JPS6026503B2 - Molded body made of cross-linked polyethylene foam particles - Google Patents
Molded body made of cross-linked polyethylene foam particlesInfo
- Publication number
- JPS6026503B2 JPS6026503B2 JP5500480A JP5500480A JPS6026503B2 JP S6026503 B2 JPS6026503 B2 JP S6026503B2 JP 5500480 A JP5500480 A JP 5500480A JP 5500480 A JP5500480 A JP 5500480A JP S6026503 B2 JPS6026503 B2 JP S6026503B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- particles
- volume
- molded
- molded body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Thermal Insulation (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Description
【発明の詳細な説明】
本発明は、架橋ポリエチレン発泡粒子から成り、熱経時
的寸法安定性及び断熱特性に優れた成形体に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a molded article made of crosslinked polyethylene foam particles and excellent in thermal dimensional stability over time and heat insulation properties.
ポリエチレン発泡成形体は、ポリスチレン発泡成形体に
代るべき材料として注目され、近年各方面において緩衝
材、断熱材等として利用されるようになってきている。Polyethylene foam moldings have attracted attention as a material that can replace polystyrene foam moldings, and in recent years have come to be used as cushioning materials, heat insulating materials, etc. in various fields.
しかしながら、ポリエチレン発泡成形体は、熱経時的寸
法安定性が低く、高温にさらされる条件下で長期間使用
すると収縮を起すという欠点があるため、高熱部での断
熱材としての用途が制限されているのが実情である。例
えば、自動車の内部天井材に施した場合、夏季あるいは
熱帯地方において、ルーフバネルからの80〜9500
という高熱にさらされると、数日間で大きく収縮変形し
、天井がみにくくゆがむだけでなく、ひどくなると天井
材がパネルの鉄合溝から脱落する結果を招来する。また
、平板状に成形したポリエチレン発泡体を、アパートそ
の他の屋上断熱用としてコンクリート上面に敷きつめ、
さらに上面に防水樹脂加工を施して使用するような場合
においても、直射日光により短期間で収縮変形し、成形
板に歪を生じて防水加工膜が破損したり、接合部に空隙
を生じ、外観がそこなわれるばかりでなく、雨水等の溜
り場となるため吸水し、断熱性能が著しく劣化する。本
発明者らは、このような従釆のポリエチレン発泡成形体
がもつ欠点を克服し、高熱に接する条件下でも長期間に
わたって良好な寸法安定性を保持し、かつ優れた断熱特
性を示す架橋ポリエチレン発泡成形体を開発するために
鋭意研究を重ねた結果、成形体とした後で、所定の割合
以上に再膨張しうるような性質を有するものは、約90
つ0の温度で約10畑時間もしくはそれ以上使用しても
収縮率が2容量%以下であり、良好な寸法安定性を示す
ことを見出し、この知見に基づいて本発明をなすに至っ
た。However, polyethylene foam moldings have low dimensional stability over time and shrinkage when used for long periods of time under conditions exposed to high temperatures, which limits their use as insulation materials in high-temperature areas. The reality is that there are. For example, when applied to the interior ceiling material of a car, in the summer or in the tropics, 80 to 9500
When exposed to such high heat, the ceiling material shrinks and deforms significantly within a few days, not only making the ceiling ugly and distorted, but also causing the ceiling material to fall out of the panel's grooves. In addition, polyethylene foam formed into a flat plate is laid on top of concrete to insulate rooftops of apartments and other buildings.
Furthermore, even if the top surface is treated with waterproof resin, it will shrink and deform in a short period of time due to direct sunlight, causing distortion in the molded plate and damaging the waterproof membrane, creating voids in the joints, and affecting the appearance. Not only will this damage the insulation, but it will also act as a reservoir for rainwater, absorbing water, and significantly deteriorating its insulation performance. The present inventors have overcome the drawbacks of conventional polyethylene foam moldings, and have developed a cross-linked polyethylene that maintains good dimensional stability for a long period of time even under conditions of exposure to high heat and exhibits excellent heat insulation properties. As a result of extensive research to develop foamed molded products, approximately 90 foamed products have the property of being able to re-expand beyond a predetermined rate after being made into a molded product.
The inventors have found that the shrinkage rate is 2% by volume or less even after use for about 10 hours or more at a temperature of 100°C, showing good dimensional stability.Based on this finding, the present invention was developed.
すなわち、本発明は、溶融温度107〜124qoの架
橋ポリエチレンで形成された多数のセル構造を合0む発
泡粒子の融着集合体から成り、110℃で5秒間水蒸気
加熱した場合に、12容量%以上膨張する能力を有する
ことを特徴とする架橋ポリエチレン発泡粒子成形体を提
供するものである。That is, the present invention consists of a fused aggregate of foamed particles including a large number of cell structures formed of cross-linked polyethylene with a melting temperature of 107 to 124 qo, and when heated with steam at 110°C for 5 seconds, The present invention provides a crosslinked polyethylene foamed particle molded article characterized by having the ability to expand as described above.
本発明において、セル構造を構成している架橋タポリェ
チレンは、エチレンのホモポリマーが好ましいが、ポリ
エチレンとしての特性が維持されている範囲において、
他のモノマ−を含むコポリマ‐であってもよい。In the present invention, the crosslinked tapolyethylene constituting the cell structure is preferably an ethylene homopolymer, but as long as the properties of polyethylene are maintained,
It may also be a copolymer containing other monomers.
