JPS6026561B2 - Mechanical vapor compression evaporation method - Google Patents

Mechanical vapor compression evaporation method

Info

Publication number
JPS6026561B2
JPS6026561B2 JP9843177A JP9843177A JPS6026561B2 JP S6026561 B2 JPS6026561 B2 JP S6026561B2 JP 9843177 A JP9843177 A JP 9843177A JP 9843177 A JP9843177 A JP 9843177A JP S6026561 B2 JPS6026561 B2 JP S6026561B2
Authority
JP
Japan
Prior art keywords
liquid
water
oil
sealing
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9843177A
Other languages
Japanese (ja)
Other versions
JPS5432171A (en
Inventor
脩 川村
弘 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BORUKANO KK
MORI ENJINIARINGU KK
Original Assignee
BORUKANO KK
MORI ENJINIARINGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BORUKANO KK, MORI ENJINIARINGU KK filed Critical BORUKANO KK
Priority to JP9843177A priority Critical patent/JPS6026561B2/en
Publication of JPS5432171A publication Critical patent/JPS5432171A/en
Publication of JPS6026561B2 publication Critical patent/JPS6026561B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】 本発明は、機械的圧縮法による蒸気圧縮式蒸発方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor compression evaporation method using a mechanical compression method.

蒸発装置のエネルギー経済の一方法として、蒸発蒸気を
機械的に再圧縮して圧力を高め、これを加熱蒸気として
用いることにより蒸気の潜熱を繰り返し使用する機械的
圧縮法がある。
One method of energy economy for evaporators is a mechanical compression method in which evaporated steam is mechanically recompressed to increase its pressure and used as heating steam to repeatedly use the latent heat of the steam.

この機械的圧縮法は従来主に製塩装置に採用されて来た
が、最近では省エネルギーの観点から、又冷却水が不用
の為、装置よりの排水が加熱松の凝縮水のみとなり廃水
処理の観点からも再考鷹される様になって来ている。
This mechanical compression method has traditionally been mainly used in salt production equipment, but recently it has become more popular from the perspective of energy conservation, and because cooling water is not required, the only wastewater from the equipment is condensed water from heated pine trees, making it an effective wastewater treatment method. Since then, people are beginning to reconsider.

これらの装置に従来採用されている圧縮機は、次表の型
式のものである。
The compressors conventionally used in these devices are of the types shown in the table below.

上表の圧縮機は液封式ポンプに比較して機械効率の良好
なものが選定されているが、蒸発銭よりの飛沫同伴の為
、ケーシング、ロータ、羽根等への固型物の付着、摩耗
、腐食等により短期間で効率の低下を来たしている。
The compressors in the table above have been selected to have better mechanical efficiency than liquid ring pumps, but because they are entrained by droplets from evaporated coins, solid objects may adhere to the casing, rotor, blades, etc. Efficiency decreases in a short period of time due to wear, corrosion, etc.

又高温域にて使用する為ロータおよびケーシングの熱膨
張に対する配慮や、サージング防止等により前表の型式
の圧縮機は非常に高価なものとなっている。従って、こ
れらの圧縮機を採用した従来の機械的圧縮法による蒸気
圧縮式蒸発装置は、その建設費が高価となり、且つ、保
全に多大の経費を要し、経済的に極めて不利であった。
Furthermore, since they are used in high temperature ranges, consideration must be given to the thermal expansion of the rotor and casing, as well as surging prevention, which makes the compressors of the types listed above extremely expensive. Therefore, the conventional vapor compression type evaporator using the mechanical compression method employing these compressors is extremely disadvantageous economically, as it requires high construction costs and a large amount of maintenance costs.

本発明は、このような欠点を解決し、建設費が安価で、
保全費も低廉で、且つ、エネルギー効率も極めて良好な
機械的圧縮法による蒸気圧縮式蒸発方法を提供すること
を目的とする。
The present invention solves these drawbacks, has low construction costs, and
It is an object of the present invention to provide a vapor compression evaporation method using a mechanical compression method that has low maintenance costs and extremely good energy efficiency.

