JPS6026598B2 - Catalytic oxidation treatment method for organic wastewater - Google Patents

Catalytic oxidation treatment method for organic wastewater

Info

Publication number
JPS6026598B2
JPS6026598B2 JP10370882A JP10370882A JPS6026598B2 JP S6026598 B2 JPS6026598 B2 JP S6026598B2 JP 10370882 A JP10370882 A JP 10370882A JP 10370882 A JP10370882 A JP 10370882A JP S6026598 B2 JPS6026598 B2 JP S6026598B2
Authority
JP
Japan
Prior art keywords
catalyst
hydride
liquid
regeneration
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10370882A
Other languages
Japanese (ja)
Other versions
JPS58223485A (en
Inventor
千秋 下平
嘉則 油科
昭典 栗間
保博 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP10370882A priority Critical patent/JPS6026598B2/en
Publication of JPS58223485A publication Critical patent/JPS58223485A/en
Publication of JPS6026598B2 publication Critical patent/JPS6026598B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】 本発明は有機物を含有する排水、すなわち有機排水の触
媒による酸化処理法に関し、詳しくは有機物を含有する
排水をラネー鋼触媒の存在下で酸素と接触させて有機物
を酸化分解することによって有機物の除去を行い、活性
の低下した、あるいは失活した使用済触媒を液中で還元
することにより再生し、連続的に有機排水を触媒により
酸化処理する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for oxidizing wastewater containing organic matter, that is, a method for oxidizing organic wastewater using a catalyst. The present invention relates to a method in which organic matter is removed by decomposition, a spent catalyst whose activity has decreased or has been deactivated is regenerated by reduction in a liquid, and organic wastewater is continuously oxidized using a catalyst.

従来、有機排水の触媒による酸化は鉄、コバルト、ニッ
ケル、ルテニウム、ロジウム、/ぐラジウム、イリジウ
ム、白金、銅、金及びタングステン等の金属並びにこれ
らの化合物を担持した触媒の存在下、高温、高圧で行う
方法が一般的であった(特公昭56−42992号)。
Conventionally, catalytic oxidation of organic wastewater is carried out at high temperature and high pressure in the presence of catalysts supporting metals such as iron, cobalt, nickel, ruthenium, rhodium, radium, iridium, platinum, copper, gold, and tungsten, as well as their compounds. The most common method was to carry out this method (Japanese Patent Publication No. 56-42992).

その他、これらの金属イオンの存在下で触媒により酸化
する方法、例えば銅イオンによるヒドラジン含有廃水の
処理法(特関昭56−44091号、同56−4409
8号)等が提案されている。しかしながら、前者の方法
では高温・高圧で酸化反応を行わせる為、■装置が腐食
し易い、■耐圧容器にしなければならない、■熱源を必
要とする、等の欠点があり、装置費、運転費共高くなら
ざるを得なかった。また、後者の方法では金属イオンが
被処理液中に溶出する為、これら溶出金属イオンの回収
装置が必要である等の欠点を有していた。そこで本発明
者らは、従来法より低温・低圧で排水の酸化ができ、且
つ金属イオンの処理水中への港出が殆んどない触媒によ
る酸化処理法として還元鋼による有機排水の処理方法を
提案するに至った(椿関昭56−158186号)。
In addition, there are methods of oxidation using catalysts in the presence of these metal ions, such as a method for treating hydrazine-containing wastewater with copper ions (Special Seki No. 56-44091, No. 56-4409).
No. 8) etc. have been proposed. However, in the former method, the oxidation reaction is carried out at high temperature and high pressure, so there are disadvantages such as: (1) the equipment is easily corroded, (2) it must be made into a pressure-resistant container, and (2) a heat source is required. Both had no choice but to be high. Furthermore, the latter method has drawbacks such as the need for a recovery device for these eluted metal ions since metal ions are eluted into the liquid to be treated. Therefore, the present inventors developed a method for treating organic wastewater using reduced steel as a catalytic oxidation treatment method that allows wastewater to be oxidized at lower temperatures and pressures than conventional methods, and in which almost no metal ions are released into the treated water. I came up with a proposal (Tsubaki Seki No. 56-158186).

さらに、本発明者らは還元銅よりも一層触媒活性が高く
、常温・常圧で種々の廃水を処理できるラネー鋼触媒に
よる酸化法(特顔昭55−180535号、(特開昭5
7−105287号)、特顔昭56−36461号、(
特閥昭57−153792号)、特顔昭56−7223
5号、(特開昭57−187093号)、特瀬昭56−
209366号、(特関昭58−112088号))を
提案した。
Furthermore, the present inventors have developed an oxidation method using a Raney steel catalyst (Tokko No. 55-180535, (Japanese Unexamined Patent Publication No. 55-180535), which has higher catalytic activity than reduced copper and can treat various wastewaters at room temperature and pressure.
7-105287), special face No. 56-36461, (
Tokufatsu (Sho 57-153792), Tokugao (Sho 56-7223)
No. 5, (Unexamined Japanese Patent Publication No. 57-187093), Tokuse Sho 56-
No. 209366, (Special Seki No. 58-112088)) was proposed.

