JPS60264378A - Method of coating ceramic on calcium silicate board - Google Patents

Method of coating ceramic on calcium silicate board

Info

Publication number
JPS60264378A
JPS60264378A JP11881484A JP11881484A JPS60264378A JP S60264378 A JPS60264378 A JP S60264378A JP 11881484 A JP11881484 A JP 11881484A JP 11881484 A JP11881484 A JP 11881484A JP S60264378 A JPS60264378 A JP S60264378A
Authority
JP
Japan
Prior art keywords
calcium silicate
coating
glaze
silicate plate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11881484A
Other languages
Japanese (ja)
Inventor
正明 竹内
安形 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Chemical Industry Co Ltd
Original Assignee
Onoda Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Chemical Industry Co Ltd filed Critical Onoda Chemical Industry Co Ltd
Priority to JP11881484A priority Critical patent/JPS60264378A/en
Publication of JPS60264378A publication Critical patent/JPS60264378A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 く技術分野〉 本発明はゾノトライト質珪酸カルシウム板の表面に剥離
し難(かつ硬質なセラミック被覆を形成する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method of forming a hard (and hard) ceramic coating on the surface of a xonotrite calcium silicate plate.

〈従来技術〉 珪酸カルシウム板にガラス質被膜を形成する場合、釉の
ガラス化温度と珪酸カルシウム板の耐熱温度との関係お
よびガラス質被膜と珪酸カルシウム板の熱膨張率との差
異など種々の条件を考慮しなければならない。
<Prior art> When forming a vitreous coating on a calcium silicate plate, various conditions such as the relationship between the vitrification temperature of the glaze and the heat resistance temperature of the calcium silicate plate and the difference in the coefficient of thermal expansion of the vitreous coating and the calcium silicate plate are required. must be taken into account.

そこで従来セメント質成形体について、その表面を予め
珪識リチウムの水溶液で処理し、加熱して中間層を形成
し、この処理向に釉薬を塗布し焼成する方法が知られて
いる。
Therefore, a conventional method is known in which the surface of a cementitious molded body is treated in advance with an aqueous solution of lithium silicate, heated to form an intermediate layer, coated with a glaze in the treated direction, and fired.

く問題点〉 ところが上記従来の被覆方法はALC板を対漆とし、A
LC板は一般にトバモライト質珪酸カルシウム約50%
、C8H約50%で構成されているため高融点のセラミ
ック被覆を形成できないと云う問題がある。
However, in the conventional coating method described above, the ALC board is used as a lacquer coating, and A
LC board is generally about 50% tobermorite calcium silicate.
, C8H, so there is a problem in that a ceramic coating with a high melting point cannot be formed.

即ち、トバモライト100%の珪酸カルシウム板はその
焼成限界が650℃であり、この温度以上に加熱すると
結晶組成が崩解する。従ってガラス質被覆はその焼成温
度が最高4000を限界とし、これ以上の加熱を行えば
板自体が劣化する。しかもALC板は上記トバモライト
質珪酸カルシウムよシ更に低温で結晶水が揮発する水和
物のC8H’e約50%含有しているのでガラス質被覆
の焼成温度は300℃以下に抑制される。
That is, the firing limit of a calcium silicate plate made of 100% tobermorite is 650° C., and the crystal composition collapses when heated above this temperature. Therefore, the firing temperature of the glassy coating is limited to a maximum temperature of 4000 ℃, and if heated above this temperature, the plate itself will deteriorate. Furthermore, since the ALC plate contains about 50% of C8H'e, a hydrate whose crystal water evaporates at a lower temperature than the above-mentioned tobermorite calcium silicate, the firing temperature of the glassy coating is suppressed to 300° C. or lower.

