JPS6026495A - Rotating device of alternating magnetic field - Google Patents

Rotating device of alternating magnetic field

Info

Publication number
JPS6026495A
JPS6026495A JP58133164A JP13316483A JPS6026495A JP S6026495 A JPS6026495 A JP S6026495A JP 58133164 A JP58133164 A JP 58133164A JP 13316483 A JP13316483 A JP 13316483A JP S6026495 A JPS6026495 A JP S6026495A
Authority
JP
Japan
Prior art keywords
winding
power source
voltage
excitation
modulated wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58133164A
Other languages
Japanese (ja)
Inventor
Takashi Take
武 隆志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58133164A priority Critical patent/JPS6026495A/en
Priority to DE8383306542T priority patent/DE3376173D1/en
Priority to EP83306542A priority patent/EP0110561B1/en
Publication of JPS6026495A publication Critical patent/JPS6026495A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To reduce the sizes and weights of a core of a magnetic path and a winding by separating the production of a magnetic field, its rotation by a conveying path and different frequency different from the modulation wave, thereby relatively reducing the number of turns of the windings. CONSTITUTION:An exciting winding 1 is connected between an intermediate tap of the secondary winding of a single phase transformer 5 connected to a carrier power source 4 and the intermediate point of two sets 6, 7 and 8, 9 of parallel transistors. When the conductions of the transistors 6, 7 and 8, 9 are switched, a carrier of the same phase as that from the transformer 5 is altered in the direction of the current and applied to the winding 1. Voltage dividing resistors 11- 14 are inserted in series with the modulation wave power source 10, the voltages of 12, 13 are applied in parallel with the base circuits of 6, 7 and 8, 9, and amplified. Accordingly, the carrier voltage is amplitude modulated by the modulating frequency.