その他、家庭下水、食品工場排水、石油及び石油化学工
場排水等の種々の排水もラネー鋼触媒により処理できる
ことを見し、出したがトこの場合ラネー鋼触媒が矢宿し
易いという欠点があった。本発明は上記欠点を解消した
有機排水の触媒による酸化処理法を提供することを目的
とするものである。
In addition, we found that various kinds of wastewater such as domestic sewage, food factory wastewater, petroleum and petrochemical factory wastewater can be treated using Raney steel catalysts, but in this case, Raney steel catalysts had the disadvantage that they were easily contaminated. . The object of the present invention is to provide a method for oxidizing organic wastewater using a catalyst, which eliminates the above-mentioned drawbacks.

すなわち、本発明は有機物を含有する排水をラネー鋼触
媒の存在下で純酸素、酸素含有ガス及び酸素を発生する
物質よりなる群から選ばれた1種又は2種以上のものと
接触させて酸化処理すると共に使用済触媒を液中で還元
し再生することを特徴とする有機排水の触媒による酸化
処理法を提供するものである。
That is, the present invention oxidizes wastewater containing organic matter by contacting it with one or more selected from the group consisting of pure oxygen, oxygen-containing gas, and oxygen-generating substances in the presence of a Raney steel catalyst. The present invention provides a method for oxidizing organic wastewater using a catalyst, which is characterized by reducing and regenerating a used catalyst in a liquid while treating it.

本発明によれば、有機排水の処理を行い、活性の低下し
た、もしくは失活した触媒を反応槽中で、且つ常温・常
圧でも再生できるので触媒入れ換えのような煩雑な操作
を必要とせず、また液中再生の為ラネー鋼が空気にふれ
て失活するという問題もなく触媒による酸化を連続的、
且つ円滑に行うことができる。
According to the present invention, it is possible to treat organic wastewater and regenerate a catalyst whose activity has decreased or has been deactivated in a reaction tank at room temperature and pressure, thereby eliminating the need for complicated operations such as replacing the catalyst. In addition, since it is regenerated in liquid, there is no problem of Raney steel being deactivated by exposure to air, and catalytic oxidation can be carried out continuously.
Moreover, it can be carried out smoothly.

本発明の触媒による酸化処理法は有機物を含有する排水
であるならば、いかなる排水にも適用することができ、
PVA(ポリビニルアルコール)排水、シアン含有廃水
、チオシアン含有廃水、ヒドラジン含有廃水などの他、
家庭排水、食品工場排水、石油及び石油化学工場排水等
の種々の排水にも適用することができる。
The catalytic oxidation treatment method of the present invention can be applied to any wastewater as long as it contains organic matter.
In addition to PVA (polyvinyl alcohol) wastewater, cyanide-containing wastewater, thiocyanide-containing wastewater, hydrazine-containing wastewater, etc.
It can also be applied to various types of wastewater such as domestic wastewater, food factory wastewater, petroleum and petrochemical factory wastewater, etc.

本発明で使用するラネー鋼触媒とは、銅と水、アルカリ
、酸などによって侵される金属(マグネシウム、アルミ
ニウム、亜鉛、鉄、ニッケル、スズ、鉛、シリカ、チタ
ニウム、ホウ素など)の1種又は2種以上との合金に対
して水酸化ナトリウム等のアルカリ水溶液又は塩酸等の
酸水溶液を作用させることによって得られるものを意味
し、アルカリ又は酸による銅以外の金属の溶出量は特に
制限されない。
The Raney steel catalyst used in the present invention refers to copper and one or two metals (magnesium, aluminum, zinc, iron, nickel, tin, lead, silica, titanium, boron, etc.) that are attacked by water, alkalis, acids, etc. It means something obtained by reacting an alkaline aqueous solution such as sodium hydroxide or an acid aqueous solution such as hydrochloric acid to an alloy with at least one species, and the amount of metals other than copper eluted by the alkali or acid is not particularly limited.

また、銅と銅以外の金属との重量比については通常1:
1のものを用いるが、この比に限定されるものではない
。ラネー鋼触媒の調製法の一例を示すと、重量比で1:
1の銅−アルミニウム合金に水酸化ナトリウム水溶液を
作用させると綾出反応は速やかに起り、合金中のアルミ
ニウムの90%以上が溶出されたラネー銅触媒が得られ
る。このようにラネー鋼触媒は、銅以外の金属の溶出に
よって多孔質のものとなる。上記のようにして得られた
ラネー鋼触媒は、通常強度上の立場から200メッシュ
程度の粒度に調整されるが、排水の性状及び排水との接
触方式によって適当な粒度を選定することが望ましく、
必ずしもこの粒度にとらわれる必要はない。
Also, the weight ratio of copper and metals other than copper is usually 1:
1 is used, but it is not limited to this ratio. An example of a Raney steel catalyst preparation method is as follows: weight ratio: 1:
When a sodium hydroxide aqueous solution is applied to the copper-aluminum alloy of No. 1, a dilation reaction occurs rapidly, and a Raney copper catalyst in which 90% or more of the aluminum in the alloy is eluted is obtained. Thus, the Raney steel catalyst becomes porous due to the elution of metals other than copper. The Raney steel catalyst obtained as described above is usually adjusted to a particle size of about 200 mesh from the standpoint of strength, but it is desirable to select an appropriate particle size depending on the properties of the wastewater and the method of contact with the wastewater.
It is not necessarily necessary to be limited by this granularity.