一方、ガラス質被覆はよシ高温度で焼成されたもの程強
固であり、物理的、化学的性質が優れている。このため
焼成温度が400 C’i−限界とする低温焼成におい
てはガラス質被覆の性質に限界がある。更に低温焼成の
釉は一般に熱膨張係数が大きく、板自体の熱膨張係数を
上廻るのでガラス質′4I覆に亀裂を生じ易い尋の問題
もある。
On the other hand, glass coatings that are fired at higher temperatures are stronger and have better physical and chemical properties. For this reason, there is a limit to the properties of the vitreous coating in low-temperature firing where the firing temperature is at the limit of 400 C'i-. Furthermore, glazes fired at low temperatures generally have a large coefficient of thermal expansion, which exceeds that of the plate itself, so there is the problem that cracks are likely to occur in the vitreous glaze.

また同様にゾノトライト質珪酸カルシウム板の加熱に際
しても、内部からのガス発生を避けることができず、こ
の影響を排除する必要がある。しかるに上記従来法では
、このガス発生のイ・′ □□ij6 c # i[h
−cT4;9アあお。
Similarly, when heating a xonotrite calcium silicate plate, gas generation from inside cannot be avoided, and it is necessary to eliminate this influence. However, in the above conventional method, this gas generation is
-cT4; 9a blue.

〈問題点の解決手段〉 本発明はジノトライトラ主成分とする珪酸カルシウム板
にセラばツク被覆を形成するに際し、ゾノトライトと化
学結合する被覆を予め形成することにより上記ガス発生
の影響を排除し、かつ付着力の大きい高強度セラゼツク
被覆を形成する方法を提供するととを目的とする。上記
目的を達成する本発明の構成は、ゾノトライト質の珪酸
カルシウム成形体表面に第1リン酸塩を塗布し、釉の焼
成温度付近に加熱し、脱ガスでせた後、施釉し、焼成す
るとと會特徴とする。
<Means for Solving Problems> The present invention eliminates the influence of gas generation by forming a coating that chemically bonds with xonotrite in advance when forming a ceramic silicate coating on a calcium silicate plate containing dinotrite as a main component, and It is an object of the present invention to provide a method for forming a high-strength ceramic coating with high adhesion. The structure of the present invention that achieves the above object is to apply a primary phosphate to the surface of a xonotrite calcium silicate molded body, heat it to around the firing temperature of the glaze, degas it, apply the glaze, and fire it. It is characterized by the meeting.

更にその好適な実施態様として第一リン酸塩を塗布する
際リン酸を併用することを特徴とする。
Furthermore, a preferred embodiment is characterized in that phosphoric acid is used in combination when applying the primary phosphate.

一般に釉の焼成に際しては珪酸カルシウム板の劣化を生
じない温度以下で行う必要がある。
Generally, when firing a glaze, it is necessary to perform the firing at a temperature below which does not cause deterioration of the calcium silicate plate.

ゾノトライトの結晶水の殆んどが揮散し、かつ結晶組織
の転移葡生ずる温度(以下これ全限界温度と云う)以上
に7JO熱されると珪酸カルシウム板は収縮し、亀裂が
発生し、強度を低下させる。ゾノトライト質珪ばカルシ
ウム板の限界温度は約750しでありM烏使用温度は1
00Ocである。本発明はこのようなゾノトライト質珪
酸カルシウム板の施釉に先立ち、その表面を第一リン酸
塩で処理する0尚、ここでゾノトライト賞珪酸カルシウ
ム成形体とは水熱合成反応により生成されるゾノトライ
トk生成分とする珪酸カルシウム成形体であって、珪酸
カルシウム単体のもの、および珪酸カルシウムに無機質
繊維ないし無機質粉粒体葡添加した混合物からなる成形
体を含むもの紫云う(以下単に珪酸カルシウム成形体と
云う)0ところで上記珪酸カルシウム成形体に7]11
熱すると、上記限界温度以下でも内部の結晶水、吸眉水
および炭酸塩あるいは混在物の結晶水、吸着水お↓び炭
酸塩等に由来するガスの発生を避けることができない。
When the calcium silicate plate is heated for 7 hours above the temperature at which most of the crystallized water of xonotlite is volatilized and the crystalline structure undergoes a transition (hereinafter referred to as the total limit temperature), the calcium silicate plate contracts, cracks occur, and the strength decreases. let The critical temperature of the zonotrite siliceous calcium plate is about 750℃, and the operating temperature of M Karasu is 1.
It is 00Oc. In the present invention, the surface of such a xonotlite calcium silicate plate is treated with primary phosphate prior to glazing. In this case, the zonotlite-based calcium silicate molded body is a xonotlite-based calcium silicate plate produced by a hydrothermal synthesis reaction. Calcium silicate molded bodies as product components, including calcium silicate alone and molded bodies made of a mixture of calcium silicate and inorganic fiber or inorganic powder (hereinafter simply referred to as calcium silicate molded bodies) 7] 11
When heated, even if the temperature is below the above-mentioned limit temperature, the generation of gases originating from internal crystallized water, adsorbed water, carbonates, or mixed crystal water, adsorbed water, carbonates, etc. cannot be avoided.

