)
と同等、若しくはそれ以上に高める。これにより窓組立
体50による室内暖房空気の熱ロス発生は完全に防止さ
れる。従ってこの実施例のものも第1の実施例と同様、
断熱性能の向上、エネルギーの節約、暖房設計の容易化
、及び結露の防止を図ることができる。
In the window assembly 50 of this embodiment, the far-infrared generator 7
Almost all of the far infrared rays from 0 are transmitted through the two window glasses 58.
.. 60 irradiated. The irradiated far infrared rays are mutually absorbed by the window glass 58 and 60 without passing through the window glass.
The radiant temperature of the entire window assembly 50 is increased by reflection and re-radiation, and the temperature of the air trapped inside the assembly (dry bulb temperature) is reduced to the indoor heating air temperature (dry bulb temperature).
equal to or higher than that. As a result, heat loss of indoor heating air due to the window assembly 50 is completely prevented. Therefore, this embodiment also has the same characteristics as the first embodiment.
It is possible to improve insulation performance, save energy, simplify heating design, and prevent condensation.

さらにこの実施例のものは、遠赤外線発生器70の遠赤
外線のほぼ全てが窓ガラスに照射されるので、第1の実
施例のものよシ窓ガラスに照射される遠赤外線エネルギ
ーの割合と効率が高く、かつダブルガラスサツシ構造な
ので第1の実施例のものよシ遠赤外線発生器70の容量
を小さくしてセラミック粒子層に与える熱エネルギーの
量をさらに少なくすることができ、従ってよシ一層のエ
ネルギーの節約をすることができる。
Furthermore, in this embodiment, almost all of the far infrared rays from the far infrared generator 70 are irradiated onto the window glass, so the ratio and efficiency of the far infrared energy irradiated onto the window glass is different from that in the first embodiment. The capacity of the far-infrared generator 70 can be reduced to further reduce the amount of thermal energy applied to the ceramic particle layer, which is different from that of the first embodiment because of its high heat resistance and the double glass sash structure. can save energy.

なお以上第1及び第2の実施例において遠赤外線発生器
22.70は窓枠8,56の上辺に取り付けた例を示し
たが、これのみには限定されず、特に第2の実施例にお
いては窓枠の側辺に取シ付けても邪魔にならず十分実用
に耐えるものである0まだ以上の実施例においては遠赤
外線発生器22.70を、遠赤外線発生面20.68が
窓ガラス10.58.60のガラス面にitは直角にな
るように取シ付けたが、このような取υ付は角度に限定
されるものではなく、例えば第1の実施例では遠赤外線
発生面20をやや窓ガラス710に向けて取シ付けるこ
ともでき、第2の実施例では遠赤外線発生面68をやや
室内側の窓ガラス60に向けて取シ付けることもでき、
要は発生面20゜68から放射される遠赤外線が窓ガラ
ス10゜60に照射されるように取シ付けられればよい
Although the far-infrared generators 22.70 are attached to the upper sides of the window frames 8 and 56 in the first and second embodiments, the invention is not limited to this, and in particular in the second embodiment. The far infrared ray generator 22.70 is mounted on the side of the window frame without getting in the way and is sufficiently durable for practical use. 10, 58, 60 was mounted so that it was perpendicular to the glass surface, but such mounting is not limited to the angle. For example, in the first embodiment, the far infrared ray generating surface 20 In the second embodiment, the far-infrared ray generating surface 68 can be mounted slightly toward the window glass 60 on the indoor side.
In short, it is sufficient that the window glass 10°60 is mounted so that the far infrared rays emitted from the generation surface 20°68 are irradiated onto the window glass 10°60.