次に、排水とラネー鋼触媒との接触方式については特に
制限がなく、完全混合型、固定床、流動床、移動床など
のいずれの方式でも良い。
Next, there is no particular restriction on the method of contacting the waste water with the Raney steel catalyst, and any method such as a complete mixing type, fixed bed, fluidized bed, or moving bed may be used.

また、酸化分解に必要な酸素は予め原水に溶け込ませて
おく方式および反応槽で直接供給する方式のいずれでも
良いが、反応に必要な酸素量を逐次供孫合できる直接供
給の方が酸素による触媒の酸化を防止する上で好ましい
。さらに、酸素は純酸素ガス、液体酸素、空気、酸素を
含む廃ガスのほか過酸化水素、オゾン等の如き酸素を発
生する物質等のいずれのものを単独であるいは粗合せて
用いても用い。なお、酸素の供給量については含有する
有機物質濃度を通常使用されるCOD(化学的酸素要求
量)、BOD(生物学的酸素要求量)、TOD(全酸素
要求量)等の指標で測定する場合は、それらの1.1〜
1.5倍程度の酸素を供給すれば通常は充分である。ま
た、反応温度、反応圧力については通常、常温、常圧で
良く、特に温度を上げたり、圧力をかけたりする必要は
ない。しかしながら、反応効率を高めることが望まれる
場合には、温度を上げたり、圧力をかけることにより目
的を達成することができる。なお、使用した触媒に起因
する鋼イオンなどの金属イオンの徴量が処理水に含まれ
ることがあるが、このような場合は触媒により酸化した
後に凝集沈澱装置、イオン交モ奥脇脂、キレート樹脂装
置等を設置することによりこれらを除去することができ
る。有機排水の処理を行い、失活もしくは活性が低下し
た触媒の再生方法については、通常用いられる還元剤を
使用して液中で触媒を還元再生する方法や液中で触媒を
再展開して新しい触媒表面を露出させる方法が好ましい
In addition, the oxygen required for oxidative decomposition can be either dissolved in the raw water in advance or supplied directly in the reaction tank, but direct supply, which allows the amount of oxygen required for the reaction to be added sequentially, is better. This is preferable for preventing oxidation of the catalyst. Further, the oxygen may be pure oxygen gas, liquid oxygen, air, waste gas containing oxygen, or a substance that generates oxygen such as hydrogen peroxide, ozone, etc. alone or in combination. Regarding the amount of oxygen supplied, the concentration of organic substances contained is measured using commonly used indicators such as COD (chemical oxygen demand), BOD (biological oxygen demand), and TOD (total oxygen demand). In that case, those 1.1~
It is usually sufficient to supply about 1.5 times as much oxygen. Further, the reaction temperature and reaction pressure are usually normal temperature and normal pressure, and there is no need to particularly raise the temperature or apply pressure. However, if it is desired to increase the reaction efficiency, this objective can be achieved by increasing the temperature or applying pressure. In addition, the treated water may contain metal ions such as steel ions due to the catalyst used, but in such cases, after oxidation by the catalyst, the water is treated with a coagulation sedimentation device, ion exchanger Okuwaki fat, chelate resin. These can be removed by installing a device or the like. Methods for regenerating catalysts that have been deactivated or whose activity has decreased after treating organic wastewater include methods for reducing and regenerating catalysts in liquid using a commonly used reducing agent, and methods for regenerating catalysts by redeploying them in liquid. A method that exposes the catalyst surface is preferred.

還元剤を使用して液中で触媒を還元再生する場合、還元
剤としては水中で分解し水素を発生するものおよび触媒
との接触により水素を発生するもののいずれでも良く、
前者の例としては水素化ホウ素ナトリウム、水素化ホウ
素カリウム、水素化ホウ素リチウム、水素化ホウ素アル
ミニウム、水素化アルミニウムリチウム、水素化ナトリ
ウム、水素化カリウム、水素化リチウム、水素化カルシ
ウム、水素化ニッケル、水素化コバルトなどの物質が挙
げられる。
When a reducing agent is used to reduce and regenerate the catalyst in a liquid, the reducing agent may be either one that decomposes in water to generate hydrogen or one that generates hydrogen upon contact with the catalyst.
Examples of the former include sodium borohydride, potassium borohydride, lithium borohydride, aluminum borohydride, lithium aluminum hydride, sodium hydride, potassium hydride, lithium hydride, calcium hydride, nickel hydride, Examples include substances such as cobalt hydride.