そして、本発明においては、このようなセル構造を構成
した状態にある架橋ポリエチレンが107〜124℃の
範囲内の溶融温度を有することが必要である。この範囲
外の溶融温度をもつものは、他の条件が満足されていて
も、本発明の目的を達成することができない。次に、本
発明においては、さらに成形体を110℃で5秒間水蒸
気加熱した場合に、IZ容量%以上膨張する能力を有す
ることが必要である。In the present invention, it is necessary that the crosslinked polyethylene in such a cell structure has a melting temperature within the range of 107 to 124°C. Those with melting temperatures outside this range will not be able to achieve the objectives of the present invention, even if other conditions are met. Next, in the present invention, when the molded body is heated with steam for 5 seconds at 110° C., it is necessary that the molded body has the ability to expand by IZ volume % or more.
第1図は、各種成形体を、90℃において9母時間放置
したときの膨張能と収縮率との関係を示すグラフである
が、これによると各成形体はそれぞれ実線Aと実線Bに
属する2つのグループに分れ、これら2本の実線の交点
すなわち膨張館12容量%、収縮率1容量%の点を境と
して大きく変化しており、実線Bに属するグループの収
縮率が著しく低いことが分る。Figure 1 is a graph showing the relationship between expansion ability and shrinkage rate when various molded bodies are left at 90°C for 9 hours. According to this, each molded body belongs to solid line A and solid line B, respectively. It is divided into two groups, and changes significantly at the intersection of these two solid lines, that is, the point where the expansion chamber is 12% by volume and the shrinkage rate is 1% by volume, and it can be seen that the shrinkage rate of the group belonging to solid line B is extremely low. I understand.
換言すれば、前記のようにして測定される成形体の膨張
率が12容量%以上になるような条件を選択して、ポリ
エチレン発泡粒子から成る成形体を製造すれば、熱蟻歪
時的寸法安定性の良好な成形体が得られるということで
ある。一般に、架橋ポリエチレン発泡粒子成形体は、そ
の型内成形時に発泡粒子に付与されていた発泡能のほと
んど全てが利用されつくされるのが普通であり、たとえ
若干の発泡剤ガスや大気圧以上の圧圧が発泡粒子内に残
留していたとしても、成形体とした後で大気圧下に放置
されることにより完全に消失すると考えられる。それに
もかかわらず、本発明の成形体が、12容量%以上とい
う高い膨張能を有するということは、全く予想外のこと
であり、従来市販されているポリエチレン発泡成形体、
公知文献(例えば特公昭51一22951号公報、特公
昭53一33996号公報など)に示されているポリエ
チレン発泡成形体で、このような膨張館を有するものは
全然知られていなかった。このように、本発明の成形体
が大きな膨張能を保持し、それによって熱経時的寸法安
定性が良好になる理由は以下のように説明することがで
きる。In other words, if conditions are selected such that the expansion coefficient of the molded product measured as described above is 12% by volume or more, and a molded product made of polyethylene foam particles is manufactured, the dimensions under thermal ant strain will be This means that a molded article with good stability can be obtained. In general, when forming a cross-linked polyethylene foam particle, almost all of the foaming ability imparted to the foam particle during in-mold molding is utilized, and even if some blowing agent gas or Even if pressure remains in the foamed particles, it is thought that it will completely disappear if the molded product is left under atmospheric pressure. Nevertheless, it is completely unexpected that the molded product of the present invention has a high expansion capacity of 12% by volume or more, and it is completely unexpected that the molded product of the present invention has a high expansion capacity of 12% by volume or more.
Among the polyethylene foam molded products disclosed in known literature (for example, Japanese Patent Publication No. 51-22951, Japanese Patent Publication No. 53-33996, etc.), no one having such an expansion hole was known at all. The reason why the molded article of the present invention maintains a large expansion ability and thereby exhibits good dimensional stability over time can be explained as follows.
すなわち、本発明の成形体の膨張能は、主として成形体
を構成する発泡粒子のセル中に存在する気体の熱膨張に
由来すると考えられるが、実際に発現される膨張能は、
セル構造やそれを形成する材質によって左右される。That is, it is thought that the expansion ability of the molded article of the present invention is mainly derived from the thermal expansion of the gas existing in the cells of the expanded particles constituting the molded article, but the expansion ability actually expressed is
It depends on the cell structure and the material used to form it.
例えば、十分に膨張館が発揮されるためには、成形体を
加熱したときにセル膜が少なくとも気体の熱膨張が効果
を示す程度に低い気体透過性を有していることが必要で
ある。他方、この成形体が冷却されたときには、気体の
冷却収縮に基づいて生じる減圧に抗して、セル寸法を維
持しうる強度をもち、かつその後で外気を吸込んでセル
内圧と外圧とが平衝にしうるような剛性及び気体透過性
を有することが必要である。0 そして、このように十
分な膨張能を発揮できるセル構造及びそれを形成する樹
脂特性をもつ成形体は、長期間にわたって高熱下にさら
されても収縮に対し十分な耐性を維持し、従釆のポリエ
チレン発泡成形体のような欠点を示さないことにな夕る
。For example, in order to exhibit sufficient expansion capacity, the cell membrane needs to have gas permeability that is at least low enough to exhibit an effect of thermal expansion of gas when the molded body is heated. On the other hand, when this molded body is cooled, it has the strength to maintain the cell dimensions against the pressure reduction caused by the cooling contraction of the gas, and then draws in outside air to balance the cell internal pressure and external pressure. It is necessary to have such rigidity and gas permeability that it can be used. 0 In this way, a molded product with a cell structure that can exhibit sufficient expansion ability and the characteristics of the resin that forms it will maintain sufficient resistance to shrinkage even when exposed to high heat for a long period of time, and will retain its flexibility. As a result, it does not exhibit the disadvantages of polyethylene foam molded products.