本発明は、蒸気圧縮式蒸発装置において、封液として水
と溶け合わず、且つ、水より高沸点の液体、例えば石油
系高糠点溜分(潤滑油、熱媒体油等)、シリコン油等、
を用いた液封式ポンプを圧縦機として採用するものであ
って蒸姿峯鷲から発生する水蒸気を、水と溶け合わず、
且つ水より高沸点の液体を封液とした液封式ポンプで吸
引、圧縮し、該液封式ポンプより吐出された水蒸気及び
封液の熱エネルギーを被蒸発液の加熱源として使用する
ことを特徴とするものである。
In a vapor compression type evaporator, the present invention uses a liquid that does not mix with water and has a higher boiling point than water as a sealing liquid, such as a petroleum-based high bran fraction (lubricating oil, heat transfer oil, etc.), silicone oil, etc. ,
A liquid-ring pump using a water ring is used as a vertical compaction machine, and the water vapor generated from the steamed eagle does not mix with water.
In addition, a liquid with a higher boiling point than water is sucked and compressed using a liquid ring pump as a sealing liquid, and the thermal energy of the water vapor and sealing liquid discharged from the liquid ring pump is used as a heating source for the liquid to be evaporated. This is a characteristic feature.

次に本発明を図面にもとづき説明する。Next, the present invention will be explained based on the drawings.

第1図示のものは、本発明の第1実施例であって臭化ナ
トリウム水溶液濃縮のフ。
The first diagram shows the first embodiment of the present invention, which is a process for concentrating an aqueous sodium bromide solution.

ーシートである。まず臭化ナトリウムの稀薄水溶液(N
aBr2.7%前後を含む)を第1図1より流量計2で
定流量で濃縮液貯槽3内に設置された蛇管熱交換器4へ
送り、ここで後述する蒸発蛾10よりの濃縮液と間接熱
交換行なわしめ、熱回収を行なうと共に濃縮液を取り扱
い易さ温度迄冷却する。続いて被濃縮液を油水分鱗槽5
内に設置された蛇管熱交換器6及び二重管式熱交換器7
へ送り、後述する加熱鰹9よりのドレーンと間接熱交換
を行なわしめ、廃熱回収を行なった後、ダウンテーク8
を経て加熱糟9で加熱し蒸発鎚10へ供給する。第1図
の蒸発装置型式はいわゆる自然循環型であるが、強制循
環系、液膜上昇式、液膜下降式、プレート式等いかなる
型式のものにも使用出来る。該蒸発銭内液は加熱鰹9に
て後述する液封式ポンプ14により圧縮された蒸発曜1
0よりの蒸発蒸気と熱交換し、温度が上昇した被濃縮液
は蒸発磯101こ供給されて沸騰蒸発し、温度降下した
濃縮液はダウンテーク8を通り再び加熱蛾9に入り圧縮
蒸気により加熱された後蒸発鍵10に再循環される。本
実施例では加熱鰹9はいわゆるシェル・アンド・チュー
ブ式の間接熱交換型であるが、他の型式のものも使用出
来る。かくして所要の濃度(30%)に濃縮された臭化
ナトリウム水溶液はオーバフロ−管11を通り濃縮液貯
槽3に溜り、濃縮液ポンプ12により系外に取り出され
る。
-It is a sheet. First, a dilute aqueous solution of sodium bromide (N
(containing around 2.7% aBr) is sent at a constant flow rate using a flow meter 2 from FIG. Indirect heat exchange is performed to provide heat recovery and to cool the concentrate to a temperature suitable for handling. Next, the liquid to be concentrated is transferred to the oil/water scale tank 5.
A corrugated tube heat exchanger 6 and a double tube heat exchanger 7 installed inside
After indirect heat exchange with the drain from the heated bonito 9, which will be described later, and waste heat recovery, the downtake 8
After that, it is heated in a heating oven 9 and supplied to an evaporator hammer 10. The type of evaporator shown in FIG. 1 is a so-called natural circulation type, but any type such as a forced circulation system, a liquid film rising type, a liquid film descending type, a plate type, etc. can be used. The evaporated liquid is compressed by a liquid ring pump 14 (to be described later) in the heated bonito 9.
The concentrated liquid whose temperature has increased by exchanging heat with the evaporated steam from 0 is supplied to the evaporating rock 101 and boiled and evaporated, and the concentrated liquid whose temperature has decreased passes through the downtake 8 and enters the heating moth 9 again and is heated by compressed steam. After that, it is recycled to the evaporation key 10. In this embodiment, the heated bonito 9 is of the so-called shell-and-tube indirect heat exchange type, but other types can also be used. The aqueous sodium bromide solution thus concentrated to the required concentration (30%) passes through the overflow pipe 11 and accumulates in the concentrate storage tank 3, and is taken out of the system by the concentrate pump 12.