このため珪酸カルシウム板に直接施釉して焼成すると、
これら揮発ガスの大部分が焼成初期においては釉の被覆
を通過して揮散するものの、釉のガラス化が進行し、そ
の粘性が高址ると、揮発ガスは被膜の内側に閉じ込めら
れ、轟該被膜を下側から押し上げて珪酸カルシウム板か
ら剥離させ、これが焼成後被膜の未着部分として残る。
For this reason, if you apply glaze directly to the calcium silicate plate and fire it,
Most of these volatile gases pass through the glaze coating and volatilize in the early stages of firing, but as the glaze progresses to vitrification and its viscosity increases, the volatile gases become trapped inside the coating and cause a roaring explosion. The coating is pushed up from below and peeled off from the calcium silicate plate, which remains as an unattached portion of the coating after firing.

更に釉の種類、ガス発生時期によってはガラス質被覆中
にガスが内包されピンホールを生ずる場合もある。かか
るガス発生の影Vを除去するため予め珪酸カルシウム板
を加熱し、ガスを揮散させることも行なわれるが単なる
加熱処理では脱ガス効果が不充分であり、上記問題ヶ解
消することはできない。因に珪酸カルシウム板全700
C18時間以上加熱してもガスの発生がみられる。しか
るに本発明においては釉の焼成に先立ち、予め第一リン
酸塩をその表面に塗布し、釉の焼成温度付近まで加熱す
ることにより上記ガス発生の影響を解消した(以下この
処理を脱ガス処理と称す)。即ち第一リン酸塩の塗布に
よシこの部分のガス発生が促進され、ガスの揮散が進む
と共に珪酸カルシウム板の表面層と第一リン酸塩とが化
学反応しリン酸塩被膜が形成される。この被膜により内
部から発生するガスの通過が遮10「されるので該破膜
の上にセラミック被覆が形成される際、上記ガス発生の
影響を受けることなく強固な被覆を融着させることがで
きる。更VC該リン酸塩被膜は珪酸カルシウム板とセラ
ミックス破膜の熱膨張率の差を緩オロし、両者の融着力
の向上に大きく寄与する。
Furthermore, depending on the type of glaze and the timing of gas generation, gas may be trapped in the glassy coating and cause pinholes. In order to remove the shadow V of gas generation, the calcium silicate plate is heated in advance to volatilize the gas, but a mere heat treatment does not provide a sufficient degassing effect and the above problem cannot be solved. Incidentally, a total of 700 calcium silicate plates
C Gas generation is observed even after heating for 18 hours or more. However, in the present invention, prior to firing the glaze, the effect of gas generation is eliminated by coating the surface of the glaze in advance with primary phosphate and heating it to around the firing temperature of the glaze (hereinafter this process is referred to as degassing treatment). ). That is, by applying the primary phosphate, gas generation in this area is promoted, and as the gas volatilizes, the surface layer of the calcium silicate plate and the primary phosphate undergo a chemical reaction, forming a phosphate film. Ru. This coating blocks the passage of gas generated from the inside, so when a ceramic coating is formed on the ruptured membrane, a strong coating can be fused without being affected by the gas generation. Furthermore, the VC phosphate film moderates the difference in coefficient of thermal expansion between the calcium silicate plate and the broken ceramic film, and greatly contributes to improving the fusing strength between the two.

