JPS6026660A - Control device for melt surface of source of evaporation - Google Patents

Control device for melt surface of source of evaporation

Info

Publication number
JPS6026660A
JPS6026660A JP13511583A JP13511583A JPS6026660A JP S6026660 A JPS6026660 A JP S6026660A JP 13511583 A JP13511583 A JP 13511583A JP 13511583 A JP13511583 A JP 13511583A JP S6026660 A JPS6026660 A JP S6026660A
Authority
JP
Japan
Prior art keywords
monitor
evaporation
source
flying
evaporating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13511583A
Other languages
Japanese (ja)
Other versions
JPS6337184B2 (en
Inventor
Koyo Tsuchiya
土谷 高陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc, Nihon Shinku Gijutsu KK filed Critical Ulvac Inc
Priority to JP13511583A priority Critical patent/JPS6026660A/en
Publication of JPS6026660A publication Critical patent/JPS6026660A/en
Publication of JPS6337184B2 publication Critical patent/JPS6337184B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To monitor exactly the rise and fall of a melt surface and to perform control with high reliability by providing a monitor which senses the flying amt. of an evaporating material in addition to a monitor which controls the rate of evaporation in a treating chamber for vacuum deposition and controlling the supply of the evaporating material. CONSTITUTION:An evaporating material 5 is fed from a feeder 4 to a crucible 3b and is heated and melted by a coil 3a. A film deposited by evaporation is formed on a substrate 2 by the evaporating material from a source of evaporation 3. An atomic absorption type monitor 6 is provided near the substrate 2 to control the rate of evaporation from the source 3, by which the rate of evaporation is adjusted constant. A monitor 8 which senses the flying amt. of the evaporating material such as an atomic absorption monitor is provided in the position where the flying amt. of the evaporating material changes with the change in the melt surface is provided alongside the source 3. When the evaporating material that comes to fly attains a preset flying amt., the monitor senses the same and stops the operation of the feeder 4 for the material 5, thereby controlling the melt surface of the source 3 constant.

Description

【発明の詳細な説明】 本発明は主として真空蒸着装置に使用される蒸発源の溶
融面制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention mainly relates to a melting surface control device for an evaporation source used in a vacuum evaporation apparatus.

従来、この種蒸発源は蒸発による溶融面の低下に伴ない
ワイヤ状その他の蒸発材料を供給装置にニジ供給して蒸
発物のレート変動や蒸着膜の膜成分の不均一性或は該蒸
発源が空加熱状態となって損傷する事故等分防止する必
要があるが、該溶融面の低下を真空室内に挿入の光学セ
ンサーや真空室の窓を介して光学的に直視して監視した
場合蒸発物で光学センサーの投受光面や窓が曇り勝ちで
正るKに供給装置を駆動して蒸発は科を供給出来ない欠
点がある。また該蒸発源が誘導加熱式のものである場合
コイルにかかるり。
Conventionally, this type of evaporation source continuously feeds wire-shaped or other evaporation material to a supply device as the melting surface decreases due to evaporation, thereby reducing fluctuations in the rate of evaporation, non-uniformity of the film components of the deposited film, or the evaporation source. It is necessary to prevent accidents such as damage due to dry heating, but if the drop in the melting surface is monitored directly optically through an optical sensor inserted into the vacuum chamber or through the window of the vacuum chamber, evaporation will occur. There is a drawback that the light emitting/receiving surface of the optical sensor and the window tend to fog up due to objects, and the supply device cannot be driven to supply evaporation. Also, if the evaporation source is of an induction heating type, the amount of heat applied to the coil will be increased.