すなわち、本発明の成形体においては、セル構造及びそ
れを形成する材質が重要な意味を有するのであるが、同
じ材料を用いて製造しても、セル膜の厚み、損傷、しわ
、配向性、セル形状及び均0質性などによって成形体の
特性は変るし、また架橋度、架橋手段、発泡条件、操作
条件などの方法的因子によっても影響されることを免れ
ない。In other words, in the molded article of the present invention, the cell structure and the material forming it have an important meaning, but even if the same material is used, the thickness of the cell membrane, damage, wrinkles, orientation, etc. The properties of the molded article vary depending on the cell shape, homogeneity, etc., and are inevitably influenced by method factors such as the degree of crosslinking, crosslinking means, foaming conditions, and operating conditions.
しかし、これらの諸因子に個々についてそれらをそれぞ
れ組み合わせてその影響を検討し、構成要件を規定する
ことは事実上不可能であるが、本発明においては幸いな
ことにこれら諸因子の総合的管理因子として前記した膨
張館を用いることができるのである。したがって、本発
明においては、
‘ィ)成形体を構成する発泡粒子のセル構造を形成して
いる姿鮪喬ポリエチレンが溶融温度107〜124℃の
範囲にあること、及び【oー 成形体を110qoの水
蒸気で5秒間加熱したときに、元の体積の12%以上膨
張することが、構成要件として必須なものとなる。However, it is virtually impossible to combine these factors individually, examine their effects, and specify configuration requirements, but fortunately in the present invention, comprehensive management of these factors is possible. The above-described expansion chamber can be used as a factor. Therefore, in the present invention, 'a) the polyethylene forming the cell structure of the expanded particles constituting the molded product has a melting temperature in the range of 107 to 124°C, and It is essential that the material expands by 12% or more of its original volume when heated with water vapor for 5 seconds.
本発明の成形体は、ポリエチレン樹脂から架井喬ポリエ
チレン発泡粒子を調整し、これに必要に応じ発泡館付与
処理を行ったのち、型内に充てんし、加熱発泡させるこ
とによって製造することができる。The molded article of the present invention can be produced by preparing foamed polyethylene particles from polyethylene resin, subjecting them to a foaming treatment as necessary, filling them into a mold, and heating and foaming them. .
この際の発泡粒子の調製は、例えば所定の溶融温度をも
つポリエチレン樹脂に加橋剤0.2〜2.5重量%を加
え、100〜13耳0に加熱して、加橋ポリエチレン粒
子としたのち、発泡剤例えばジクロロジフルオロメタン
を、70〜90℃で0.5〜1.虫寺間含浸させ、0.
3〜0.9kg/の(ゲージ圧)の水蒸気で10〜3の
砂加熱して一次発泡させ、次いで1〜20k9/地(ゲ
ージ圧)の空気により80〜90℃において4〜6時間
処理し、さらに0.3〜1.0k9/地(ゲージ圧)の
水蒸気で5〜2鼠砂加熱して二次発泡させることによっ
て行われる。In this case, the foamed particles can be prepared by adding 0.2 to 2.5% by weight of a crosslinking agent to a polyethylene resin having a predetermined melting temperature, and heating the mixture to a temperature of 100 to 13 mm to form crosslinked polyethylene particles. Thereafter, a blowing agent such as dichlorodifluoromethane is added at 70 to 90°C for 0.5 to 1. Impregnated with insect terama, 0.
The sand is heated for 10 to 3 degrees with water vapor of 3 to 0.9 kg/gauge pressure for primary foaming, and then treated with air of 1 to 20 k9/gauge pressure at 80 to 90°C for 4 to 6 hours. Further, secondary foaming is carried out by heating the rat sand for 5 to 2 minutes with water vapor of 0.3 to 1.0 k9/ground (gauge pressure).
このようにして得た発泡粒子は数日間ないし十数日間大
気圧下に放置して粒子の内圧を実質的にok9/地(ゲ
ージ圧)としたのち、必要に応じ、耐圧容器内において
常温で0.3〜0.7kg/地(ゲ−ジ圧)の空気を圧
入して圧縮率2〜18%まで圧縮し、これをそのまま所
定の形状の金型に充てんし、1.0〜1.7k9/地(
ゲージ圧)の水蒸気で加熱したのち冷却すれば、所望の
成形体が得られる。The foamed particles obtained in this way are left under atmospheric pressure for several days to more than ten days to bring the internal pressure of the particles to substantially OK9/gauge pressure, and then, if necessary, stored at room temperature in a pressure-resistant container. Air of 0.3 to 0.7 kg/ground (gauge pressure) is injected and compressed to a compression rate of 2 to 18%, and this is directly filled into a mold of a predetermined shape, and the air is compressed to a compression ratio of 1.0 to 1. 7k9/ground (
The desired molded product can be obtained by heating with water vapor (gauge pressure) and then cooling.
この成形体は、さらに60〜90o0の陣温室で2〜1
0時間程度乾燥するのがよい。本発明の成形体のセル構
造を形成する舞割喬ポリエチレンの溶融温度は、示差熱
温度計(パーキンーェルマー社製、ディフアレンシヤル
・スキャニング・カロリメーター、1一B型)を用い、
試料量0.005夕、昇温速度10午○/分の条件下で
測定することによって求められる。This molded body is further heated in a heating room at 60 to 90o0.