上記第一リン酸塩としては第一リン酸アルミニウム、ア
ルカリ金属の第一り/酸塩、アルカリ土類金属の第一リ
ン酸塩を用いることができる。
As the primary phosphate, primary aluminum phosphate, primary phosphate/acid of an alkali metal, primary phosphate of an alkaline earth metal can be used.

因に単一リン酸塩に代えて珪酸塩溶液を用いた場合には
セラミック被覆内に多数の亀裂が生じ充分な前処理の効
果全達成しえない。従来、珪tl’ 酸塩溶液k A 
L C板に用いている例が知られているが、珪酸塩溶液
はアルカリ性のためゾノトライト質珪酸カルシウム板と
は全く反応せず、脱ガス効果も全くない。一方第一リン
酸塩は酸性のためゾノトライト質珪酸カルシウム板と強
固に反応し脱ガス効果も著しくかつ安定な反応物全生成
する。
However, if a silicate solution is used instead of a single phosphate, a large number of cracks will occur in the ceramic coating, making it impossible to achieve the full effect of the pretreatment. Conventionally, silicate solution k A
Examples of its use in LC plates are known, but since the silicate solution is alkaline, it does not react with xonotlitic calcium silicate plates at all and has no degassing effect. On the other hand, the primary phosphate is acidic, so it reacts strongly with the xonotrite calcium silicate plate, has a remarkable degassing effect, and generates a stable reactant.

次にゾノトライト質珪酸カルシウム板の脱ガス効果を高
めるため、第一リン酸塩と共にリン酸を塗布すると良い
。リン酸の併用によシ、第一リン酸塩およびリン酸がゾ
ノトライト質珪酸カルシウム板の内部にまで侵入しガス
を追出す作用を果すのでガス揮散効果が一層高まる。上
記脱ガス処理の具体的な条件としては、約゛100Cの
温度下で、5〜10分加熱するとよい。
Next, in order to enhance the degassing effect of the xonotlitic calcium silicate plate, it is recommended to apply phosphoric acid together with primary phosphate. By using phosphoric acid in combination, the primary phosphate salt and phosphoric acid penetrate into the interior of the xonotrite calcium silicate plate and have the effect of expelling gas, thereby further enhancing the gas volatilization effect. As specific conditions for the above-mentioned degassing treatment, heating is preferably performed at a temperature of about 100C for 5 to 10 minutes.

該脱ガス処理の後施釉し、乾燥後焼成してセラミック被
覆を形成する。釉の組成は市販のホウ珪酸塩のものを用
いることができる。
After the degassing treatment, it is glazed, dried and fired to form a ceramic coating. As for the composition of the glaze, a commercially available borosilicate composition can be used.

〈実施例および比較例〉 実施例 ジノトライトラ主成分とする珪酸カルシウム板の表面[
25%溶液のりンvを一様に塗布し、次に15%溶液の
第一リン酸アルミを一様に塗 7− 布する。これを加熱炉に入れ、700Cにて10分間加
熱しfc後徐冷した。次いでホウ珪酸塩の釉を一様に塗
布し、45℃で2時間乾燥した後、700cの温度下に
て3分間加熱し、徐冷した。
<Examples and Comparative Examples> Surface of calcium silicate plate containing Dinotolytra as the main component [
A 25% solution of phosphorus v is evenly applied, and then a 15% solution of monobasic aluminum phosphate is evenly applied 7-. This was placed in a heating furnace, heated at 700C for 10 minutes, and then slowly cooled after fc. Next, a borosilicate glaze was uniformly applied, dried at 45°C for 2 hours, heated at 700°C for 3 minutes, and slowly cooled.

この結果得られた珪酸カルシウム板の表面には光沢のあ
る美麗なかつ包理のない被覆が得られた。更にこの被覆
の形成によp珪酸カルシウム板の表面は透水性のないも
のとなり、又、被覆を有しないものに比べ表面硬度が1
,5倍に向上した。
As a result, a glossy and beautiful coating without inclusions was obtained on the surface of the calcium silicate plate. Furthermore, due to the formation of this coating, the surface of the p-calcium silicate plate becomes impermeable to water, and the surface hardness is 1
, an improvement of five times.