バイアス成分を検出して供給装置を作動させることも提
案されたが蒸発物の一部がるつほに偏析しそれがDOバ
イアスの均−准を乱し溶融面のレベルの一様性が寿にり
く、現在では蒸発源よりの蒸発量を経験的に判断してタ
イマによシ間歇的に供給装置を作動させて溶融面を制御
するを一般とする。而してこのタイマ式のものは経験的
に供給量を設定してもわずかの溶融レベル変動が蒸発物
の等分布面を変えるため予定の膜厚が寿られず、溶融温
度が変化して生成膜の収分比を変え或は蒸発源の破損に
よる異常な溶融面の低下を検し爵ず信頼性が欠如し勝ち
である。
It has also been proposed to detect the bias component and operate the feeder, but some of the evaporated material segregates in the melting hole, which disturbs the uniformity of the DO bias and makes it difficult to maintain the uniformity of the level of the melt surface. Currently, it is common practice to empirically judge the amount of evaporation from the evaporation source and to control the melting surface by intermittently operating the supply device using a timer. However, with this timer type, even if the supply amount is set empirically, a slight change in the melting level will change the uniform distribution surface of the evaporated material, so the planned film thickness will not be maintained, and the melting temperature will change and the product will be formed. It is difficult to detect an abnormal drop in the melting surface due to changes in the yield ratio of the membrane or damage to the evaporation source, which tends to result in a lack of reliability.

本発明はこうした欠点等を排し百頼性の高い溶融面の制
御装置を提供することを目的としたもので、蒸発源から
の蒸発による溶融面の低下に伴ない該蒸発源にワイヤ状
その他の蒸発材料を供給装置により供給する式のものに
於て、該蒸発源の側方で溶融面の変化に伴ない蒸発物の
飛来が変化する位置に原子吸光式モニタその他の蒸発物
の飛来量を感知するモニタを設け、該モニタの設定飛来
量の感知時に前記供給装置の蒸発材料供給作動を停止す
ることを特徴とする。
The purpose of the present invention is to eliminate such drawbacks and provide a highly reliable melting surface control device. In the case where the evaporation material is supplied by a supply device, an atomic absorption type monitor or other monitor is installed on the side of the evaporation source at a position where the amount of evaporation material changes as the melting surface changes. The present invention is characterized in that a monitor is provided to detect the amount of the evaporated material, and the supplying operation of the evaporated material of the supply device is stopped when the monitor detects the set flying amount.

本発明の実施例を図面につき説明すると、(1)は真空
排気された処理室、(2)は該室(1)の上方に設けら
れた基板、(3)は該室(1)の下方に基板(2)と対
向させて設けた蒸発源を示し、該蒸発源(3)は例えば
コイル(3a)にz5るつは(3b)内にワイヤ状或は
粉末状等で供給装置(4)から供給された蒸発材料(5
)を誘導加熱で溶解する。基板(2)の表面には該蒸発
源(3)から蒸発した蒸発材料が膜状に付着して蒸着処
理が施されるが、そのけ着する膜の成長の度合いは例え
ば該基板(2)の近傍に設けた原子吸光式モニタ(6)
にニジcosin N乗則に従い炎状に広がる蒸発物を
モニタしてコイル(3m)の電力を制御し蒸発源(3)
からの蒸発量を制御することによシ一定に調節される。
An embodiment of the present invention will be described with reference to the drawings. (1) is a vacuum-evacuated processing chamber, (2) is a substrate provided above the chamber (1), and (3) is below the chamber (1). 2 shows an evaporation source provided facing the substrate (2), and the evaporation source (3) is, for example, connected to a coil (3a) in the form of a wire or powder in a supply device (4). ) supplied from evaporation material (5
) is melted by induction heating. The evaporation material evaporated from the evaporation source (3) adheres to the surface of the substrate (2) in the form of a film and is subjected to the evaporation process. Atomic absorption monitor (6) installed near the
The power of the coil (3m) is controlled by monitoring the evaporated material spreading in the shape of a flame according to the N-th power law, and the evaporation source (3)
By controlling the amount of evaporation from the

以上の構成は従来の真空蒸着装置の構成と特に変わりが
ないが本発明は該蒸発源(3)の側方で溶融面(7)の
変化に伴ない蒸発物の飛来量が変化する位置に原子吸光
式モニタ、電子発光式モニタその他の蒸発物の飛来量を
感知するモニタ(8)を設け、先のモニタ(6)Kで蒸
発物のレートが一定となるように蒸発源(3)全制御し
ておき該モニタ(8)に於て飛来する蒸発物の量が設定
飛来量に達したことを感知した時に蒸発材料(5)の供
給装置(4)の作動を停止させ、該蒸発源(3)の溶融
面(7)を一定に制御して前記不都合等を解消するよう
にした。
The above configuration is not particularly different from the configuration of a conventional vacuum evaporation apparatus, but the present invention is located at a position on the side of the evaporation source (3) where the amount of evaporated matter changes as the melting surface (7) changes. A monitor (8) such as an atomic absorption monitor, an electroluminescent monitor, or another monitor that detects the amount of evaporated matter is installed, and all evaporation sources (3) are connected so that the rate of evaporated matter is constant using the monitor (6) When the monitor (8) detects that the amount of flying evaporation material has reached the set amount, the operation of the supply device (4) for the evaporation material (5) is stopped, and the evaporation source is (3) The melting surface (7) is controlled to be constant to eliminate the above-mentioned disadvantages.