It is best to dry for about 0 hours. The melting temperature of the polyethylene that forms the cell structure of the molded product of the present invention is measured using a differential thermometer (manufactured by Perkin-Elmer, differential scanning calorimeter, model 11B).
It is determined by measuring under the conditions of a sample amount of 0.005 m/min and a heating rate of 10 m/min.
また、成形体の膨張能は、1辺5肌の立方体として切り
出した試料について、あらかじめその重量と真のかミ容
積より加熱前の密度D,くめ/夕)を求め、次いでその
試料を110℃の水蒸気で5秒間加熱した後70qoの
恒温室中で時間熟成し、前記と同様にして密度D2(地
/夕)を求め、次式によって計算するとができる。In addition, the expansion ability of a molded product can be determined by determining the density (D, volume/unit) before heating of a sample cut out as a cube with 5 skins on each side from its weight and true volume, and then heating the sample at 110°C. After heating with water vapor for 5 seconds, it is aged in a constant temperature room at 70 qo, and the density D2 (ground/tan) is determined in the same manner as described above, and can be calculated using the following formula.
膨張能(%)=三云三×・血
さらに、熱経時的寸法安定性は、1辺5仇舷の立方体と
して切り出した試料を9ぴ0に調溢した陣温室内に9粥
寺間放置したのち、取り出して1時間放冷し、最初の大
きさに対する寸法変化率を求め、その最大値をもって示
した。Expansion ability (%) = 3 x 3 × blood Furthermore, the thermal stability over time was determined by cutting out a sample as a cube with 5 sides on each side and leaving it in a heated greenhouse for 9 minutes. Thereafter, the sample was taken out and allowed to cool for 1 hour, and the dimensional change rate with respect to the initial size was determined, and the maximum value is shown.
本発明の成形体は、熱経時的寸法安定性、断熱特性が優
れているので、特に給傷用パイプカバー、瓦下地材のよ
うな高温と接して用いられる断熱材として好適である。The molded article of the present invention has excellent dimensional stability over time and heat insulation properties, and is therefore particularly suitable as a heat insulating material used in contact with high temperatures, such as pipe covers for supply and damage, and tile base materials.
次に実施例によって本発明をさらに詳細に説明する。な
お、各例中における特性の測定及び評価方法を以下に示
す。‘1} パイプカバーの体積減少率:第2図に示す
装置の恒温槽1内の温度を80q0に保ち、パイプカバ
ー装着部2にパイプの全周を被覆しうるようにして長さ
50仇舷の試料で作ったカバーを3組直列に取付け、1
50助成こわたって覆った。Next, the present invention will be explained in more detail with reference to Examples. In addition, the measurement and evaluation method of the characteristics in each example is shown below. '1} Volume reduction rate of the pipe cover: The temperature in the constant temperature chamber 1 of the apparatus shown in Fig. 2 was maintained at 80q0, and the length of the pipe was 50 m2 so that the pipe cover attachment part 2 could cover the entire circumference of the pipe. Three sets of covers made from the sample were installed in series, and 1
Over 50 grants were made.
この状態で1年間放置したのち、試料を取り外し、その
かさ容積(V2)を測定し、あらかじめ測定しておいた
装着前のかさ容積(V,)とから、次式に従って体積減
少率を算出し、次の基準により評価した。体積減少率(
%):三云準X・o。After leaving it in this state for one year, the sample was removed, its bulk volume (V2) was measured, and the volume reduction rate was calculated from the pre-measured bulk volume (V,) before installation according to the following formula. , evaluated according to the following criteria. Volume reduction rate (
%): Sanyunjun X.o.
{2’瓦下地材の体積減少率及び断熱性能持続性:特に
高温多湿の条件にさらされる一般住宅の屋根瓦の下(本
実験では沖縄における住宅断熱の実験棟を使用)に当該
瓦下地材を装着し約1年後に取出し次の評価を行った。{2' Volume reduction rate and insulation performance sustainability of tile base material: The tile base material is used under roof tiles of ordinary houses that are particularly exposed to high temperature and humidity conditions (in this experiment, a residential insulation experimental building in Okinawa was used). Approximately one year after it was installed, it was removed and the following evaluations were performed.
i 体積減少率試験に供した成形体のかさ容積(V2)
を測定しあらかじめ装着前に測定してあるかミ容積(V
,)とから前記の式により体積減少率を算出し、次の基
準により評価した。i Bulk volume (V2) of molded body subjected to volume reduction rate test
The volume (V) has been measured in advance before installation.
, ), the volume reduction rate was calculated using the above formula, and evaluated based on the following criteria.
五 断熱性能持続性
試験に供した成形体の同一部位より縦200肋、横20
物岬、厚さ5&舷の大きさの試料片を切り出しその表面
をガーゼを用いて軽く拭き取りASTM C 518に
定める方法で、このものの熱伝導率人′を測定しあらか
じめ試験前に同一条件で作った成形体より切り出した試
料片により求めておいた熱伝導率^との変化の状態を入
/入′で計算し以下の基準により評価する。(5) 200 vertically and 20 horizontally from the same part of the molded body subjected to the insulation performance sustainability test.