Description

【発明の詳細な説明】 一般に同期電動機ではろ組型励磁巻線の代りにこれを2
相型励磁巻線に置換えても回転磁界を発生させることが
できるが、2組の励磁巻線配置並に励磁電圧の位相の間
には夫々90°の角度差が必要である。仮りにその励磁
電源側に電子スイッチを挿入して高速度で同期的にこれ
を開閉すれば、回転磁界は無理に断続される形になって
断続周波数の交番磁界が含でれる状態になる。この交番
磁界は同期的に回転している回転子側の直流界磁巻線に
電磁誘導作用で交流電圧を誘起し、これによって流れる
交流電流は交番磁界との間で電磁力が発生する。捷た電
子スイッチを使用する代りに豫め断続される波形の励磁
電圧を励磁巻線に加えても同じ状態になる。この場合の
励磁電圧波形を1組の励磁巻線について示したものが第
1図(a)の実線である。即ちこの実線で示す搬送波の
波高値が点線で示す変調波の瞬時値に等しくなる特別な
振幅変調が加えられた時の一例であって、何れも近似的
な正弦波形をもって代表されている。この励磁電圧波形
の中から搬送周波数成分(clを抜き出せば後には変調
周波数成分(blが残り、tc)もまた(b)と同じ周
期で振幅変調されているが、これが最も代表的な搬送波
交流電圧の振幅変調波形を表している。同様にして細組
の励磁巻線の励磁電圧波形の中から搬送周波数成分(d
lを抜き出せば、(C)とtdlとは同じ形状になるが
振幅変化の間には900の位相差がある。またこの場合
の各巻線間の配置の関係だけを簡単に示したものが第2
図である。回転子構造から成る固定子側励磁巻線(IH
21は同じ巻回数を1有し2組の励磁巻線軸は互に垂直
に交叉し、回転子側直流界磁巻線(ロ)は特に短絡回路
で表されているから、実際には直流励磁電流は存在しな
いことになる。寸だ同心配置から成る固定子と回転子と
の鉄心磁路にある空隙が均一であって、短絡巻線(ロ)
を開路してこれを搬送周波数の一定電圧で励磁し乍ら回
転子を一定速度で回転させたと仮定すれば、励磁巻線(
IN21には当然(C) (d)に相当する波形の誘起
電圧を発生する。反対にこれと同じ波形の電圧を励磁巻
線(IH2)に加えて励磁すれば、回転している回転子
側巻線(3)には一定電圧を誘起して相対的には同じ関
係にある。然し磁界を発生するのは(cl (dlに相
当する励磁電圧であって、実効値が同じ大きさの励磁電
圧と同じ巻回数の励磁巻線が夫々発生する交番磁界は互
に垂直の方向でその大きさが変化していても、ベクトル
的な合成交番磁界の大きさは一定になり、これは変調周
波数に対し同期的に回転せられる状態にるる。これが所
謂交番回転磁界で、一定瞬時値の磁界が回転される従来
一般の回転磁界に対して、この場合には瞬時値が交番し
乍ら回転される点で相異がある。
[Detailed Description of the Invention] Generally, in a synchronous motor, two of these are used instead of a filter set type excitation winding.
Although it is possible to generate a rotating magnetic field by replacing the excitation windings with phase-type excitation windings, an angular difference of 90° is required between the two sets of excitation winding arrangements and the phases of the excitation voltages. If an electronic switch were inserted on the excitation power source side and opened and closed synchronously at high speed, the rotating magnetic field would be forcibly interrupted, resulting in an alternating magnetic field with an intermittent frequency. This alternating magnetic field induces an alternating voltage by electromagnetic induction in the synchronously rotating DC field winding on the rotor side, and an electromagnetic force is generated between the alternating current and the alternating magnetic field. The same condition can be obtained by applying an excitation voltage with an intermittent waveform to the excitation winding instead of using a switched electronic switch. The solid line in FIG. 1(a) shows the excitation voltage waveform in this case for one set of excitation windings. That is, this is an example when special amplitude modulation is applied such that the peak value of the carrier wave shown by the solid line is equal to the instantaneous value of the modulated wave shown by the dotted line, and each is represented by an approximate sine waveform. If the carrier frequency component (cl) is extracted from this excitation voltage waveform, the modulation frequency component (bl remains, tc) is also amplitude modulated with the same period as (b), but this is the most typical carrier wave AC It represents the voltage amplitude modulation waveform.Similarly, the carrier frequency component (d
If l is extracted, (C) and tdl have the same shape, but there is a phase difference of 900 between the amplitude changes. Also, the second section simply shows the relationship of the arrangement between each winding in this case.
It is a diagram. Stator side excitation winding (IH) consisting of rotor structure
21 has the same number of turns (1), the excitation winding axes of the two sets cross each other perpendicularly, and the rotor side DC field winding (b) is particularly represented by a short circuit, so it is actually DC excitation. There will be no current. The air gaps in the core magnetic path between the stator and rotor, which are arranged concentrically, are uniform, and short-circuited windings (b)
Assuming that the rotor is rotated at a constant speed while opening the circuit and exciting it with a constant voltage at the carrier frequency, the excitation winding (
Naturally, an induced voltage having a waveform corresponding to (C) (d) is generated at IN21. On the other hand, if a voltage with the same waveform is applied to the excitation winding (IH2) to excite it, a constant voltage will be induced in the rotating rotor side winding (3), and the relationship will be relatively the same. . However, the magnetic field is generated by the excitation voltage corresponding to (cl (dl), and the alternating magnetic fields generated by the excitation voltages with the same effective value and the excitation windings with the same number of turns are perpendicular to each other. Even if the magnitude changes, the magnitude of the vector-like composite alternating magnetic field remains constant, and this is in a state where it rotates synchronously with the modulation frequency.This is the so-called alternating rotating magnetic field, which has a constant instantaneous value. The difference is that in this case, the magnetic field is rotated while the instantaneous value is alternating, compared to a conventional rotating magnetic field in which the magnetic field is rotated.