一方蒸発総1川こて蒸発した水蒸気はミストセパレータ
13にて飛沫を分離され、封液として潤滑油を使用した
液封式ポンプ14にて吸引圧縮され気液分離器15を通
り封液を分離された後加熱織9にて被濃縮液と熱交換し
て凝縮し、ドレーントラップ16、二重管式熱交換器7
を通り、油水分酸槽5に溜り、水オーバフロー管17を
経て排水溝へ排出される。
On the other hand, the evaporated water vapor is separated into droplets by a mist separator 13, sucked and compressed by a liquid ring pump 14 that uses lubricating oil as a sealing liquid, and passes through a gas-liquid separator 15 to separate a sealing liquid. After that, it is condensed by exchanging heat with the liquid to be concentrated in a heating fabric 9, and then transferred to a drain trap 16 and a double pipe heat exchanger 7.
The water passes through the water, collects in the acid tank 5, and is discharged to the drain via the water overflow pipe 17.

本発明でいう液封式ポンプとはいわゆるナッシュ型ポン
プである。
The liquid ring pump referred to in the present invention is a so-called Nash type pump.

その構造は、例えばポンプケーシング内に封液を入れ、
羽根車をケーシングと偏′○させて回転させるものであ
る。従って封液は遠心力によってケーシング内壁に沿っ
て流れ、環流を形成し、内側に三日月状の空間を生じる
。この三日月状の通路が回転とともに広がる位置に吸気
口を開けておくと気体が吸入され、三日月状通路を羽根
車と共に流れ、二枚の羽根とケースと封液環流内面とに
よって独立した気室内に閉じ込められることになる。こ
の気室は、回転が進むにつれて封液環流内面が羽根の根
元に近づき容積が少さくなり内部の気体を圧縮する。そ
こで所要の圧力まで高まる位置に吐出口を開けておけば
圧縮された気体が排出される構造の圧縮ポンプである。
すなわち本発明でいう液封式ポンプは、封液をピストン
代りとすることにより往復動式圧縮機を回転連続化した
ものである。また、液封式ポンプにおいては、気液界面
は乱れているので、吐出側では圧縮された気体と共に常
に液滴も飛び出すことになり、その液量は補給しなけれ
ばならない。
For example, the structure is such that a sealing liquid is placed inside the pump casing.
The impeller is rotated by making it offset from the casing. Therefore, the sealing liquid flows along the inner wall of the casing due to centrifugal force, forming a circular flow and creating a crescent-shaped space inside. If the intake port is opened at a position where this crescent-shaped passage expands as it rotates, gas is sucked in, flows through the crescent-shaped passage together with the impeller, and enters an independent air chamber between the two blades, the case, and the inner surface of the sealing liquid circulation. You will be locked up. As the rotation progresses, the sealing liquid circulation inner surface of this air chamber approaches the root of the blade, and its volume decreases, compressing the gas inside. Therefore, the compressor pump has a structure in which the compressed gas is discharged by opening the discharge port at a position where the pressure reaches the required level.
That is, the liquid ring pump referred to in the present invention is a reciprocating compressor that is made to rotate continuously by using a sealing liquid in place of a piston. Furthermore, in a liquid ring pump, since the gas-liquid interface is disturbed, droplets are always ejected along with the compressed gas on the discharge side, and the amount of liquid must be replenished.