後者の例としては、ヒドラジン、ホルマリン、メタノー
ル、ギ酸塩等が挙げられるが、これらに限定されるもの
ではない。これらの還元剤は通常加温・加圧下で触媒の
再生に使用されるが、ラネー鋼触媒の再生の場合は常温
・常圧でも再生できることを本発明者らは見い出した。
しかしながら、前述したように、必要に応じて加温・加
圧状態で再生することは差支えない。再生に使用する該
還元剤の濃度は還元剤の種類、温度、圧力、接触時間等
によって異なるが、通常は0.1〜20%である。再生
時間も還元剤の種類及び濃度等によって異なり、一義的
に定めることは困難であるが、通常1時間未満で充分に
触媒の再生が可能である。また、失活もしくは活性の低
下した触媒の再生を触媒を再展開することにより行う場
合、水酸化ナトリウム、水酸化カリウム等のカ性アルカ
川こよって触媒を再展開することが好ましし・。
Examples of the latter include, but are not limited to, hydrazine, formalin, methanol, formate, and the like. Although these reducing agents are normally used to regenerate catalysts under elevated temperature and pressure, the present inventors have discovered that in the case of regenerating Raney steel catalysts, they can be regenerated even at room temperature and pressure.
However, as described above, there is no problem in regenerating the material under heating and pressurization if necessary. The concentration of the reducing agent used for regeneration varies depending on the type of reducing agent, temperature, pressure, contact time, etc., but is usually 0.1 to 20%. Although the regeneration time also varies depending on the type and concentration of the reducing agent, and is difficult to define unambiguously, it is usually possible to sufficiently regenerate the catalyst in less than one hour. Further, when regenerating a deactivated or decreased activity catalyst by redeploying the catalyst, it is preferable to redeploy the catalyst using a caustic alkali such as sodium hydroxide or potassium hydroxide.

この場合、展開温度は通常30〜90o0、圧力は常圧
で良く、カ性アルカリの濃度は1〜4仇の%あれば良い
。しかしながら、再展開の場合は新しい触媒表面を露出
させることが目的である為、比較的低い温度、すなわち
40〜60℃でゆっくり展開させ、反応が著しく進まな
いようコントロールすることがより好ましい。また、使
用するカ性アルカリの濃度も0.1〜2仇K%程度とす
ることがより好ましい。再展開の時間はアルカリ濃度及
び展開温度等によって異なるが、通常1時間未満で充分
である。なお、還元剤は通常、水や排水に直接溶かして
溶液の形で再生液として用いるが、水と接触すると水素
を発生する物質の場合は使用するまで強アルカリ溶液と
して水素の発生を防止しておくことが好ましい。
In this case, the developing temperature is usually 30 to 90°C, the pressure is normal pressure, and the concentration of caustic alkali is 1 to 4%. However, in the case of redeployment, since the purpose is to expose a new catalyst surface, it is more preferable to develop slowly at a relatively low temperature, that is, 40 to 60°C, and to control the reaction so that it does not proceed significantly. Further, it is more preferable that the concentration of the caustic alkali used is about 0.1 to 2 K%. Although the redeployment time varies depending on the alkali concentration, the developing temperature, etc., less than one hour is usually sufficient. Note that the reducing agent is normally dissolved directly in water or wastewater and used as a regenerating solution in the form of a solution, but in the case of a substance that generates hydrogen when it comes into contact with water, it is used as a strong alkaline solution to prevent the generation of hydrogen until it is used. It is preferable to leave it there.

また、触媒の再展開も通常カ性アルカリを水や直接排水
に溶かしたものを用いることができる。触媒の再生は反
応横内で行なっても良く、新たに触媒を全量反応糟から
引き抜き再生を行う必要はない。
Further, for redeployment of the catalyst, a solution of caustic alkali dissolved in water or directly in waste water can be used. Regeneration of the catalyst may be carried out during the reaction process, and there is no need to extract the entire amount of the catalyst from the reaction vessel and regenerate it.

例えば、固定床の場合には、反応槽を複数とし、切換え
運転を行えば排水の完全連続処理が可能である。また、
還元剤による再生の場合、一櫓であっても酸素の供給を
止め、還元剤を供聯合して触媒の再生を行い、しかる後
に酸素を再供給して処理すれば良い。また、流動床、移
動床、完全混合型の場合は、一部の触媒を連続又は間歌
的に抜き出し同時に再生触媒を供給する連続処理が可能
であり、この場合は一糟の反応槽と再生槽があれば良い
。また還元剤による再生の場合、再生液中に有害物質が
残らないので、新たに再生液の処理を行う必要がない。
排水処理中に触媒が失活したか否かを知る方法としては
直接排水中の有機物の濃度を測定する方法があるが、そ
れ以外に反応槽内の酸化・還元電位を測定したり、触媒
が失活した為に処理水中に溶出してくる銅イオンを測定
することによっても検知することができる。
For example, in the case of a fixed bed, complete continuous treatment of wastewater is possible by using a plurality of reaction tanks and performing switching operations. Also,
In the case of regeneration using a reducing agent, it is sufficient to stop the supply of oxygen even for a single turret, combine the reducing agent to regenerate the catalyst, and then re-supply oxygen for treatment. In addition, in the case of a fluidized bed, moving bed, or completely mixed type, it is possible to perform a continuous process in which a part of the catalyst is extracted continuously or intermittently and the regenerated catalyst is supplied at the same time. It would be nice if there was a tank. Furthermore, in the case of regeneration using a reducing agent, no harmful substances remain in the regenerating liquid, so there is no need to newly process the regenerating liquid.
One way to know whether the catalyst has been deactivated during wastewater treatment is to directly measure the concentration of organic matter in the wastewater, but other methods include measuring the oxidation/reduction potential in the reaction tank or checking if the catalyst has deactivated. It can also be detected by measuring copper ions that are eluted into the treated water due to deactivation.