励磁巻線+11(21には第1図(alの実線で示す波
形ではなくて第1図(C1に相当する励磁電圧並に(d
iを加えていることになり、回転子側巻線(6)が第2
図のように短絡された時に流れる短絡電流が合成交番磁
界との間で発生される電磁力は短絡巻線(6)を回動さ
せる回転力になる。然も合成交番磁界の回転によってこ
の回転力はそのまま回転子の同期回転力に置換えられる
。その理由は短絡巻線の回転力が短絡電流に比例し、短
絡電流は誘起電圧に比例し、また誘起電圧は合成交番磁
界の有効鎖交景即ち短らなければ当然偏位角は一定に保
たれるから、短絡巻線(ロ)は合成交番磁界の回転に追
従して同期的に回転せられる訳である。また短絡電流が
発生する起磁力は偏位角をもって短絡巻線と共に同期的
に回転する合成交番磁界が各励磁巻線に変圧器作用で負
荷電流を流すので、これによりベクトル的に相殺される
。これは所謂電機子反作用が存在しないことを意味し、
等側励磁リアクタンスの増加はあり得ないことになるか
ら、短絡電流を制限する作用はない。
The excitation winding +11 (21 does not have the waveform shown by the solid line in Fig. 1 (al), but the excitation voltage corresponding to C1 (d
This means that the rotor side winding (6) is
As shown in the figure, the electromagnetic force generated between the short circuit current flowing when the short circuit is short-circuited and the composite alternating magnetic field becomes a rotational force that rotates the short circuit winding (6). However, due to the rotation of the composite alternating magnetic field, this rotational force is directly replaced by the synchronous rotational force of the rotor. The reason for this is that the rotational force of the short-circuit winding is proportional to the short-circuit current, and the short-circuit current is proportional to the induced voltage, and the induced voltage is the effective linkage of the composite alternating magnetic field. Therefore, the short-circuit winding (b) is rotated synchronously following the rotation of the composite alternating magnetic field. Furthermore, the magnetomotive force generated by the short circuit current is vectorially canceled out by the composite alternating magnetic field that rotates synchronously with the short circuit winding at an angle of deflection and causes a load current to flow through each excitation winding due to transformer action. This means that there is no so-called armature reaction,
Since an increase in the isolateral excitation reactance is impossible, there is no effect of limiting the short-circuit current.