以上明らかなように本発明の窓組立体によれば、窓枠の
一辺の室外側以外の部分に、はぼその全長(・沿って、
セラミック粒子層からなる遠赤外線発生面を備えた遠赤
外線発生器を、核発生面から放射される遠赤外mが窓ガ
ラスに照射されるように取シ付けたので、窓ガラスは遠
赤外線を吸収して加熱され、暖房時窓組立体を通して室
外に逃ける熱量を積極的に補なって窓組立体の断熱性能
を向上させることができる。かつこのことは遠赤外線発
生器のセラミック粒子層に少量の熱エネルギーを与える
ことによシ行なうことができるので、暖房時のエネルギ
ーの損失を軽減することができ、さらに遠赤外線発生器
の容量を適当に決めることにより窓組立体の断熱性能を
壁体の断熱性能とほぼ同じにして暖房設計を容易にする
ことができる。
As is clear from the above, according to the window assembly of the present invention, the entire length of the window frame (along the
A far-infrared generator equipped with a far-infrared ray generating surface made of a ceramic particle layer was installed in such a way that the far-infrared rays m emitted from the nucleation surface were irradiated onto the window glass, so the window glass did not emit far-infrared rays. It is possible to improve the heat insulation performance of the window assembly by actively supplementing the amount of heat absorbed and heated and escaping to the outside through the window assembly during heating. This can be done by applying a small amount of thermal energy to the ceramic particle layer of the far-infrared generator, which reduces energy loss during heating and further increases the capacity of the far-infrared generator. By appropriately determining the heat insulating performance of the window assembly, it is possible to make the heat insulating performance of the window assembly almost the same as that of the wall, thereby facilitating heating design.

さらに窓ガラスに照射される遠赤外線の加熱作用により
結露を防止することができる。
Furthermore, dew condensation can be prevented by the heating effect of far infrared rays irradiated onto the window glass.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の窓組立体の縦断面図で
あp1第2図は第1図の下面図であり、第3図は第1図
の実施例における遠赤外線発生器の拡大断面図であシ、
第4図は第3図のセラミック粒子層のさらに拡大図であ
シ、第5図は本発明の第2の実施例の窓組立体の縦断面
図であシ、第6図はM5図の■−■線に沿った断面図で
ある。 図中、符号2,50・・・窓組立体、8,56・・・窓
枠、1υ、58.60・・・窓ガラス、12・・・外枠
の上辺(窓枠の一辺)、62・・・内枠の上辺(窓枠の
一辺)、14・・・上辺の室内側側面(−辺の室外側以
外の部分)、64・・・凹所(−辺の室外側以外の部分
)、18・・・セラミック粒子層、20.68・・・遠
赤外線発生面、22.70・・・遠赤外線発生器代理人
 浅 村 皓 第1図 十〇図
FIG. 1 is a vertical cross-sectional view of a window assembly according to the first embodiment of the present invention. FIG. 2 is a bottom view of the window assembly in FIG. 1, and FIG. This is an enlarged cross-sectional view of the vessel.
4 is a further enlarged view of the ceramic particle layer of FIG. 3, FIG. 5 is a longitudinal sectional view of a window assembly according to a second embodiment of the present invention, and FIG. It is a sectional view taken along the line ■-■. In the figure, numerals 2, 50...Window assembly, 8, 56... Window frame, 1υ, 58.60... Window glass, 12... Upper side of outer frame (one side of window frame), 62 ...Top side of the inner frame (one side of the window frame), 14...Indoor side surface of the top side (portion other than the - side outdoor side), 64... Recess (portion other than the - side outdoor side) , 18... Ceramic particle layer, 20.68... Far-infrared ray generation surface, 22.70... Far-infrared ray generator agent Hajime Asamura Figure 1 Figure 10

Claims (1)