このように本発明によれば、ラネー鋼触媒の存在下、酸
素を供給することにより常温・常圧下で種々の有機排水
を処理することができ、且つ触媒が失活もしくは活性が
低下した場合でも液中で常温・常圧にて再生ができるの
で、従来の触媒による酸化処理法の如く高温・高圧の苛
酷な処理条件及び再生条件を必要とせず、反応槽の耐圧
・耐熱性を著しく低下させることができるばかりでなく
、高温・高圧の維持に必要な動力費を削減することがで
きるなど、建設費及び運転費を大幅に低減することがで
きる。
As described above, according to the present invention, various organic wastewaters can be treated at room temperature and pressure by supplying oxygen in the presence of a Raney steel catalyst, and even when the catalyst is deactivated or its activity is reduced. Since it can be regenerated in liquid at room temperature and pressure, there is no need for harsh treatment conditions and regeneration conditions such as high temperature and high pressure as in conventional catalytic oxidation treatment methods, which significantly reduces the pressure and heat resistance of the reaction tank. Not only can this be achieved, but the power costs required to maintain high temperatures and pressures can be reduced, resulting in significant reductions in construction and operating costs.

しかも、触媒の再生も通常は1時間未満で充分であるの
で、排水処理を効率よく行うことができる。また、触媒
を液中で再生することができるため、ラネー鋼が空気に
ふれ劣化するという問題も解消することができる。
Moreover, since catalyst regeneration usually takes less than one hour, wastewater treatment can be carried out efficiently. Furthermore, since the catalyst can be regenerated in liquid, the problem of Raney steel being exposed to air and deteriorating can also be solved.

さらに、触媒の再生に還元剤を使用した場合、再生液中
に還元剤に起因する有害物質が残らないので、そのまま
処理水と共に放流することができ、新たに再生液を再処
理する手間を省くことができる。
Furthermore, when a reducing agent is used to regenerate the catalyst, no harmful substances caused by the reducing agent remain in the regenerating liquid, so it can be discharged as is along with the treated water, eliminating the need to reprocess the regenerating liquid. be able to.

本発明はラネー鋼触媒の存在下、酸素を供給するだけで
、種々の排水を処理できる為、ラネー鋼触媒による単独
処理以外に、活性汚泥、散水炉床、浸糟式炉床、回転円
板等の微生物処理の前処理及び後処理として適用できる
ばかりでなく、活性炭吸着、逆浸透法、塩素酸化等の物
理化学的処理の前処理及び後処理としても広く適用させ
ることができる。
The present invention can treat various types of wastewater simply by supplying oxygen in the presence of a Raney steel catalyst. It can be widely applied not only as a pre-treatment and post-treatment for microbial treatments such as, but also as a pre-treatment and post-treatment for physicochemical treatments such as activated carbon adsorption, reverse osmosis, and chlorine oxidation.

以下、本発明を実施例により詳しく説明するが、本発明
は以下の実施例によって制約されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in detail with reference to examples, but the present invention is not limited to the following examples.

実施例 1 第1図に示すような塔型反応槽1(18×20仇舷日、
ポリ塩化ビニル製)にラネ−銅触媒を充填し、原水ポン
プ2により反応槽下部に原水a−を供給し、上向流で触
媒充填層3を通過させると同時に酸化処理に必要な空気
をグラスフィルター4より供給し、常温・常圧において
酸化処理を行った。
Example 1 Tower-type reaction tank 1 (18 x 20 days,
(made of polyvinyl chloride) is filled with Raney copper catalyst, raw water a- is supplied to the lower part of the reaction tank by the raw water pump 2, and at the same time, the air necessary for oxidation treatment is passed through the catalyst packed bed 3 in an upward flow. It was supplied through filter 4 and oxidized at room temperature and pressure.

触媒の再生は、まず反応槽1への原水及び空気の供V給
を止め、再生液タンク5内の再生液を再生液循環ポンプ
6により港型反応槽1の下部に一定時間循環供給するこ
とにより行った。
To regenerate the catalyst, first stop the supply of raw water and air to the reaction tank 1, and circulate and supply the regenerated liquid in the regenerated liquid tank 5 to the lower part of the port-type reaction tank 1 for a certain period of time using the regenerated liquid circulation pump 6. This was done by