比較例1゜ 実施例1の珪酸カルシウム板に何等の表面処理を行なわ
ず700℃で30分間加熱した後徐冷した。次にこの表
面に上記と同様のホウ珪酸塩の釉全塗布し、45Cにて
2時間乾燥後、700℃で3時間加熱焼成した。得られ
た珪酸カルシウム板表面の被覆には多数のピンホールが
みられると共に部分的に未融着箇所がみられた。
Comparative Example 1 The calcium silicate plate of Example 1 was heated at 700° C. for 30 minutes without any surface treatment, and then slowly cooled. Next, the same borosilicate glaze as above was applied to the entire surface, dried at 45C for 2 hours, and then fired at 700C for 3 hours. Many pinholes were observed in the coating on the surface of the obtained calcium silicate plate, and some unfused areas were observed.

比較例2゜ 実施例1の珪酸カルシウム板に珪酸ソーダ溶 8− 液を塗布し、700Cで10分間加熱した後徐冷した。Comparative example 2゜ Sodium silicate solution on the calcium silicate plate of Example 1 8- The solution was applied, heated at 700C for 10 minutes, and then slowly cooled.

形成された被膜は剥離し易く充分な被膜層を形成するの
は困難であった。更に剥離しない部分に実施例1と同様
のホウケイ酸塩の釉上塗布し、45Cで2時間乾燥した
後、700℃で3分間力口熱しセラミック被覆を形成し
た。
The formed film was easily peeled off and it was difficult to form a sufficient film layer. Furthermore, the same borosilicate glaze as in Example 1 was applied to the areas that did not peel off, and after drying at 45C for 2 hours, the ceramic coating was formed by vigorously heating at 700C for 3 minutes.

しかしながら徐冷該セラミック被覆に多数のピンホール
が生じており、美麗な被膜を得ることはできなかった。
However, many pinholes were generated in the slowly cooled ceramic coating, and a beautiful coating could not be obtained.

〈発明の効果〉 以上説明したように本発明の級覆形成方法によれば、ゾ
ノトライト質珪酸カルシウム成形体表面からのガス揮散
が充分に促進されると共にセラミック被覆となじみのよ
いリン酸塩M[が形成され内部のガス透過を遮断するの
でガス発生の影響全確実に抑制でき、成形体表面にセラ
ミック被覆全密着形成することができる。更に該セラミ
ック被覆と珪酸カルシウム成形体との熱膨張率差の影響
をリン酸塩被膜によシ緩オlするので両者の融着性は一
層向上すると共に高強度のセラミック被覆を形成できる
<Effects of the Invention> As explained above, according to the grade coating forming method of the present invention, gas volatilization from the surface of the xonotrite calcium silicate molded body is sufficiently promoted, and phosphate M[ is formed to block internal gas permeation, so the influence of gas generation can be completely suppressed, and the ceramic coating can be completely adhered to the surface of the molded body. Furthermore, since the influence of the difference in thermal expansion coefficient between the ceramic coating and the calcium silicate molded body is alleviated by the phosphate coating, the fusion properties between the two are further improved, and a high-strength ceramic coating can be formed.

特許出願人 小野田化学工業株式会社 代理人 弁理士 光石士部(他1名) 11− 442−Patent applicant: Onoda Chemical Industry Co., Ltd. Agent: Patent attorney: Shibu Mitsuishi (1 other person) 11- 442-

Claims (1)