【特許請求の範囲】 (1) 窓枠の一辺の室外側以外の部分に、はぼその全
長に沿って、セラミック粒子層からなる遠赤外線発生面
を備えた遠赤外線発生器を、該発生面から放射される遠
赤外線が窓ガラスに照射されるように取p付けたことを
特徴とする窓組立体0(2)前記窓枠の一辺が上辺であ
る特許請求の範囲゛第1項記載の窓組立体。 (3)前記遠赤外線発生器がその遠赤外純発生面を前記
窓ガラスのガラス面にほぼ直角にして前記窓枠の一辺に
取り付けられている特許請求の範囲第1項又は第2項記
載の窓組立体0 (4)前記遠赤外線発生器が前記窓枠の一辺の室内側側
面に取り付けられている特許請求の範囲第1項から第6
項のいずれか1項に記載の窓組立体0(5)前記窓枠が
ダブルガラス窓枠であシ、前記遠赤外線発生器が前記ダ
ブルガラス窓枠の一辺の2枚の窓ガラスの間に取υ付け
られている特許請求の範囲第1項から第3項のいずれか
1項に記載の窓組立体。 (6)前記窓枠が外枠と内枠とを有し、前記遠赤外線発
生器が前記外枠に取り付けられている特許請求の範囲第
4項記載の窓組立体。 (力 前記窓枠が外枠メ内枠とを有し、前記遠赤外線発
生器が前記内枠に取り付けられている特許請求の範囲第
5項記載の窓組立体。
[Claims] (1) A far-infrared generator having a far-infrared ray generating surface made of a ceramic particle layer is installed along the entire length of one side of the window frame other than the outdoor side. A window assembly 0 (2) characterized in that the window assembly is mounted so that the far infrared rays radiated from the window glass are irradiated onto the window glass. window assembly. (3) Claim 1 or 2, wherein the far-infrared generator is attached to one side of the window frame with its pure far-infrared generation surface substantially perpendicular to the glass surface of the window glass. Window assembly 0 (4) Claims 1 to 6, wherein the far-infrared generator is attached to an indoor side surface of one side of the window frame.
0 (5) The window assembly according to any one of paragraphs 0 (5), wherein the window frame is a double glass window frame, and the far infrared ray generator is between two window glasses on one side of the double glass window frame. A window assembly according to any one of the appended claims 1 to 3. (6) The window assembly according to claim 4, wherein the window frame has an outer frame and an inner frame, and the far-infrared generator is attached to the outer frame. The window assembly according to claim 5, wherein the window frame has an outer frame and an inner frame, and the far-infrared generator is attached to the inner frame.
JP58135663A 1983-07-25 1983-07-25 Window assembly Granted JPS6026792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58135663A JPS6026792A (en) 1983-07-25 1983-07-25 Window assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58135663A JPS6026792A (en) 1983-07-25 1983-07-25 Window assembly

Publications (2)

Publication Number Publication Date
JPS6026792A true JPS6026792A (en) 1985-02-09
JPH0115679B2 JPH0115679B2 (en) 1989-03-20

Family

ID=15157025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58135663A Granted JPS6026792A (en) 1983-07-25 1983-07-25 Window assembly

Country Status (1)

Country Link
JP (1) JPS6026792A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194288U (en) * 1985-05-24 1986-12-03
JPS61194289U (en) * 1985-05-24 1986-12-03
JPS6318149U (en) * 1986-07-18 1988-02-06

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194288U (en) * 1985-05-24 1986-12-03
JPS61194289U (en) * 1985-05-24 1986-12-03
JPS6318149U (en) * 1986-07-18 1988-02-06

Also Published As

Publication number Publication date
JPH0115679B2 (en) 1989-03-20

Similar Documents

Publication Publication Date Title
KR101901486B1 (en) Heat dissipation structure and wind power unit for heat generating equipment
US3410336A (en) Thermal conditioning system for an enclosed space
JPS6026792A (en) Window assembly
CN201068063Y (en) Far-infrared ray electric heating wall painting
KR101882972B1 (en) Insulation window system using thermal conduction
US3057989A (en) Curtain wall
JP2877386B2 (en) Partition wall with thermal glass
KR20200021133A (en) Heating Double Pane Window having Lighting function and Anti-Sweating function
JP6692991B2 (en) Radiant cooling / heating type building
CN211204193U (en) Prevent hot wall warm structure
JP3881437B2 (en) Heat generation plate and building opening structure using the heat generation plate
WO2018102820A1 (en) Heating glass structure
CN218758267U (en) Heating wallboard structure
CN206157961U (en) Thermal -insulated heat retaining glass curtain wall
JP3184299U (en) Heat insulation inner window and kit for making heat insulation inner window
JPS58164936A (en) Panel heater
US3244856A (en) Conditioning the climate of a room
JP2525454Y2 (en) Bathroom floor heating panel
JPH10139492A (en) Heat generating glass
JPH1183058A (en) Panel for heating korean floor heater
JP2624575B2 (en) Thermal insulation plate and thermal insulation method using the same
JPS6139212Y2 (en)
JPS6112532Y2 (en)
JPS645013Y2 (en)
JPS621676Y2 (en)