本発明は上記の場合に交番回転磁界を発生させるために
必要な電源装置に関するもので、その電子回路は(C)
 (d)に相当する励磁電圧波形を安定的に維持できる
一種の増幅器から構成される。即ち第ろ図が本発明の実
施例を示す接続図であって、所定の搬送波電源(4)に
接続された単相変圧器(5)の2次巻線は中間タップを
備え、両方向に通電可能な並列トランジスタの2組(6
) (7)並に(8) +9+を直列にして挿入して成
る電橋回路に於て、その負荷に相当する中間タッグとの
間に第2図の励磁巻線(1)か接続されている。各並列
トランジスタ(61(71と(8) (9)の通電が交
代されることにより、変圧器(5)からは同じ位相の搬
送波が電流の向きを反対に変えて励磁巻線(1)に加え
られる。また変調波電源(1D)には分圧抵抗(11)
乃至(14)が直列に挿入されて、(12)並に(13
)の電圧が夫々(6)(8)並に(7) (9)のベー
ス回路に並列に加えられて増幅される。従って搬送波電
圧は変調周波数で振幅変調され乍ら励磁巻線(1)には
(C1に相当する波形の励磁電圧を発生する。励磁巻線
(1)に並列に接続される2組の絶縁変圧器(15X1
6)の2次巻線には通電方向を切換えるスイッチ用トラ
ンジスタ(17X1 a)並に(19X20)を介して
濾波器(21)並に(22)がある。これは第1図+c
+に相当する励磁電圧から第1図(alの実線に近似し
た電圧波形に変換し、更に濾波器で搬送周波数成分を除
くことにより、第1図(b)に相当する変調波成分を変
調波電源の電圧波形に近づけて抵抗(26)並(24)
に取り山幅し乍ら、負帰還作用で自動的に(1)の励磁
電圧に含葦れる搬送波波高値を変調波電源(1o)の電
圧瞬時値に比例させることができる。またこの場合に+
6j (71と(8+ +91の通電は(12)(13
)を介し変調波電源(1o)の電圧瞬時値の方向が反転
する毎に同期的に切換えれるから、変圧器(5)の2次
回路が短絡される危険はない。この通電切換に同期して
(17)と(18)並ことかできる。然し第3図では搬
送周波数を変調濾波器が変調波に与える位相歪を少くし
て、夫々(11)並に(14)の電圧を(17X1 ’
8)並に(t9)(20)のペースに加えて略同じ作用
を行わせている。また第6図に使用するすべてのダイオ
ードは各トランジスタに作用する逆方向の電圧を阻止す
るのが目的であり、各トランジスタはダーリントン接続
若くはその他の多段増幅回路に置換えねばならない場合
もある。第2図の励磁巻線(2)に対しても第6図と同
じ電子回路が採用されるが、その変調波電源は(10)
に対して90’位相の異なる電圧が必要である。
The present invention relates to a power supply device necessary for generating an alternating rotating magnetic field in the above case, and its electronic circuit is (C)
It is composed of a type of amplifier that can stably maintain the excitation voltage waveform corresponding to (d). That is, Figure 5 is a connection diagram showing an embodiment of the present invention, in which the secondary winding of a single-phase transformer (5) connected to a predetermined carrier wave power source (4) is equipped with a center tap, and conducts current in both directions. Two sets of possible parallel transistors (6
) (7) and (8) +9+ are inserted in series in an electric bridge circuit, in which the excitation winding (1) shown in Figure 2 is connected between the intermediate tag corresponding to the load. There is. By alternating the energization of each parallel transistor (61 (71 and (8) (9)), the carrier wave of the same phase is transferred from the transformer (5) to the excitation winding (1) by changing the current direction in the opposite direction. Also, a voltage dividing resistor (11) is added to the modulated wave power source (1D).
(14) are inserted in series, (12) and (13) are inserted in series.
) are applied in parallel to the base circuits (6), (8), (7), and (9), respectively, and amplified. Therefore, while the carrier wave voltage is amplitude modulated at the modulation frequency, an excitation voltage with a waveform corresponding to (C1) is generated in the excitation winding (1). Two sets of insulating transformers are connected in parallel to the excitation winding (1). Container (15X1
