JPS60263096A - Horizontal evaporating tube for heat exchanger - Google Patents

Horizontal evaporating tube for heat exchanger

Info

Publication number
JPS60263096A
JPS60263096A JP12015884A JP12015884A JPS60263096A JP S60263096 A JPS60263096 A JP S60263096A JP 12015884 A JP12015884 A JP 12015884A JP 12015884 A JP12015884 A JP 12015884A JP S60263096 A JPS60263096 A JP S60263096A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
thin
cylindrical body
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12015884A
Other languages
Japanese (ja)
Other versions
JPH0239718B2 (en
Inventor
Yuichi Kimura
裕一 木村
Jiyunji Soya
順二 素谷
Akiji Katsura
桂 秋治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP12015884A priority Critical patent/JPS60263096A/en
Priority to DE19853507981 priority patent/DE3507981A1/en
Priority to GB08505772A priority patent/GB2156505B/en
Publication of JPS60263096A publication Critical patent/JPS60263096A/en
Priority to GB8609530A priority patent/GB2172697B/en
Priority to GB08609531A priority patent/GB2173413B/en
Priority to US06/894,738 priority patent/US4745965A/en
Publication of JPH0239718B2 publication Critical patent/JPH0239718B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Abstract

PURPOSE:To permit to obtain high heat transfer coefficient by a method wherein a thin tubular body, forming a small gap between the inner wall of the tube and provided with a vapor flowing port and an operating liquid flowing port at the upper and lower parts thereof, is inserted into the tube. CONSTITUTION:The thin cylindrical body 6, having a diameter slightly smaller than the tube 1, forming the small gap 7 between the inner wall of the tube 1 and provided with a continuous slit type vapor flowing port 8 on the upper part in the axial direction thereof, is inserted into the evaporating tube 1 equipped horizontally while the lower parts of both ends of the thin cylindrical body 6 are formed with the operating liquid flowing ports. According to this method, the contact area between the operating liquid on the inner surface of the tube 1 may be increased by the surface tension of the operating liquid 5 and the high heat transfer coefficient may be obtained. In this case, the size of the small gap 7 is the smaller the more effective.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はヒートバイブの原理を応用した熱交換器の水平
蒸発管に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a horizontal evaporation tube of a heat exchanger to which the principle of heat vibration is applied.

〔従来の技術〕[Conventional technology]

ヒートバイブとは排気した密閉管内に作動液を封入し、
その一端を加熱して作動液を蒸発さけ、他端で凝縮させ
て熱を放出させるもので、優れた熱伝達特性を有し、超
然伝導体とも村ばれている。この原理を応用し、蒸発管
と凝縮管を蒸気管と凝縮液管で連結することにより閉回
路を形成し、内部を排気して作動液を1(大した熱交換
器が開発され、排熱回収を始め種々の用途に用いられて
いる。このような熱交換器の交換熱量には蒸発管内の熱
伝達率の占める割合が大きく、特に蒸発を伴う管内には
気相部と液相部を形成し、気相部での熱伝達率が非常に
低いところから蒸発管を垂直に謹賀して環状流を形成す
ることにより熱伝達率の向上を計っている。
A heat vibrator is a device in which a working fluid is sealed in an evacuated sealed tube.
It heats one end to evaporate the working fluid and condenses it at the other end to release heat.It has excellent heat transfer properties and is also known as a transcendental conductor. Applying this principle, a closed circuit is formed by connecting the evaporation tube and the condensation tube with a steam tube and a condensate tube, and the inside is evacuated to remove the working fluid. It is used for various purposes including recovery.The heat transfer rate in the evaporation tube accounts for a large proportion of the amount of heat exchanged in such a heat exchanger, and in particular the tube that involves evaporation has a gas phase and a liquid phase. The heat transfer coefficient in the gas phase is very low, and the evaporator tube is placed vertically to form an annular flow to improve the heat transfer coefficient.