Cut out a sample piece with a thickness of 5 mm and the size of the ship's side. Wipe the surface lightly with gauze and measure the thermal conductivity of this material using the method specified in ASTM C 518. The state of change in thermal conductivity ^ determined from a sample piece cut out from the molded body was calculated for input/input', and evaluated according to the following criteria.
実施例 1
基材樹脂として第1表に示すA〜Eのポリエチレン樹脂
を用い以下の方法により成形体を得た。Example 1 Molded articles were obtained by the following method using polyethylene resins A to E shown in Table 1 as base resins.
第1表すなわち、耐圧容器にIJン酸ナトリウム水溶液
と塩化カルシウム水溶液とから調製したリン酸カルシウ
ム0.25重量部を含む水18の重量部を収容しかきま
ぜながら、ネオベレックス0.1重量部を含む水2の重
量部にジクミルバーオキシド所定量を加温下かきまぜな
がら微細分散させたものを加えた後、ポリエチレン樹脂
100重量部を加え、容器内を窒素置換して100qo
で2時間、次に135qoで7時間処理を行い内容物を
取出したところ、粒径1.2肋、ゲル分率30〜80%
の架橋ポリエチレン粒子を得た。Table 1 shows that 18 parts by weight of water containing 0.25 parts by weight of calcium phosphate prepared from an aqueous solution of sodium IJ phosphate and an aqueous solution of calcium chloride were placed in a pressure-resistant container, and while stirring, water 2 parts by weight containing 0.1 part by weight of Neoverex was placed. After adding a predetermined amount of dicumyl peroxide finely dispersed while stirring under heating to parts by weight of , 100 parts by weight of polyethylene resin was added, and the inside of the container was replaced with nitrogen to reduce
When the contents were taken out after treatment for 2 hours at 135qo and 7 hours at 135qo, the particle size was 1.2 ribs and the gel fraction was 30-80%.
crosslinked polyethylene particles were obtained.
なお、ジクミルパーオキシド量は目的とする架橋度に合
わせ0.2部〜2.5重量部の間から選択した。この架
橋粒子を耐圧容器に収容しジクロロジフルオロメタンを
含浸させて後加熱発泡し見掛のかさ容積で約17洲/夕
の一次発泡粒子を得た。この一次発泡粒子を耐圧容器に
収容し空気を含浸させて後加熱発泡し見掛のかさ容積で
約41の/夕の二次発泡粒子を得た。以上の発泡方法は
次の条件の中での最適値を用いた。The amount of dicumyl peroxide was selected from 0.2 parts to 2.5 parts by weight depending on the desired degree of crosslinking. The crosslinked particles were placed in a pressure-resistant container, impregnated with dichlorodifluoromethane, and then heated and foamed to obtain primary foamed particles with an apparent bulk volume of about 17 square meters. The primary foamed particles were placed in a pressure-resistant container, impregnated with air, and then heated and foamed to obtain secondary foamed particles with an apparent bulk volume of about 41/cm. For the above foaming method, the optimum value among the following conditions was used.
一次発泡剤含浸温度 70〜90CO一
次発泡剤含浸時間 0.5〜1.虫時間−総
跡蒸燕0.3〜0.9k9/の(ゲージ圧)
一次発泡加熱時間 10〜3の砂空気
舎浸圧力 10k9/地(ゲージ圧)空昇含浸
温度 80〜90午0空気含浸時
間 4〜6時間二次発泡水蒸気圧0
.3〜1.0k9/塊(ゲージ圧)
二次発泡加熱時間 5〜2晩砂得られ
た発泡粒子を1週間大気圧下に放置し、粒子の内圧がo
k9/地(ゲージ圧)であることを確認した後、該粒子
を耐圧容器に入れ使用した基材樹脂の種類により常温0
.3〜0.7k9/地(ゲ−ジ圧)の空気で約5秒間処
理し元のかさ容積の90%(圧縮率10%)に圧縮し、
これをそのまま内寸法30比帆×30仇舷×5仇岬(厚
さ)の型内に収容し1.0〜1.7k9/仇(ゲージ圧
)の水蒸気で加熱し、後冷却して成形体を得た。Primary blowing agent impregnation temperature 70-90CO Primary blowing agent impregnation time 0.5-1. Insect time - Total trace steaming 0.3~0.9k9/(gauge pressure) Primary foaming heating time 10~3 sand air chamber impregnation pressure 10k9/ground (gauge pressure) Elevation impregnation temperature 80~90pm 0 air Impregnation time: 4 to 6 hours Secondary foaming water vapor pressure: 0
.. 3 to 1.0k9/lump (gauge pressure) Secondary foaming heating time 5 to 2 nights The obtained foamed particles were left under atmospheric pressure for one week until the internal pressure of the particles was
After confirming that the pressure is k9/ground (gauge pressure), the particles are placed in a pressure-resistant container and heated to 0 at room temperature depending on the type of base resin used.
.. Treated with air at 3 to 0.7 k9/ground (gauge pressure) for about 5 seconds and compressed to 90% of the original bulk volume (compression ratio 10%),
This is placed as is in a mold with internal dimensions of 30 mm x 30 mm x 5 mm (thickness), heated with steam at 1.0 to 1.7 k9/cm (gauge pressure), and then cooled and molded. I got a body.
ここで得た成形体につき、セル膜の溶融温度及び110
℃の水蒸気で5秒間加熱したときの膨張能を測定した。Regarding the molded body obtained here, the melting temperature of the cell membrane and 110
The expansion ability was measured when heated with water vapor at ℃ for 5 seconds.