なお触媒の再生は一定期間毎に行った。しかる後、再生
液循環ポンプ6を止め、再び塔型反応槽1に原水及び空
気を供給し、触媒による酸化を継続した。実験条件及び
再生条件を以下に示す。・実験結果を第1表に示す。実
験条件 原水:石油化学工場排水 原水流量:20cc/Hr ラネー鋼触媒充填量:60cc ラネ−鋼触媒性状:粒度15〜24メッシュ、銅舎量9
0.4wt%、アルミニウム含量9.榊t%、川研ファ
イ ンケミカル■製 LHSV:0.33 反応圧力:常圧 空気流量:1〆/Hr 再生条件 再生液:水素化ホウ素ナトリウム溶液(4肌t%水酸化
ナトリウム溶液に水素化ホウ素ナトリウム1柵t%を溶
かしたも の) 再生液量:500cc 再生液循環量:3〆/靴 再生時間:3び分 再生温度:24℃ 再生圧力:常圧 再生間隔:30日 第1表 懐中の値はい効も平塊を浦。
Note that the catalyst was regenerated at regular intervals. Thereafter, the regeneration liquid circulation pump 6 was stopped, and raw water and air were again supplied to the tower-type reaction tank 1 to continue oxidation using the catalyst. The experimental conditions and regeneration conditions are shown below.・The experimental results are shown in Table 1. Experimental conditions Raw water: Petrochemical factory effluent raw water flow rate: 20cc/Hr Raney steel catalyst loading amount: 60cc Raney steel catalyst properties: particle size 15-24 mesh, copper capacity 9
0.4wt%, aluminum content 9. Sakaki t%, manufactured by Kawaken Fine Chemical ■ LHSV: 0.33 Reaction pressure: Normal pressure Air flow rate: 1〆/Hr Regeneration conditions Regeneration liquid: Sodium borohydride solution (4% sodium borohydride solution in sodium hydroxide solution) 1 t% of fence) Regeneration liquid volume: 500cc Regeneration liquid circulation amount: 3/Shoes Regeneration time: 3 minutes Regeneration temperature: 24℃ Regeneration pressure: Normal pressure Regeneration interval: 30 days Values in Table 1 pocket Yes, the effect is also flat.

第1表より、4回再生後(約5ケ月運転)に於いても触
媒の性能は低下しておらず、繰り返し再生することによ
って排水を連続的に処理できることがわかる。
From Table 1, it can be seen that the performance of the catalyst did not deteriorate even after four regenerations (approximately 5 months of operation), and wastewater could be continuously treated by repeated regeneration.

実施例 2 5そのビーカ−に原水5〆を探り、ラネー鋼触媒200
ccを加え、空気を供給しつつ蝿梓機でゆつくり櫨押し
ながら常温・常圧で排水の触媒による酸化を行った。
Example 2 5Fill out raw water 5 in the beaker and add Raney steel catalyst 200
cc was added, and the waste water was oxidized by a catalyst at normal temperature and pressure while supplying air and slowly pressing the waste water with a fly azusa machine.

3時間反応を行わせた後、空気の供給及び擬投機による
粥梓を止め、ラネー銅触媒を沈降させ、処理水をデカン
テーションで抜き、新たに純水2〆を加え2肌t%の水
酸化ナトリウム溶液15ccを4分おきに9回添加し(
添加量合計135cc)、ゆっくり櫨拝しながら5雌ご
触媒を再展開させた。
After the reaction was carried out for 3 hours, the supply of air and the porridge by pseudo-speculation were stopped, the Raney copper catalyst was allowed to settle, the treated water was removed by decantation, and 2 t% of pure water was added to add 2 t% of water. Add 15 cc of sodium oxide solution 9 times every 4 minutes (
The total amount added was 135 cc), and the five female catalysts were redeployed while slowly stirring.

なお、この際液溢の上昇を防ぐ為、ウオーターバスで液
温を45〜5000になるようコントロールした。触媒
の再展開終了後、デカンテーションにより再生液を捨て
1その純水で5回再生触媒を洗浄した後、新たに原水5
夕を加え、酸化を継続した。このような触媒による酸化
と触媒の再生を繰り返し実験を行った。実験条件及び再
生条件を以下に示す。
At this time, in order to prevent the liquid from overflowing, the liquid temperature was controlled to 45-5000 in a water bath. After the redeployment of the catalyst is completed, discard the regenerated liquid by decantation 1. After washing the regenerated catalyst 5 times with pure water, add 5 new raw water.
Oxidation was continued by adding water. Experiments were conducted by repeating oxidation using such a catalyst and regeneration of the catalyst. The experimental conditions and regeneration conditions are shown below.

実験結果を第2表に示す。実験条件 原水:食堂排水を砂炉遇したもの 原水量:5夕 ラネー銅触媒添加量:200cc ラネー鋼触媒性状:粒度200メッシュ、鋼舎量96.
2wt%、アルミニウム含量3.8Wt%、川研ファイ
ン ケミカル■製 反応時間:3時間 反応圧力:常圧 空気流量:150夕/Hr 再生条件 再生液:2仇叶%水酸化ナトリウム水溶液再生液添加量
:135cc 再生時間:5ぴ分 再生温度:45〜50CO 再生圧力:常圧 第2表 *表中職直は平雛を浦。
The experimental results are shown in Table 2. Experimental conditions Raw water: Drainage from the cafeteria treated in a sand furnace Amount of raw water: 5 days Amount of Raney copper catalyst added: 200 cc Raney steel catalyst properties: Particle size 200 mesh, steel shed amount 96.
2wt%, aluminum content 3.8wt%, manufactured by Kawaken Fine Chemicals Reaction time: 3 hours Reaction pressure: Normal pressure Air flow rate: 150 pm/Hr Regeneration conditions Regeneration liquid: 2% sodium hydroxide aqueous solution Regeneration liquid addition amount: 135cc Regeneration time: 5 minutes Regeneration temperature: 45 to 50 CO Regeneration pressure: Normal pressure Table 2 *The table on duty is Hiraina Ura.