該蒸発源(3)からcosin N乗則に従う広がシ(
9)で蒸発物が蒸発するが、該広が月9)の下部はほぼ
直線的な断面輪郭形状(11k有し、しかも該形状αQ
は溶融面(力の上昇、下降とは逆に下降、上昇する現象
を生ずるもので、該蒸発源(3)の側方の該形状αQが
昇降して蒸発物の飛来が変化する領域(JDにモニタ(
8) fc設けることにニジ溶融面(7)が位置(7a
)まで上昇して該輪郭形状(l[lが下がるとモニタ(
8)は蒸発物を感知して供給装置(4) f!:止め。
From the evaporation source (3), the spread according to the cosin N power law (
9), the lower part of the spreading moon 9) has an almost linear cross-sectional contour shape (11k), and the shape αQ
is a phenomenon in which the melting surface (descending and rising, contrary to the rise and fall of the force) occurs, and the area where the shape αQ on the side of the evaporation source (3) rises and falls and the flying of evaporated matter changes (JD monitor (
8) When the fc is provided, the rainbow melting surface (7) is located at the position (7a
) rises to the contour shape (l [If l falls, the monitor (
8) senses the evaporated matter and supplies the device (4) f! : Stop.

また溶融面(7)が位置(7b)まで下降して該輪郭形
状(L(2)が上るとモニタ(8)は蒸発物を感知せず
供給装置(4)ね蒸発材料をるつは(3りに供給し、そ
の繰返しで溶融面(7)は一定に維持される。
Further, when the melting surface (7) descends to the position (7b) and the contour shape (L (2) rises), the monitor (8) does not detect the evaporated material and the supply device (4) passes the evaporated material ( By repeating this process, the melting surface (7) is kept constant.

該輪郭形状(10)は通常、るつは(3b)の上級を中
心に上下するが、第3図示のように側方に区画壁0のを
設けてこれを境に該形状α0の昇降する領域(Iυが形
成されるようにしてもよい。
The contour shape (10) usually moves up and down centering on the upper part of the ruler (3b), but as shown in the third figure, a partition wall 0 is provided on the side and the shape α0 rises and falls with this as a boundary. A region (Iυ) may be formed.

(8a )(8b )Fi原子吸光式モニタ(8)を構
成する光源部と光検出部で、該光源部(8a)からの光
が蒸発物中を通過する時特定の波長の成分が吸収され光
検出部(8b)に検出される成分が減ることで該蒸発物
の飛来量が感知され、モニタ(6)もこれと同様の構成
をなし優る。α騰は電源<14)はモニタ(8)の出力
でrF=動し、供給モータ(1噴の作動側8を行なうフ
ィーダーコントローラである。
(8a) (8b) When the light from the light source (8a) passes through the evaporated material, components of specific wavelengths are absorbed in the light source section and photodetection section that make up the Fi atomic absorption monitor (8). As the number of components detected by the photodetector (8b) decreases, the amount of the evaporated matter is sensed, and the monitor (6) also has a similar configuration. The power supply <14) is operated by the output of the monitor (8), and the feed motor is a feeder controller that performs the operation side 8 of one injection.

その作動?説明するに蒸発源(3)の溶融面(力が予定
エルも高くなると蒸発物の下方の輪郭形状a〔が下降し
てモニタ(8)に達し、その飛来量が設定値以上である
と供給装置(4)ト作動させないが。
Does it work? To explain, when the molten surface of the evaporation source (3) becomes higher than the planned EL, the lower contour shape a of the evaporated material descends and reaches the monitor (8), and if the amount of the evaporated material exceeds the set value, the evaporated material is supplied. Device (4) is not activated.