本実施例においては封液として潤滑油を用いたが、蒸発
巻蟹よりの飛沫の性状に応じて封液の選定を行なうこと
は勿論のことである。水蒸気に同伴して吐出された封液
(潤滑油)の液滴の分離は第1図において液封式ポンプ
14の吐出側に設けられた気液分離器15で行なし、掩
集された封液はオイルトラップ18を通り、封油槽19
に溜まり、液封循環ポンプ20‘こより蛇管熱交換器2
1を経て熱交換、冷却後再循環使用される。気体が圧縮
されるとき、外部から加えられた機械的エネルギーは内
部エネルギーとして蓄積され、圧縮気体の温度は上昇す
る。
In this embodiment, lubricating oil was used as the sealing liquid, but it goes without saying that the sealing liquid should be selected depending on the properties of the droplets from the evaporated crab. Separation of droplets of sealing liquid (lubricating oil) discharged along with the water vapor is performed in a gas-liquid separator 15 installed on the discharge side of the liquid ring pump 14 in FIG. The liquid passes through the oil trap 18 and enters the oil sealing tank 19.
It accumulates in the liquid ring circulation pump 20' and the coiled pipe heat exchanger 2
1 for heat exchange, cooling, and recirculation for use. When a gas is compressed, externally applied mechanical energy is stored as internal energy, and the temperature of the compressed gas increases.

液封式ポンプは前記各種圧縮機に比較して封液回転動力
に相当する分だけ機械的効率は低下するが、それだけ出
口蒸気及び封液の温度が上昇し、本発明ではこの温度上
昇分は供給液の顕熱及び装置よりの放熱の補充として利
用出釆る為、機械的効率の低下は熱効率として回収され
、エネルギーの損失はない。従って、封液をそのまま循
環すれば液封式ポンプ14の吐出側蒸気温度は非常に過
熱され加熱楼9の総括伝熱係数の低下、被濃縮液の過熱
による分解劣化及び封油の分圧の増加に伴う吸引蒸気量
の減少等を引き起す。その故第1図において封油槽19
内の封液は、封液循環ポンプ20により蒸発糟系内に設
置された蛇管熱交換器21へ送り被濃縮液と間接熱交換
する事により冷却した後、液封式ポンプ14へ封液とし
て供給し過熱を防止すると共にその熱エネルギーを被濃
縮液の加熱源として利用している。又封液に潤滑油を使
用しているので、気液分離器15で分離出釆ない油満及
び水蒸気蒸溜の原理により揮発した油が圧縮蒸気に少量
同伴されるが、これは加熱曜9内にて水蒸気と共に凝縮
し、ドレーントラップ16および二重管式熟交換器7を
通り、油水分離槽5内にて水と重力分離され、水オーバ
フロー管17よりわずか上方に設けられた油オーバフロ
ー管22を通り封油槽19へ返還される。
Although the mechanical efficiency of liquid ring pumps is lower than that of the various compressors described above by the amount equivalent to the rotational power of the sealing liquid, the temperature of the outlet steam and sealing liquid increases accordingly, and in the present invention, this temperature increase is Since it is used to supplement the sensible heat of the supply liquid and the heat radiated from the equipment, the decrease in mechanical efficiency is recovered as thermal efficiency, and there is no loss of energy. Therefore, if the sealing liquid is circulated as it is, the steam temperature on the discharge side of the liquid ring pump 14 will be extremely heated, resulting in a decrease in the overall heat transfer coefficient of the heating tower 9, decomposition and deterioration of the liquid to be concentrated due to overheating, and an increase in the partial pressure of the sealing oil. This causes a decrease in the amount of suction steam due to the increase. Therefore, in Fig. 1, the oil sealing tank 19
The sealing liquid inside is sent by a sealing liquid circulation pump 20 to a corrugated tube heat exchanger 21 installed in the evaporation tank system, where it is cooled by indirect heat exchange with the liquid to be concentrated, and then transferred to a liquid ring pump 14 as a sealing liquid. The thermal energy is used as a heating source for the liquid to be concentrated. In addition, since lubricating oil is used as the sealing liquid, a small amount of oil is entrained in the compressed steam due to the principle of oil filling and steam distillation, which cannot be separated in the gas-liquid separator 15. The oil overflow pipe 22 is condensed together with water vapor, passes through a drain trap 16 and a double-tube mature exchanger 7, is separated from water by gravity in an oil-water separation tank 5, and is installed slightly above the water overflow pipe 17. The oil is returned to the oil sealing tank 19 through the

尚始動に際しては生蒸気を23より加熱蛾9へ供給する
At the time of starting, live steam is supplied from 23 to the heating moth 9.