The secondary winding 6) includes a switching transistor (17X1a) for switching the current direction, and a filter (21) and (22) via (19X20). This is Figure 1+c
By converting the excitation voltage corresponding to Resistor (26) and parallel (24) close to the voltage waveform of the power supply
However, the carrier wave peak value included in the excitation voltage (1) can be automatically made proportional to the instantaneous voltage value of the modulated wave power source (1o) by the negative feedback effect. Also in this case +
6j (71 and (8+ +91 energization is (12) (13
) is switched synchronously every time the direction of the instantaneous voltage value of the modulated wave power source (1o) is reversed, so there is no risk of short-circuiting the secondary circuit of the transformer (5). (17) and (18) can be performed in synchronization with this energization switching. However, in Fig. 3, the carrier frequency is modulated and the phase distortion given to the modulated wave by the filter is reduced, and the voltages of (11) and (14) are reduced to (17X1'
8) In addition to the pace of (t9) and (20), almost the same effect is performed. Also, all the diodes used in FIG. 6 are intended to block reverse voltages acting on each transistor, and each transistor may have to be replaced with a Darlington connection or other multi-stage amplifier circuit. The same electronic circuit as in Fig. 6 is adopted for the excitation winding (2) in Fig. 2, but its modulated wave power source is (10).
A voltage with a phase difference of 90' is required.

変圧器(5)は共用されるがその理由は励磁巻線(11
(2)に流れる搬送波電流を極方向じ位相に維持して搬
送周波数の回転磁界を発生させないためである。
The transformer (5) is shared because the excitation winding (11
(2) This is to maintain the carrier wave current flowing in the same phase in the polar direction so as not to generate a rotating magnetic field at the carrier frequency.

第3図には電橋回路の部分を除いて2組の対称的回路が
存在するが、これは夫々並列トランジスタ(6)と(7
)並に(8)と(9)との間の通電を切へ換えることに
より、励磁巻線(1)に流れる搬送波電流を対称的な交
流波形にするに必要であって、言わば全波整流回路とし
て使用するものである。然し励磁巻線(11(21の搬
送波電流がすべて同相にあるとは言っても、実際には変
調波の半周期毎に変圧器(5)の電圧が向きを変えて加
えられるから、励磁巻線の各搬送波の波形は反転する。
In Figure 3, there are two sets of symmetrical circuits excluding the electric bridge circuit, which are parallel transistors (6) and (7), respectively.
), and by switching the current flow between (8) and (9), it is necessary to make the carrier wave current flowing through the excitation winding (1) into a symmetrical AC waveform, so to speak, full-wave rectification is performed. It is used as a circuit. However, even though the carrier wave currents in the excitation winding (11 (21) are all in the same phase, in reality, the voltage of the transformer (5) changes direction and is applied every half cycle of the modulated wave, so the excitation winding The waveform of each carrier in the line is inverted.