この結果を第2表に示す。第2表の結果によると約10
%を越える膨張能を成形体に付与させ得るセル膜溶融温
度のグループは少なくとも107〜124℃の範囲のも
のを選ぶ必要があることが分る。The results are shown in Table 2. According to the results in Table 2, approximately 10
It has been found that it is necessary to select a group of cell membrane melting temperatures in the range of at least 107 to 124 DEG C. that can provide the molded article with an expansion ability of more than 10%.
上記範囲にある成形体についてそれぞれ前記した評価方
法により熱経時の寸法安定性を評価した。The dimensional stability over time of heat was evaluated for each molded article within the above range by the evaluation method described above.
その結果を第2表に併記し第1図に膨張能と収縮率の関
係として示した。第1図の結果によると熱経時の寸法安
定性は、膨張館が12%である附近を境としてそれ以下
では急勾配の変化が起り、12容量%を越えた範囲では
その変化は少ない。The results are also listed in Table 2 and shown in Figure 1 as the relationship between expansion ability and shrinkage rate. According to the results shown in Fig. 1, the dimensional stability over time of heat changes steeply below the 12% expansion chamber, and changes little in the range exceeding 12% by volume.
すなわち、熱経時的寸法安定性において良質のものを得
るためには膨張能が少なくても12容量%を越えたもの
でなくてはならないことを示している。第2表
実施例 2
基材樹脂として第1表のB,C,Dのポリエチレン樹脂
を用い、架橋剤としてジクミルパーオキシドを加え、そ
の他セル径調整剤及び分散剤と共に加熱架橋してゲル分
率58〜62%、平均粒径1.2側の架橋ポ.リェチレ
ン粒子を調製した。In other words, in order to obtain good quality dimensional stability over time, the expansion capacity must exceed at least 12% by volume. Table 2 Example 2 Using polyethylene resins B, C, and D in Table 1 as the base resin, dicumyl peroxide was added as a crosslinking agent, and the gel was crosslinked by heating together with other cell diameter adjusting agents and dispersants. crosslinking ratio 58-62%, average particle size 1.2 side. Retiren particles were prepared.
この粒子に対して発泡剤を含浸させた後加熱発泡し一次
発泡粒子を得た。一次発泡粒子に対して空気を含浸させ
た後加熱発泡することにより二次発泡粒子を得、さらに
二次発泡粒子に対して空気を含浸させ加熱発泡すること
により見掛けのかさ容積でおよそ47地/夕の三次発泡
粒子を調製した。発泡方法は次の条件の中での最適値を
用いた。The particles were impregnated with a foaming agent and then heated and foamed to obtain primary foamed particles. Secondary foamed particles are obtained by impregnating the primary foamed particles with air and then heating and foaming them.Furthermore, the secondary foamed particles are impregnated with air and heated and foamed to give an apparent bulk volume of approximately 47 mm/mm. Tertiary expanded particles were prepared. For the foaming method, the optimum value among the following conditions was used.
発泡剤 ジクロロジフルオロメタン発泡剤含
浸温度 80〜90qo発泡剤舎浸
時間 1〜1.虫時間一次発泡水蒸気
圧0.3〜0.9k9/仇(ゲージ圧)
一次発泡加熱時間 10〜3現段空気
含浸圧力10kg/の(ゲージ圧)
空気含浸温度 80〜90q0空
気含浸時間 4〜6時間二次三次発
泡水蒸気圧0.4〜0.9k9/地(ゲージ圧)
二次三次発泡加熱時間 5〜19段得られ
た発泡粒子を1週間大気圧下に放置し粒子の内圧がok
9/地(ゲージ圧)であることを確認した後、該粒子を
耐圧容器に入れ使用した基材樹脂の種類により常温0.
3〜0.7k9/地(ゲージ圧)の空気で約5秒間処理
し元のかご容積の90%(圧縮率10%)に圧縮し、こ
れをそのまま第3図1及びローこ示す成形体が得られる
形状の金型内に収容し1.0〜1.7kg/の(ゲージ
圧)の水蒸気で加熱した後冷却して成形体を取り出し、
さらに75℃の乾燥室に5時間放置した。Foaming agent dichlorodifluoromethane Foaming agent impregnation temperature 80-90qo Foaming agent immersion time 1-1. Insect time Primary foaming water vapor pressure 0.3-0.9k9/(gauge pressure) Primary foaming heating time 10-3 Current air impregnation pressure 10kg/(gauge pressure) Air impregnation temperature 80-90q0 Air impregnation time 4-6 Time: Secondary and tertiary foaming Steam pressure: 0.4 to 0.9 k9/ground (gauge pressure) Secondary and tertiary foaming: Heating time: 5 to 19 steps The obtained expanded particles were left under atmospheric pressure for one week until the internal pressure of the particles was OK.
After confirming that the pressure is 9/2 (gauge pressure), the particles are placed in a pressure-resistant container and kept at room temperature 0.0 or 0.0, depending on the type of base resin used.
It was treated with air at 3 to 0.7 k9/kg (gauge pressure) for about 5 seconds to compress it to 90% of the original cage volume (compression ratio 10%), and as it was, the molded product shown in Figure 3 1 and Row was obtained. The molded product is placed in a mold having the shape to be obtained, heated with steam at 1.0 to 1.7 kg/(gauge pressure), cooled, and taken out.
Furthermore, it was left in a drying room at 75° C. for 5 hours.