第2図示のものは本発明の第2実施例で液封式ポンプか
ら吐出された封液を水蒸気と分離せず、直接加熱鍵に供
給して、被濃縮液の加熱源として使用するものであって
、第1図示のものと同様臭化ナトリウム水溶液濃縮のフ
ローシートである。
The one shown in the second diagram is the second embodiment of the present invention, in which the sealing liquid discharged from the liquid ring pump is not separated from the water vapor, but is directly supplied to the heating key, and used as a heating source for the liquid to be concentrated. This is a flow sheet for concentrating an aqueous sodium bromide solution, similar to the one shown in Figure 1.

まず臭化ナトリウムの稀薄水溶液を第2図1より流量計
2で定流量で濃縮液貯槽3内に設置された蛇管熱交換器
4へ送り、ここで後述する蒸安発奮10aよりの濃縮液
と間接熱交換を行なわしめ、熱回収を行なうと共に濃縮
液を取り扱い易き温度迄冷却する。続いて被濃縮液を油
水分離槽5a内に設置された蛇管熱交換器6aおよび二
重管式熱交換器7aへ送り、後述する加熱蛾9aよりの
排出液と間接熱交換を行なわしめ、廃熱回収を行なった
後、ダウンテーク8を経て加熱鍵9aで加熱し蒸発織1
0aへ供給する。該蒸発鰹内液は加熱髭9aにて後述す
る液封式ポンプ14により圧縮された蒸発糟10aより
の蒸発蒸気および該液封式ポンプの封液と熱交換し、温
度が上昇した被濃縮液は蒸発糟10aに供給されて沸騰
蒸発し、温度降下した濃縮液はダウンテーク8を通り再
び加熱槌9aに入り圧縮蒸気およびポンプの封液により
加熱された後、蒸発鰹10aに再循環される。かくして
所要の濃度に濃縮された臭化ナトリウム水溶液はオーバ
フロー管・11を通り濃縮液貯糟3に溜り、濃縮液ポン
プ12により系外に取り出される。一方、飛沫分離性能
を有する蒸発鍵10aにて蒸発した水蒸気は、封液とし
て潤滑油を使用した液封式ポンプ14にて吸引圧縮され
、ポンプ封液と共に加熱曜9aに入り、熱交換し、凝縮
し、ポンプ封液と共にドレーントラツプ16aおよび二
重管式熱交換器7aを通り油水分離槽5aに溜まり、静
暦され、凝縮水は[降し、水オーバフロー管17を経て
排水溝へ排出される。一方、油水分機槽5a内で静薄さ
れたポンプ封液(潤滑油)は上昇し、該油水分離槽上部
に貯留され、油層中部に設けられた封液取出口から封液
循環ポンプ20により液封式ポンプ14へ封液として循
環再使用される。尚始動に際しては生蒸気を23より加
熱横9aへ供V給する。
First, a dilute aqueous solution of sodium bromide is sent at a constant flow rate using a flowmeter 2 from FIG. Indirect heat exchange is carried out to recover heat and cool the concentrate to a temperature where it can be easily handled. Subsequently, the liquid to be concentrated is sent to a corrugated pipe heat exchanger 6a and a double-pipe heat exchanger 7a installed in the oil-water separation tank 5a, where indirect heat exchange is performed with the liquid discharged from the heating moth 9a, which will be described later. After heat recovery, the evaporative fabric 1 is heated by the heating key 9a through the downtake 8.
Supply to 0a. The evaporated bonito internal liquid exchanges heat with the evaporated steam from the evaporation tank 10a compressed by the liquid ring pump 14 (to be described later) and the sealing liquid of the liquid ring pump in the heating whisker 9a, resulting in a heated liquid to be concentrated. is supplied to the evaporator 10a and boiled and evaporated, and the concentrated liquid whose temperature has decreased passes through the downtake 8 and enters the heating mallet 9a again, where it is heated by compressed steam and the sealing liquid of the pump, and then recirculated to the evaporated bonito 10a. . The aqueous sodium bromide solution thus concentrated to the required concentration passes through the overflow pipe 11 and accumulates in the concentrate reservoir 3, and is taken out of the system by the concentrate pump 12. On the other hand, the water vapor evaporated in the evaporation key 10a having droplet separation performance is suctioned and compressed by the liquid ring pump 14 using lubricating oil as the sealing liquid, enters the heating plate 9a together with the pump sealing liquid, and exchanges heat. The condensed water passes through the drain trap 16a and the double-pipe heat exchanger 7a together with the pump sealing liquid, collects in the oil-water separation tank 5a, and is collected in the oil-water separation tank 5a. . On the other hand, the pump sealing liquid (lubricating oil) statically diluted in the oil-water separator tank 5a rises, is stored in the upper part of the oil-water separation tank, and is liquidized by the seal-liquid circulation pump 20 from the sealing liquid outlet provided in the middle of the oil layer. It is circulated and reused as a sealing liquid to the sealing pump 14. At the time of starting, live steam is supplied from 23 to the heating side 9a.