これは交番回転磁界を構成する上で必要になるもので、
各励磁電圧がベクトル的に変調波の各半期毎に反対向き
になることを意味し、実際には(61+71と+8j 
+91の通電切換でこれが行われている。更に抵抗(2
3)(24)を分圧抵抗に置換えて、その一部の電圧を
夫々(12)並に(16)の電圧に平衡させる方法で励
磁巻線(1)の電圧の大きさを加減することも可能であ
る。
This is necessary to create an alternating rotating magnetic field.
This means that each excitation voltage vector-wise goes in the opposite direction for each half period of the modulation wave, and in reality, (61+71 and +8j
This is done by energization switching of +91. Further resistance (2
3) Adjust the magnitude of the voltage of the excitation winding (1) by replacing (24) with a voltage dividing resistor and balancing some of the voltages with the voltages (12) and (16), respectively. is also possible.

本発明はすべて電子回路で構成されるので信頼度が高く
、磁界の発生とその回転とを搬送波と変調波によって異
った周波数で分離しているのが特長であり、然も相互間
には干渉がなく任意に独立的に加減できる。この点同期
電動機の場合には同じ周波数の共通励磁電圧が使用せら
れるから、磁送周波数は一定に選ばれるが、これを高く
選ぶことによって相対的に各巻線の巻回数を減少できる
から、磁路の鉄心並に巻線を小形軽量化できる効果があ
る。この場合に変調周波数はこれに関係なく任意に加減
して磁界の回転速度だけを制御できる。第6図に於ける
励磁巻線(1)の負荷電流はすべて変圧器(5)を介し
て供給され、増幅器の入力になる変調波電源は負荷電流
によって殆んど影響されないから、その周波数の制御は
容易であり連名制御に適している。実施例は2相型励磁
巻線を対象にするものであったが、3組型励磁巻線に対
しても同様に適用でき、基本的には本発明の原理に変り
はない。第1図(alの実線に示す特殊波形の励磁電圧
を採用する場合には、第1図+CI並に(d)が発生す
る交番回転磁界の他に第1図(bl等による従来型の回
転磁界は共存するが、゛両者は全く同明しているので共
存することが支障とはならない。一般に電子回路は同じ
使用目的に対して若干の回路変形を加えることが容易で
あるのが特長と言える。例えば第3図に於てトランジス
タ(7)と(9)ヲ取り除けば、前記の対称回路の半分
は不要になり、(13X14)(+5)(+6)(19
)(20)(22)(24)はすべて省略することが可
能である。この場合の電子回路は簡単になるが、励磁巻
線(1)に流れる搬送波電流は半波整流回路に相当し、
その搬送波電流に含捷れる交流分によって交番回転磁界
が発生される。その出力は減少するが比較的小容量の設
備が対象になる場合に適している。
The present invention is highly reliable because it is entirely composed of electronic circuits, and the feature is that the generation of the magnetic field and its rotation are separated at different frequencies by the carrier wave and the modulation wave, and there is no difference between them. It can be adjusted independently without interference. In this respect, in the case of a synchronous motor, a common excitation voltage with the same frequency is used, so the magnetic transmission frequency is selected to be constant, but by selecting a high frequency, the number of turns of each winding can be relatively reduced. This has the effect of making the winding smaller and lighter, similar to the iron core of a road. In this case, the modulation frequency can be adjusted arbitrarily regardless of this to control only the rotational speed of the magnetic field. All the load current of the excitation winding (1) in Fig. 6 is supplied via the transformer (5), and the modulated wave power source that becomes the input of the amplifier is hardly affected by the load current, so the frequency Control is easy and suitable for joint control. Although the embodiment was directed to a two-phase excitation winding, it can be similarly applied to a three-set excitation winding, and the principle of the present invention remains basically the same. When adopting the excitation voltage with the special waveform shown in the solid line in Figure 1 (al), in addition to the alternating rotating magnetic field that generates Figure 1 + CI as well as (d), the conventional rotating magnetic field shown in Figure 1 (bl etc.) Although magnetic fields coexist, their coexistence is not a problem because they are completely the same.In general, electronic circuits are characterized by the fact that it is easy to make slight changes to the circuit for the same purpose. For example, if we remove transistors (7) and (9) in Figure 3, half of the symmetrical circuit described above becomes unnecessary, and becomes (13X14) (+5) (+6) (19
)(20)(22)(24) can all be omitted. The electronic circuit in this case is simple, but the carrier current flowing through the excitation winding (1) corresponds to a half-wave rectifier circuit,
An alternating rotating magnetic field is generated by the alternating current component included in the carrier current. Although the output is reduced, it is suitable for relatively small-capacity equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は特別な振幅変調が加えられた搬送波励磁電圧波
形と、これに含捷れる搬送波と変調波の成分の関係を示
す一例である。これに相当する励磁電圧を加える2相型
同期電動機と同じ形の固定子側励磁巻線部に回転子側直
流界磁巻線を特に短絡して示した場合に、各巻線配置の
関係を簡単に表したものが第2図である。第6図は第2
図の各励磁巻線によって交番回転磁界を発生するために
必要な、1組の励磁巻線に接続せられる電子回路の実施
例であって、 (1)(2)・・・・・・固定子側励磁巻線、(ロ)・
・・・回転子側短絡巻線、(4)・・・・搬送波電源、
+51(15)(+ 6)・・・・・・変圧器。 (6)(ハ(81+91(17)(18)(19)(2
0)・・・・・・トランジスタ。 (10)変調波電源、(11)(+2)(13)(14
)(23)(24)・・・・・・抵抗。 (21X22)・・・・・・・濾波器。 鼻 + 1@ 喜 21船 )、31も
FIG. 1 is an example showing a carrier wave excitation voltage waveform to which special amplitude modulation has been applied, and the relationship between the carrier wave and modulated wave components contained therein. If the rotor side DC field winding is particularly short-circuited to the stator side excitation winding part of the same type as a two-phase synchronous motor that applies an excitation voltage corresponding to this, the relationship between each winding arrangement can be easily explained. Figure 2 shows what is shown in Figure 2. Figure 6 is the second
An embodiment of an electronic circuit connected to a set of excitation windings necessary for generating an alternating rotating magnetic field by each excitation winding shown in the figure, (1) (2) ... fixed Child side excitation winding, (b)・
... Rotor side shorted winding, (4) ... Carrier wave power supply,
+51 (15) (+ 6)...Transformer. (6)(c(81+91(17)(18)(19)(2
0)...Transistor. (10) Modulated wave power supply, (11) (+2) (13) (14
)(23)(24)・・・Resistance. (21X22)...Filter. nose + 1@ki 21 ship), 31 too

Claims (1)