得られた成形体についてそれぞれ前記した評価方法によ
り、給濠用パイプカバーの体積減少率及び瓦下地材の体
積減少率と断熱性能持続性を測定評価した。The volume reduction rate of the supply moat pipe cover, the volume reduction rate of the tile base material, and the sustainability of the insulation performance were measured and evaluated for the obtained molded bodies using the evaluation methods described above.
結果を第3表に示す。The results are shown in Table 3.
第3図の結果より明らかなように、本発明の成形体は従
釆法による成形体に比べ実用経時による収縮変形及び断
熱性能の低下がきわめて小さく断熱保温素材として非常
に優れていることが分る。As is clear from the results shown in Figure 3, the molded product of the present invention exhibits very little shrinkage deformation and deterioration in heat insulation performance over time compared to molded products produced by the conventional method, and is therefore extremely excellent as a heat insulating material. Ru.
比較例耐圧容器にリン酸ナトリウム水溶液と塩化カリウ
ム水溶液とから調製したリン酸カリウム0.25重量部
を含む水18の重量部を収容し、かきまぜながらネオベ
レツクス0.1重量部を含む水20重量部にジクミルパ
ーオキシド0.3龍重量部を加溢し、かきまぜながら、
微細分散させたものを加えた後、粒径1.2側のポリエ
チレン(三井ポリケミカル製商品名ミラソン−9)10
低重量部を加え、容器内を窒素置換して100qoで2
時間、次に135ooで7時間の処理を行い、内容物を
取出したところ、ゲル分率が50%前後の架橋ポリエチ
レン粒子を得た。Comparative Example 18 parts by weight of water containing 0.25 parts by weight of potassium phosphate prepared from an aqueous sodium phosphate solution and an aqueous potassium chloride solution were placed in a pressure-resistant container, and while stirring, 20 parts by weight of water containing 0.1 part by weight of Neoverex was added. Add 0.3 parts by weight of dicumyl peroxide to the mixture, and while stirring,
After adding the finely dispersed material, 10% of polyethylene with a particle size of 1.2 (trade name Mirason-9 manufactured by Mitsui Polychemicals) was added.
Add the low weight part, replace the inside of the container with nitrogen, and add 2 at 100qo.
When the contents were taken out after treatment at 135 oo for 7 hours, crosslinked polyethylene particles with a gel fraction of about 50% were obtained.
〔A〕 この架橋粒子を耐圧容器に収容しジクロロジフ
ルオロメタンを12%含浸させて、加熱発泡粒子とし該
発泡粒子を18k9/洲(ゲージ圧)のジクロロジフル
オロメタンガス下に保持した後、これを除圧して見鶏容
積約4&え/夕の発泡粒子を得た。この発泡粒子を耐圧
容器内に収容し1.2k9/のくゲージ圧)の空気で加
圧し発泡粒子容積を元のかさ容積の72%まで圧縮した
のち、第3図1及び0‘こ示す成形体が得られる形状の
金型内に収容した。この時金型内における発泡粒子の容
積が元のかさ容積の80%となるよう充てん量を定めた
。型内に収容した発泡粒子に対し2.5k9/地(ゲー
ジ圧)の水蒸気で加熱し、後冷却して成形体を得た。〔
B〕 上記架橋粒子を耐圧容器を収容し、ジクロロジフ
ルオロメタンにより6ぴ○で2時間加圧含浸処理し、1
3.5重量%の含浸ビーズを得た。[A] The crosslinked particles are placed in a pressure container and impregnated with 12% dichlorodifluoromethane to form heat-foamed particles.The expanded particles are held under dichlorodifluoromethane gas at 18k9/cm (gauge pressure), and then removed. The mixture was pressed to obtain foamed particles having a volume of approximately 4 mm. The foamed particles were housed in a pressure-resistant container and pressurized with air at 1.2k9/gage pressure to compress the foamed particle volume to 72% of the original bulk volume, and then molded as shown in Figures 1 and 0'. The body was placed in a mold shaped to obtain the body. At this time, the filling amount was determined so that the volume of the foamed particles in the mold would be 80% of the original bulk volume. The foamed particles housed in the mold were heated with steam at 2.5k9/ground (gauge pressure) and then cooled to obtain a molded body. [
B] The above-mentioned crosslinked particles were placed in a pressure-resistant container and subjected to pressure impregnation treatment with dichlorodifluoromethane at 6 pi○ for 2 hours.
3.5% by weight impregnated beads were obtained.
次いでこのものを1.2k9/仇(ゲージ圧)の水蒸気
で2現砂加熱し、見掛容積約18仇/夕の発泡粒子を得
た。この粒子を耐圧容器に収容し、18k9/地(ゲー
ジ圧)75℃の空気中に20分保持した後これを大気圧
まで除去し、見掛容積約27地/夕の発泡粒子にした。
この粒子内の平均内圧は0.槌k9/地(ゲージ圧)で
あった。該発泡粒子をただちに第3図1及びローこ示す
成形体が得られる形状の金型内に金型内に収容し、これ
を1.9kQ/の(ゲージ圧)の水蒸気で2晩砂加熱し
後冷却して成形体を得た。本例で得た成形体についてそ
れぞれ前記の評価方法により給濠用パイプカバーの体積
減少率及び瓦下地材の体積減少率と断熱性能持続性を測
定評価した。Next, this material was heated with water vapor at a pressure of 1.2 k9/m (gauge pressure) to obtain foamed particles having an apparent volume of about 18 m/m. The particles were placed in a pressure container and kept in air at 75° C. (gauge pressure) for 20 minutes, and then removed to atmospheric pressure to form foamed particles with an apparent volume of about 27 g/m.