以上、臭化ナトリウム水溶液濃縮の実施例のフローシー
トを挙げ本発明を説明したが、もちろん本発明は臭化ナ
トリウム水溶液に限定されるものではない。
The present invention has been described above with reference to flow sheets of examples of concentrating an aqueous sodium bromide solution, but of course the present invention is not limited to aqueous sodium bromide solutions.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例 第1図示のフローシートに従って、臭化ナトリウム水溶
液の濃縮を行なった。
Example 1 An aqueous sodium bromide solution was concentrated according to the flow sheet shown in the figure.

その主要データを下記に示す。The main data is shown below.

以上の説明で明らかなように、本発明の方法は蒸発鰹よ
りの飛沫同伴による液封式ポンプのケーシングおよび羽
根等への固型物の付着、摩耗、腐食は皆無であり、長期
連続運転による機械効率の低下も認められない。
As is clear from the above explanation, the method of the present invention eliminates the adhesion, wear, and corrosion of solid objects to the casing and blades of liquid ring pumps due to entrainment of droplets from evaporated bonito; No decrease in mechanical efficiency was observed.

従って装置保全費も一般の単効用蒸発装置と何んら変る
所がなく非常に低廉である。その上液封式ポンプの駆動
音は機側1のにおいて74ホーンであり、他の圧縮機に
比較して極端に低騒音であり、且つ、油水分隣槽かの排
水(第1図および第2図におけるオーバフロー管17よ
りの溢流水)中の油分は1脚以下、CODは5跡以下で
あり、二次公害の心配は全くない。又エネルギー効率は
69.2%であり、多重効用蒸発装置と比較すれば、1
効用当り80%と仮定して、実に8.夜効用に相当して
いる。その上、冷却水が必要なき為、運転経費は想像し
得ない種に低下する。また設備費はコンデンサーを必要
としない為、一般の単効用蒸発装置に比較して約20%
アップに止まる。
Therefore, the equipment maintenance cost is no different from that of a general single-effect evaporator and is very low. In addition, the driving sound of the liquid ring pump is 74 horns on the machine side 1, which is extremely low compared to other compressors, and the drainage from the adjacent tank for oil and water (see Figure 1 and The oil content in the overflow water from the overflow pipe 17 in Fig. 2 is less than 1 trace, and the COD is less than 5 traces, so there is no concern about secondary pollution. Also, the energy efficiency is 69.2%, which is 1% compared to a multiple effect evaporator.
Assuming that the utility is 80%, it is actually 8. It corresponds to the night effect. Moreover, since no cooling water is required, operating costs are reduced to an unimaginable level. In addition, equipment costs are approximately 20% compared to general single-effect evaporators because no condenser is required.
Stops up.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の実施例のフローシートで
ある。 3・…・・濃縮液貯槽、5,5a・・・・・・油水分隣
槽、6,6a・・・・・・蛇管熱交換器、7,7a・・
・・・・二重管式熱交換器、9,9a・・・・・・加熱
穣、10,10a・・・・・・蒸発篭藍、13・・・・
・・ミストセパレーター、14・・・・・・液封式ポン
プ、15・・・・・・気液分離器、20・・・・・・封
液循環ポンプ。 オ1図 オ2図
1 and 2 are flow sheets of an embodiment of the present invention. 3... Concentrated liquid storage tank, 5, 5a... Oil/water adjoining tank, 6, 6a... Corrugated tube heat exchanger, 7, 7a...
...Double pipe heat exchanger, 9,9a... Heating, 10,10a... Evaporation basket indigo, 13...
... Mist separator, 14 ... Liquid ring pump, 15 ... Gas-liquid separator, 20 ... Sealed liquid circulation pump. Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 1 蒸発罐から発生する水蒸気を、水と溶け合わず、且
つ、水より高沸点の液体を封液とした液封式ポンプで吸
引、圧縮し、該液封式ポンプより吐出された水蒸気と封
液の熱エネルギーを被濃縮液の加熱源として使用し、且
つ、水と分離した封液を循環再使用することを特徴とす
る機械的蒸気圧縮式蒸発方法。
1 The water vapor generated from the evaporation can is sucked and compressed by a liquid ring pump whose seal liquid is a liquid that does not mix with water and has a higher boiling point than water, and the water vapor discharged from the liquid ring pump and the seal are A mechanical vapor compression evaporation method characterized in that the thermal energy of the liquid is used as a heating source for the liquid to be concentrated, and the sealing liquid separated from water is recycled and reused.
JP9843177A 1977-08-17 1977-08-17 Mechanical vapor compression evaporation method Expired JPS6026561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9843177A JPS6026561B2 (en) 1977-08-17 1977-08-17 Mechanical vapor compression evaporation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9843177A JPS6026561B2 (en) 1977-08-17 1977-08-17 Mechanical vapor compression evaporation method