【特許請求の範囲】[Claims] 所定の搬送波電源に接続される単相変圧器の2次巻線に
両方向へ通電可能な並列トランジスタを2組直列に挿入
した電橋回路に於て2次巻線の中間タップと−の並列ト
ランジスタを結ぶ点との間にある励磁巻線と、これに接
続される2組の絶縁変圧器をツ「X独5童%電方向を切
換える=イッチ用トランジスタ並に濾波器を挿入して構
成される電気回路とが多相型から成る励磁巻線及び変調
波電源の相数に対応して並置され、並列トランジスタの
ゲートに変調波電源の電圧を加えて増幅される時、各相
励磁巻線に同じ位相の搬送波が変調波の周波数差に位相
で振幅変調された励磁電圧を発生すると共に、2組の並
列トランジスタ相互間の通電交代に同期してスイッチ用
トランジスタも同時に切換えられる作用で励磁電圧から
変換された電圧は更に濾波器により・搬送周波数成分を
除いて得られる変調波を変調波電源の電圧波形に近似さ
せて、これを変調波電源に反対向きで直列に介入させる
ことにより自動的に両者の電圧を平衡させ乍ら励磁電圧
の搬送波波高値を常に変調波変調波電源の周波数に対し
て同期的に回転させることを特長とする交番磁界の回転
装置。
In a bridge circuit, two sets of parallel transistors that can conduct current in both directions are inserted in series in the secondary winding of a single-phase transformer connected to a predetermined carrier wave power source. The excitation winding between the points connecting the When an electric circuit consisting of a multi-phase excitation winding and a modulated wave power source is arranged in parallel corresponding to the number of phases, and the voltage of the modulated wave power source is applied to the gate of a parallel transistor and amplified, each phase excitation winding A carrier wave with the same phase generates an excitation voltage whose amplitude is modulated by the phase of the modulated wave frequency difference, and the excitation voltage is also changed by simultaneously switching the switching transistor in synchronization with the alternation of energization between the two sets of parallel transistors. The voltage converted from is further filtered by removing the carrier frequency component to approximate the modulated wave to the voltage waveform of the modulated wave power source, and then automatically intervenes in series with the modulated wave power source in the opposite direction. An alternating magnetic field rotating device characterized by constantly rotating the carrier wave peak value of an excitation voltage synchronously with the frequency of a modulated wave power source while balancing both voltages.
JP58133164A 1982-10-27 1983-07-21 Rotating device of alternating magnetic field Pending JPS6026495A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58133164A JPS6026495A (en) 1983-07-21 1983-07-21 Rotating device of alternating magnetic field
DE8383306542T DE3376173D1 (en) 1982-10-27 1983-10-27 Rotary machine system having an electric motor controlled by a modulated exciting voltage
EP83306542A EP0110561B1 (en) 1982-10-27 1983-10-27 Rotary machine system having an electric motor controlled by a modulated exciting voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58133164A JPS6026495A (en) 1983-07-21 1983-07-21 Rotating device of alternating magnetic field

Publications (1)

Publication Number Publication Date
JPS6026495A true JPS6026495A (en) 1985-02-09

Family

ID=15098180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58133164A Pending JPS6026495A (en) 1982-10-27 1983-07-21 Rotating device of alternating magnetic field

Country Status (1)

Country Link
JP (1) JPS6026495A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311982A (en) * 1986-07-02 1988-01-19 Sharp Corp Picture forming device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311982A (en) * 1986-07-02 1988-01-19 Sharp Corp Picture forming device

Similar Documents

Publication Publication Date Title
US5193054A (en) DC content control in a dual VSCF converter system
US4870557A (en) Simplified quasi-harmonic neutralized high power inverters
US5245525A (en) DC current control through an interphase transformer using differential current sensing
KR910020991A (en) 2 stator induction motor electric motor
CA3013305C (en) Multi-level high speed adjustable speed drive
WO2005091874A2 (en) Apparatus and method for the production of power frequency alternating current directly from the output of a single-pole type generator
US5012148A (en) AC machine system with induced DC field
JPS6026495A (en) Rotating device of alternating magnetic field
JP2887686B2 (en) Brushless self-excited synchronous generator
WO2022269966A1 (en) Inverter circuit and electric field coupling non-contact power feeding device
RU2656607C1 (en) Device for voltage recovery and precision balancing
US2619629A (en) Low-frequency generator
JP2720540B2 (en) Voltage regulator for permanent magnet synchronous generator
JP3539148B2 (en) Cylindrical synchronous generator
US7683709B1 (en) Low frequency power amplifier employing high frequency magnetic components
JPH0217900A (en) Permanent magnet excited electric machine
SU653698A1 (en) Static frequency doubler
US2380668A (en) Arc-welding converter
US5717586A (en) Single winding power converter
EP0110561A1 (en) Rotary machine system having an electric motor controlled by a modulated exciting voltage
Fukami et al. Analysis of the self‐excited three‐phase synchronous generator utilizing the second space harmonic for excitation
JPH06245546A (en) Biased magnetization control
US5036448A (en) DC to AC inverter and method for producing three phases from two input phases
SU1256123A1 (en) Versions of symmetrizing device
SU803088A1 (en) Thyratron frequency converter with direct coupling