The average internal pressure within this particle is 0. The hammer was k9/ground (gauge pressure). The foamed particles were immediately placed in a mold having a shape to obtain the molded product shown in Fig. 3 and 1, and heated with sand for two nights with steam at 1.9 kQ/ (gauge pressure). After cooling, a molded body was obtained. The molded bodies obtained in this example were evaluated by measuring and evaluating the volume reduction rate of the pipe cover for the moat, the volume reduction rate of the tile base material, and the sustainability of the insulation performance using the evaluation method described above.
結果を第3表に示す。The results are shown in Table 3.
第 3 表Table 3
第1図は成形体が示す膨張能とその成形体が示す熱経時
の収縮率との関係を表わすグラフ、第2図はパイプカバ
ーの体積減少率を測定するのに用し、た溢水循環装置の
説明図、第3図は実用経時テスト用に製造された成形体
の形体を示す斜視図である。
第1図
第2図
第3図Figure 1 is a graph showing the relationship between the expansion capacity of a molded body and the shrinkage rate of the molded body over heat, and Figure 2 is a graph used to measure the volume reduction rate of a pipe cover. FIG. 3 is a perspective view showing the shape of a molded body manufactured for a practical aging test. Figure 1 Figure 2 Figure 3
Claims (1)
成された多数のセル構造を含む発泡粒子の融着集合体か
ら成り、110℃で5秒間水蒸気加熱した場合に、12
容量%以上膨張する能力を有することを特徴とする架橋
ポリエチレン発泡粒子成形体。1 Consists of a fused aggregate of foamed particles containing a large number of cell structures formed of cross-linked polyethylene with a melting temperature of 107 to 124 °C, and when heated with steam at 110 °C for 5 seconds, 12
A crosslinked polyethylene foamed particle molded article characterized by having the ability to expand by more than % by volume.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5500480A JPS6026503B2 (en) | 1980-04-25 | 1980-04-25 | Molded body made of cross-linked polyethylene foam particles |
CA000366174A CA1147100A (en) | 1979-12-10 | 1980-12-04 | Expanded cross-linked polyethylene particle, a molded product thereof and the methods thereof |
US06/213,643 US4366263A (en) | 1979-12-10 | 1980-12-05 | Expanded cross-linked polyethylene particle, a molded product thereof and the methods thereof |
EP80107757A EP0032557B1 (en) | 1979-12-10 | 1980-12-09 | An expanded cross-linked polyethylene particle and methods to produce molded products thereof |
DE8080107757T DE3072109D1 (en) | 1979-12-10 | 1980-12-09 | An expanded cross-linked polyethylene particle and methods to produce molded products thereof |
HK284/89A HK28489A (en) | 1979-12-10 | 1989-04-06 | An expanded cross-linked polyethylene particle and methods to produce molded products thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5500480A JPS6026503B2 (en) | 1980-04-25 | 1980-04-25 | Molded body made of cross-linked polyethylene foam particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56151735A JPS56151735A (en) | 1981-11-24 |
JPS6026503B2 true JPS6026503B2 (en) | 1985-06-24 |
Family
ID=12986502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5500480A Expired JPS6026503B2 (en) | 1979-12-10 | 1980-04-25 | Molded body made of cross-linked polyethylene foam particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6026503B2 (en) |
-
1980
- 1980-04-25 JP JP5500480A patent/JPS6026503B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS56151735A (en) | 1981-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1102497A (en) | Foamed articles and methods for making same | |
EP0075897B1 (en) | Process for producing pre-foamed particles of polyolefin resin | |
US3640787A (en) | Method of producing shaped bodies of low specific gravity | |
EP0071981B2 (en) | Foamed molded articles of polypropylene resin | |
CA1233300A (en) | Pre-foamed beads of polyethylene-base resin | |
US4596682A (en) | Method of manufacturing fire retardant polystyrene insulating board | |
EP1403305B1 (en) | Method for producing polypropylene type resin foamed particle | |
US3723232A (en) | Bdies of low specific gravity | |
US3510392A (en) | Glass nodules in cellular polyurethane | |
Ball et al. | A New Heat Resistant Rigid Foam | |
EP0032557B1 (en) | An expanded cross-linked polyethylene particle and methods to produce molded products thereof | |
KR880001770B1 (en) | Directionally flexibilized exponded thermoplastic foam sheet for low temperature insulation | |
CA1128268A (en) | Panel based on polycondensable resin and a method for the manufacture of this panel | |
US4714715A (en) | Method of forming fire retardant insulating material from plastic foam scrap and the resultant product | |
US3631133A (en) | Process for expanding polystyrene | |
JPS6026503B2 (en) | Molded body made of cross-linked polyethylene foam particles | |
US2091335A (en) | Insulation members | |
EP0153464A2 (en) | Method of curing expansion-molded body of polyolefin | |
EP3956375A1 (en) | A molding based on a monolithic organic aerogel | |
US4233357A (en) | Laminated insulating board | |
JPS6333451B2 (en) | ||
CN112321883A (en) | Preparation process of high-flame-retardant inorganic polyurethane thermal insulation foam board | |
CN105350734A (en) | Building exterior wall insulation and expansion polystyrene board | |
CN116811398A (en) | Polyurethane composite board based on phase change heat preservation and manufacturing method thereof | |
Booth et al. | Effects of polymer structure on K-factor aging of rigid polyurethane foam |