Publications (2)

Publication Number Publication Date
JPS5432171A JPS5432171A (en) 1979-03-09
JPS6026561B2 true JPS6026561B2 (en) 1985-06-24

Family

ID=14219608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9843177A Expired JPS6026561B2 (en) 1977-08-17 1977-08-17 Mechanical vapor compression evaporation method

Country Status (1)

Country Link
JP (1) JPS6026561B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4687546B1 (en) * 1985-07-19 1996-06-04 Anglo American Clays Corp Method of concentrating slurried kaolin

Also Published As

Publication number Publication date
JPS5432171A (en) 1979-03-09

Similar Documents

Publication Publication Date Title
JP4227022B2 (en) Rotary heat exchanger
CN106731852B (en) A kind of board-like vacuum membrane distillation evaporator and application
US4467623A (en) Counterflow absorber for an absorption refrigeration system
CN205699506U (en) A kind of electronics acid pickle electron-level phosphoric acid recycling and processing device
CN103245135A (en) Heat pump unit for recovering discharged heat of oil cooler of screw compressor by Freon evaporative oil cooler
CN104784948B (en) The synthetic recovery system of energy-saving atmospheric evaporation
US4138851A (en) Apparatus and method of geothermal energy conversion
CN105664514B (en) Horizontal MVC evaporators
CN206001743U (en) Absorption type heat pump system
CN101392757A (en) Centrifugal compressor and vapour recompression method utilizing the compressor
CN102659194B (en) Distillation-type seawater desalinization device
CN115057494B (en) Condensing device for desulfurization wastewater treatment of coal-fired power plant
JPS6026561B2 (en) Mechanical vapor compression evaporation method
EP0044294A1 (en) A desalination apparatus with power generation
CN205225349U (en) Condensing system of condensing formula screw rod expander
CN108662915A (en) The indirect heat exchange vaporization type condensing system of the general vapour of concentration evaporator system end effect
CN202770079U (en) Heat pump unit of freon evaporation oil cooler recovering exhaust heat of screw compressor oil cooler
CN209378488U (en) A kind of half cycle energy conservation evaporated crystallization device
CN207262975U (en) A kind of vacuum condensing system applied to thermal power plant
CN205461082U (en) Horizontal MVC evaporimeter
CN207262974U (en) Vaporation-type vacuum condenser
CN206680326U (en) A kind of horizontal hydraulic shear film for avoiding fouling sprays MVR vapo(u)rization systems
CN206666173U (en) Auto-manual double mode solar energy cascade boiled seawater desalination device
CN206362006U (en) A kind of full-liquid type refrigeration unit
CN110420471A (en) A kind of energy saving vapo(u)rization system for liquid evaporation