【特許請求の範囲】[Claims] (1) ゾノトライト質の珪酸カルシウム成形体表面に
第一リン酸塩全塗布し、釉の焼成温度付近に加熱し脱ガ
スさせた後、施釉し、焼成して該成形体表面にセラミッ
ク質の被覆を形成することt%黴とする珪酸カルシウム
板のセラミック被覆形成方法。 (2、特許請求の範囲第1項において、第一リン酸塩を
塗布する際、リン酸全併用することを特徴とする珪酸カ
ルシウム板のセラミック被覆形成方法
(1) The surface of the xonotrite calcium silicate molded body is completely coated with primary phosphate, heated to around the firing temperature of the glaze to degas it, then glazed and fired to form a ceramic coating on the surface of the molded body. A method for forming a ceramic coating on a calcium silicate plate by forming a t% mold. (2. A method for forming a ceramic coating on a calcium silicate plate according to claim 1, characterized in that when applying the primary phosphate, phosphoric acid is used in combination.
JP11881484A 1984-06-09 1984-06-09 Method of coating ceramic on calcium silicate board Pending JPS60264378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11881484A JPS60264378A (en) 1984-06-09 1984-06-09 Method of coating ceramic on calcium silicate board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11881484A JPS60264378A (en) 1984-06-09 1984-06-09 Method of coating ceramic on calcium silicate board

Publications (1)

Publication Number Publication Date
JPS60264378A true JPS60264378A (en) 1985-12-27

Family

ID=14745792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11881484A Pending JPS60264378A (en) 1984-06-09 1984-06-09 Method of coating ceramic on calcium silicate board

Country Status (1)

Country Link
JP (1) JPS60264378A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223051A (en) * 1986-03-25 1987-10-01 三菱鉱業セメント株式会社 Formed body for glazing and manufacture of glazed formed body
JPS63147878A (en) * 1986-12-12 1988-06-20 清水建設株式会社 Heat-resistant concrete structure
JPH05294704A (en) * 1992-04-21 1993-11-09 Isolite Kogyo Kk Production of incombustible lightweight decorated plate
WO2008098794A1 (en) * 2007-02-17 2008-08-21 Porextherm-Dämmstoffe Gmbh Molded thermal insulation body and method for producing a molded thermal insulation body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223051A (en) * 1986-03-25 1987-10-01 三菱鉱業セメント株式会社 Formed body for glazing and manufacture of glazed formed body
JPS63147878A (en) * 1986-12-12 1988-06-20 清水建設株式会社 Heat-resistant concrete structure
JPH05294704A (en) * 1992-04-21 1993-11-09 Isolite Kogyo Kk Production of incombustible lightweight decorated plate
WO2008098794A1 (en) * 2007-02-17 2008-08-21 Porextherm-Dämmstoffe Gmbh Molded thermal insulation body and method for producing a molded thermal insulation body

Similar Documents

Publication Publication Date Title
US4608087A (en) Heat-resistant inorganic composition
US4118450A (en) Method for producing inorganic porous shaped material
JPH01500331A (en) Method for spraying a fire-resistant layer onto a surface and the coating layer produced thereby
US20240002302A1 (en) Refractory foam
JPS60264378A (en) Method of coating ceramic on calcium silicate board
JPS635340B2 (en)
JPH0797244A (en) Water glass composition
JPS6215508B2 (en)
US4370363A (en) Coating compound for silica bricks
JPS6327312B2 (en)
US3738863A (en) Inorganic refractory liquid composition
NO854531L (en) HEAT-FIXED INDUCTOR BLOCK FOR CHANNEL INDUCTION OVEN AND PROCEDURE FOR PRODUCING THE SAME.
JPS5992981A (en) Foamed concrete laminated with glaze layer and manufacture
JPS646150B2 (en)
JPS61122177A (en) Manufacture of glazed product
JPS6261553B2 (en)
RU2193545C2 (en) Method of forming protective coating on chamotte objects
SU893918A1 (en) Glaze
JP2588474B2 (en) Manufacturing method of glazed cement products
JPS62107086A (en) Production of heat insulating metallic member
JPS6230681A (en) Non-gas-permeable ceramic sintered body and manufacture
SU1413062A1 (en) Glass
KR950006207B1 (en) Process for the preparation on of multiple foamed glass
JPS5950084A (en) Ceramic laminate and manufacture
SU562521A1 (en) Glaze