第2表より、6回の繰り返し再生後でも触媒は劣化して
おらず、充分な排水処理が可能であることがわかる。
From Table 2, it can be seen that the catalyst did not deteriorate even after repeated regeneration six times, and sufficient wastewater treatment was possible.

実施例 3 第1図に示す装置を用いて、実施例1の同様の実験を行
った。
Example 3 An experiment similar to Example 1 was conducted using the apparatus shown in FIG.

なお、本実験においては原水として団地下水を、再生液
としてホルマリン水溶液をそれぞれ用いた。実験条件及
び再生条件を以下に示す。
In this experiment, underground water was used as the raw water, and formalin aqueous solution was used as the regenerating liquid. The experimental conditions and regeneration conditions are shown below.

実験結果を第3表に示す。実験条件 原水:団地下水を沈降分離したもの 原水流量:30cc/比 うネー鋼触媒充填量:60cc ラネー鋼触媒性状:粒度24〜36メッシュ、銅合量8
7.7wt%、アルミニウム含量12.3wt%、川研
ファイ ンケミカル■製 LHSV:0.5 反応圧力:常圧 空気流量:2夕/Hr 再生条件 再生液:13れ%ホルマリン水溶液 再生液量:1そ 再生液循環量:3夕/Hr 再生時間:1時間 再生温度:28q○ 再生圧力:常圧 再生間隔:6日 第3 *表中鰯値岬瀬を浦。
The experimental results are shown in Table 3. Experimental conditions Raw water: Sedimentation and separation of underground water Raw water flow rate: 30cc/Raney steel catalyst loading amount: 60cc Raney steel catalyst properties: particle size 24-36 mesh, total copper content 8
7.7 wt%, aluminum content 12.3 wt%, LHSV manufactured by Kawaken Fine Chemical ■: 0.5 Reaction pressure: normal pressure Air flow rate: 2 nights/Hr Regeneration conditions Regeneration liquid: 13% formalin aqueous solution Regeneration liquid amount: 1 Regeneration liquid circulation amount: 3 evenings/Hr Regeneration time: 1 hour Regeneration temperature: 28q○ Regeneration pressure: Normal pressure Regeneration interval: 6th day 3rd * Sardine value Misakase ura in the table.

第3表より、4回再生後(約1ケ月連転)に於ても触媒
性能の低下による処理水の悪化はみられず、安定した処
理が可能であることがわかる。
From Table 3, it can be seen that even after four times of regeneration (continuous operation for about one month), no deterioration of the treated water due to a decrease in catalyst performance was observed, and stable treatment was possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に用いた装置の概略説明図であ
る。 a…・・・原水、b・・・・・・処理水、c……空気、
1・・・・・・塔型反応槽、2・・・・・・原水ポンプ
、3・・・・・・触媒充填層、4・・・・・・グラスフ
ィルター、5・・・・・・再生液タンク、6・・・・・
・再生液循環ポンプ、7・・・・・・多孔板、8・・・
・・・再生液循環ライン。 第1図
FIG. 1 is a schematic explanatory diagram of an apparatus used in an embodiment of the present invention. a... Raw water, b... Treated water, c... Air,
1... Tower type reaction tank, 2... Raw water pump, 3... Catalyst packed bed, 4... Glass filter, 5... Regeneration liquid tank, 6...
・Regeneration liquid circulation pump, 7... Porous plate, 8...
...Regeneration liquid circulation line. Figure 1

Claims (1)