溶融面(7)が低下して輪郭形状−が高1ハモニタ(8
)から外れると供給装置(4)は該モニタ(8)の指示
にニジ蒸発材料(5)を蒸発源(3)に供給し、溶融面
(7)を高め、予定位置(7a)tで高まると再びモニ
タ(8)が蒸発物を感知して該装置(4)の作動を止め
ることを繰返す。またるつは(3b)の破損等による異
常な溶融面(7)の降下を生ずるとモニタ(8)からの
出力が低下するのでこれに接続した警報或は蒸発源(3
)への電源スィッチを作動させることが出来る。
The melting surface (7) is lowered and the contour shape becomes high 1 hamonitor (8).
), the supply device (4) supplies the rainbow evaporation material (5) to the evaporation source (3) according to the instructions of the monitor (8), raises the melting surface (7), and rises at the predetermined position (7a) t. Then, the monitor (8) detects the evaporated matter and stops the operation of the device (4), which is repeated. Also, if the melting surface (7) falls abnormally due to breakage of the melt (3b), the output from the monitor (8) will decrease, so the alarm or evaporation source (3) connected to this will decrease.
) can be activated.

モニタ(8)の出力と溶融面(力の高さとの関係は第4
図示の如くであシ、溶融面(7)が高い位置(7a)に
なるとモニタ(8)の出力は設定出力Aよりも大きい出
力Bとなシ供給装置(4)ヲ止め、溶融面(7)が低い
位置(7b)になると小さい出力Cになって供給装置(
4)を作動させる。
The relationship between the output of the monitor (8) and the melting surface (the height of the force is the fourth
As shown in the figure, when the melting surface (7) reaches a high position (7a), the output of the monitor (8) becomes the output B which is larger than the set output A. ) is at a low position (7b), the output C becomes small and the supply device (
4) Activate.

このように本発明によるときは、蒸発材料の供給装置全
制御するモニタを蒸発源の側方で溶融面の昇降に伴ない
蒸発物の飛来が変化する位置に設けたのでモニタに蒸発
物が付着し難くモニタの清掃回数全減少させ得溶融面の
昇降全比較的正確にモニタにて監視出来、そのレベルヲ
一様に維持することが出来る等の効果がある。
In this way, according to the present invention, the monitor that controls the entire evaporation material supply device is installed on the side of the evaporation source at a position where the flying of evaporated material changes as the melting surface rises and falls, so that evaporated material does not adhere to the monitor. It is possible to reduce the number of times the monitor is cleaned, the rise and fall of the melting surface can be monitored relatively accurately, and the level can be maintained uniformly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の裁断側面図、第2図はその■
−■線截線面断面図3図はその変形例の線図、第4図は
モニタ出力と溶融面の関係線図金示す。 (3)・・・蒸発源 (4)・・・供給装置(5)・・
・蒸発材料 (7)・・・溶融面(8)・・・モニタ 外2名
Figure 1 is a cutaway side view of an embodiment of the present invention, and Figure 2 is its
3 shows a modified example thereof, and FIG. 4 shows a relationship between the monitor output and the melting surface. (3)... Evaporation source (4)... Supply device (5)...
・Evaporation material (7)...Melting surface (8)...2 people outside the monitor

Claims (1)

【特許請求の範囲】[Claims] 蒸発源からの蒸発による溶融面の低下に伴ない該蒸発源
にワイヤ状その他の蒸発材料を供給装置により供給する
式のものに於て、該蒸発源の側方で溶融面の変化に伴な
い蒸発物の飛来が変化する位置に原子吸光式モニタその
他の蒸発物の飛来量を感知するモニタと設け、該モニタ
の設定飛来量の感知時に前記供給装置の蒸発材料供給作
動を停止することを特徴とする蒸発源の溶融面制御装置
In a type in which wire-shaped or other evaporation material is supplied to the evaporation source by a supply device as the melting surface decreases due to evaporation from the evaporation source, the melting surface changes on the side of the evaporation source. An atomic absorption type monitor or other monitor for detecting the amount of flying evaporated material is provided at a position where the amount of flying evaporated material changes, and when the set amount of flying evaporated material is detected by the monitor, the operation of supplying the evaporated material of the supply device is stopped. Melting surface control device for evaporation source.
JP13511583A 1983-07-26 1983-07-26 Control device for melt surface of source of evaporation Granted JPS6026660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13511583A JPS6026660A (en) 1983-07-26 1983-07-26 Control device for melt surface of source of evaporation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13511583A JPS6026660A (en) 1983-07-26 1983-07-26 Control device for melt surface of source of evaporation