【特許請求の範囲】 1 有機物を含有する排水をラネー銅触媒の存在下で純
酸素、酸素含有ガス及び酸素を発生する物質よりなる群
から選ばれた1種又は2種以上のものと接触させて酸化
処理すると共に、使用済触媒の液中で還元することによ
り再生することを特徴とする有機排水の触媒による酸化
処理法。 2 使用済触媒の液中での再生に還元剤を用いる特許請
求の範囲第1項記載の方法。 3 還元剤が水中で分解し水素を発生する物質である特
許請求の範囲第2項記載の方法。 4 水中で分解し水素を発生する物質が水素化ホウ素ナ
トリウム、水素化ホウ素カリウム、水素化ホウ素リチウ
ム、水素化ホウ素アルミニウム、水素化アルミニウムリ
チウム、水素化ナトリウム、水素化カリウム、水素化リ
チウム、水素化カルシウム、水素化ニツケル及び水素化
コバルトのうちのいずれかである特許請求の範囲第3項
記載の方法。 5 使用済触媒の液中での再生時間が1時間末満である
特許請求の範囲第4項記載の方法。 6 環元剤が触媒との接触により水素を発生する物質で
ある特許請求の範囲第2項記載の方法。 7 触媒と接触し水素を発生する物質がヒドラジン.ホ
ルマリン.メタノール及びギ酸塩から選ばれた1種又は
2種以上の物質である特許請求の範囲第6項記載の方法
。 8 使用済触媒を液中で再生するのに触媒を再展開する
特許請求の範囲第1項記載の方法。 9 触媒の再展開をカ性アルカリによつて行う特許請求
の範囲第8項記載の方法。 10 触媒の再展開時間が1時間未満である特許請求の
範囲第9項記載の方法。
[Claims] 1. Contacting wastewater containing organic matter with one or more selected from the group consisting of pure oxygen, an oxygen-containing gas, and a substance that generates oxygen in the presence of a Raney copper catalyst. A catalytic oxidation treatment method for organic wastewater, characterized in that the oxidation treatment is performed using a catalyst, and the spent catalyst is regenerated by reduction in a liquid. 2. The method according to claim 1, in which a reducing agent is used to regenerate the spent catalyst in a liquid. 3. The method according to claim 2, wherein the reducing agent is a substance that decomposes in water to generate hydrogen. 4 Substances that decompose in water and generate hydrogen include sodium borohydride, potassium borohydride, lithium borohydride, aluminum borohydride, lithium aluminum hydride, sodium hydride, potassium hydride, lithium hydride, and hydride. 4. The method according to claim 3, wherein the hydride is any one of calcium, nickel hydride, and cobalt hydride. 5. The method according to claim 4, wherein the regeneration time of the spent catalyst in the liquid is less than one hour. 6. The method according to claim 2, wherein the ring-forming agent is a substance that generates hydrogen upon contact with a catalyst. 7. The substance that generates hydrogen when it comes into contact with the catalyst is hydrazine. formalin. 7. The method according to claim 6, wherein the substance is one or more substances selected from methanol and formate. 8. The method according to claim 1, in which the spent catalyst is regenerated in a liquid by redeploying the catalyst. 9. The method according to claim 8, wherein the catalyst is redeployed with a caustic alkali. 10. The method of claim 9, wherein the catalyst redeployment time is less than 1 hour.
JP10370882A 1982-06-18 1982-06-18 Catalytic oxidation treatment method for organic wastewater Expired JPS6026598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10370882A JPS6026598B2 (en) 1982-06-18 1982-06-18 Catalytic oxidation treatment method for organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10370882A JPS6026598B2 (en) 1982-06-18 1982-06-18 Catalytic oxidation treatment method for organic wastewater

Publications (2)

Publication Number Publication Date
JPS58223485A JPS58223485A (en) 1983-12-26
JPS6026598B2 true JPS6026598B2 (en) 1985-06-24

Family

ID=14361230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10370882A Expired JPS6026598B2 (en) 1982-06-18 1982-06-18 Catalytic oxidation treatment method for organic wastewater

Country Status (1)

Country Link
JP (1) JPS6026598B2 (en)

Also Published As

Publication number Publication date
JPS58223485A (en) 1983-12-26

Similar Documents

Publication Publication Date Title
AU775532B2 (en) Water purification process
JPH08500050A (en) Method and apparatus for the decomposition of free and complex cyanide, AOX, mineral oil, complexing agents, COD, nitrite, chromate, and metal separation in wastewater
JPH11226596A (en) Method and apparatus for treating electroless nickel plating waste solution
JP2014198286A (en) Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof
CN106955686B (en) Preparation method and application of ozone oxidation catalyst of diatomite-loaded multi-metal oxide
JP5303263B2 (en) Solid catalyst for treating nitrate nitrogen-containing water and method for treating nitrate nitrogen-containing water using the catalyst
JPS6026598B2 (en) Catalytic oxidation treatment method for organic wastewater
How et al. Degradation of Acid Orange 7 through radical activation by electro-generated cuprous ions
JPS6235838B2 (en)
JP3788688B2 (en) Method and apparatus for electrolytic treatment of oxidized nitrogen-containing water
JP3988483B2 (en) Treatment of free chlorine in water
KR100302478B1 (en) Apparatus for removing oxygen dissolved in water using activated carbon fiber catalyst
JPS607953B2 (en) Treatment method for wastewater containing hydrazine
JP2005118626A (en) Method and apparatus for treating oxidizing agent
JPS607952B2 (en) Method for treating wastewater containing polyvinyl alcohol
JP4407165B2 (en) Treatment method for water containing oxidizable substances
JP2003057393A (en) Decontamination method and decontamination agent
JP3509186B2 (en) Denitrification treatment method
JP2687194B2 (en) Purification method of hydrogen peroxide solution
JP4502877B2 (en) Nitric acid reduction catalyst composition and nitric acid solution treatment method using the same
JP3792857B2 (en) Electrochemical processing equipment
JP4450146B2 (en) COD component-containing water treatment method
JP4011197B2 (en) Method for treating ethanolamine-containing water
JPH081167A (en) Water treatment apparatus
JP2005021863A (en) Electrolytic treatment method of nitrogen compound-containing waste water