Publications (2)

Publication Number Publication Date
JPS6026660A true JPS6026660A (en) 1985-02-09
JPS6337184B2 JPS6337184B2 (en) 1988-07-25

Family

ID=15144177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13511583A Granted JPS6026660A (en) 1983-07-26 1983-07-26 Control device for melt surface of source of evaporation

Country Status (1)

Country Link
JP (1) JPS6026660A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994009177A1 (en) * 1992-10-19 1994-04-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process and arrangement for stabilising an electron-beam vaporisation process
US5750185A (en) * 1993-10-27 1998-05-12 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for electron beam deposition of multicomponent evaporants
EP1382713A2 (en) * 2002-07-19 2004-01-21 Lg Electronics Inc. Source for thermal physical vapour deposition of organic electroluminescent layers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994009177A1 (en) * 1992-10-19 1994-04-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process and arrangement for stabilising an electron-beam vaporisation process
US5750185A (en) * 1993-10-27 1998-05-12 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for electron beam deposition of multicomponent evaporants
EP1382713A2 (en) * 2002-07-19 2004-01-21 Lg Electronics Inc. Source for thermal physical vapour deposition of organic electroluminescent layers
EP1382713A3 (en) * 2002-07-19 2004-06-02 Lg Electronics Inc. Source for thermal physical vapour deposition of organic electroluminescent layers
US7025832B2 (en) 2002-07-19 2006-04-11 Lg Electronics Inc. Source for thermal physical vapor deposition of organic electroluminescent layers
US7815737B2 (en) 2002-07-19 2010-10-19 Lg Display Co., Ltd. Source for thermal physical vapor deposition of organic electroluminescent layers

Also Published As

Publication number Publication date
JPS6337184B2 (en) 1988-07-25

Similar Documents

Publication Publication Date Title
US4694143A (en) Zone melting apparatus for monocrystallizing semiconductor layer on insulator layer
RU2001102604A (en) METHOD AND DEVICE FOR LASER SURFACE
US6329304B1 (en) Floating wafer reactor and method for the regulation of the temperature thereof
JPS59193759A (en) Preheater and automatic soldering apparatus using the same
RU2005108978A (en) METHOD FOR FORMING A METAL PART ON A METAL SUBSTRATE BY DEPOSITING THE OVERLAYED OTHERS ON OTHER LAYERS (OPTIONS)
US20070141233A1 (en) EB-PVD system with automatic melt pool height control
KR20020090934A (en) Organic material point source feeding unit in organic semiconductor device and method thereof
US4312658A (en) Method of and apparatus for controlling batch thickness and glass level in a glass furnace
JPS5992939A (en) Method for spinning glass fiber and apparatus therefor
US3590777A (en) Ingot feed drive
JPS6026660A (en) Control device for melt surface of source of evaporation
US5485802A (en) Method and apparatus for pulling monocrystals from a melt
EP0104559B1 (en) Pulling method of single crystals
US3388903A (en) Furnace for manufacturing ingots or bars of metal or alloys, particularly bars of uranium carbide
KR880002411B1 (en) Control system and method for dc pulse modulated arc welding
TW201634715A (en) Deposition apparatus and deposition method
US3975177A (en) System for preventing cracking of glass ribbon in plate manufacturing
US4368689A (en) Beam source for deposition of thin film alloys
US4897934A (en) Vapor phase processing system
US3446602A (en) Flame fusion crystal growing employing vertically displaceable pedestal responsive to temperature
US4615720A (en) Method and apparatus for melting glass
KR910010205B1 (en) Method of controlling the operation of applying a succession of discrete coupling elements
EP0196082B1 (en) Annealing method by irradiation of light beams
US3465711A (en) Adhesive-applying apparatus
JP2556909B2 (en) Chemical vapor deposition equipment