しかしながら蒸発管の長さに比べて環状流の有効長さが
短いため、熱伝達率はそれほど高くはならない。また加
熱に排ガスのようなダストを含む熱源を用いると、蒸発
管の外表面にダストが何着し、管外面の熱伝達率を低下
する。従ってこれを除去する必要があるが、管外面には
伝熱面積を拡大づるためフィンが設けられrLlyつ、
ダストの除去は極め(困雌であった。
However, since the effective length of the annular flow is short compared to the length of the evaporator tube, the heat transfer coefficient is not very high. Furthermore, if a heat source containing dust such as exhaust gas is used for heating, the dust will accumulate on the outer surface of the evaporation tube, reducing the heat transfer coefficient on the outer surface of the tube. Therefore, it is necessary to remove this, but fins are provided on the outer surface of the tube to expand the heat transfer area.
Dust removal was extremely difficult.

本発明者等1よこれに鑑み種々検a」の結果、ダスト対
策が容易で、高い管内熱伝達率が得られる熱交換器を開
発し、特願昭59−43532月及び特願昭59−45
150号により提案した。この熱交換器は大略第3図に
示ずように蒸発管(1)を水平に配設し、凝縮へ(2)
と蒸発管(1)を蒸気管(3)と凝縮液管(4)により
連結し、内部を排気して作動液(5〉を封入Jると共に
、蒸発管(1)内に一定量の作動液(5)を保持でさる
ようにしたものである。この熱交換器によれば蒸発管(
1)の外面に付谷したダストを水洗又は/及びシ」ット
クリーニングシステムにより容易に除去することができ
る。
In view of this, the inventors of the present invention have conducted various tests and developed a heat exchanger that is easy to take measures against dust and can obtain a high heat transfer coefficient in the pipes. 45
It was proposed by No. 150. This heat exchanger has an evaporating tube (1) horizontally arranged as shown in Figure 3, and a condensing tube (2).
The evaporator pipe (1) is connected to the steam pipe (3) and the condensate pipe (4), and the inside is evacuated and a working fluid (5) is filled in. This heat exchanger holds the liquid (5).According to this heat exchanger, the evaporation tube (
1) The dust attached to the outer surface can be easily removed by washing with water and/or using a seat cleaning system.

〔発明が解決しようと−4る問題点〕 水平蒸発管を用いた上記熱交換器は、ダストの除去が容
易なばかりか、垂直蒸発管を用いた熱交換とほぼ同等以
上の熱伝達率が得られるも、それほど高い熱伝達率では
なく、 岡の改善が望まれている。
[Problems to be Solved by the Invention] The heat exchanger using horizontal evaporation tubes not only makes it easy to remove dust, but also has a heat transfer coefficient that is almost equal to or higher than that of heat exchange using vertical evaporation tubes. However, the heat transfer coefficient is not that high, and an improvement in heat transfer coefficient is desired.

C問題点を解決プるための手段〕 本発明者等(よこれについて更に検討を重ねた結果、高
い熱伝達率が傳られる水平蒸発管を開発したもので、熱
交換器の蒸発部に水平に取付け、内部の作動液を外部よ
り加熱して蒸発させる蒸発管において、該管内に内壁と
の間に細隙を形成し、上部に蒸気流通口と下部に作動液
流通口を有する薄肉円筒体を挿入したことを特徴とする
ものである。
Means for Solving Problem C] The present inventors (as a result of further studies on this issue) have developed a horizontal evaporation tube that has a high heat transfer coefficient. A thin cylindrical body that is attached to an evaporator tube and that heats and evaporates the internal working fluid from the outside, with a slit formed between the tube and the inner wall, and a vapor flow port at the top and a working fluid flow port at the bottom. It is characterized by the insertion of.

即ち本発明は第1図(イ)、([])に示づように水平
に取付ける蒸発色(1)内に、鎖管(1)より幾分細径
で管(1)の内壁との間(細隙(7ンを形成マる上部軸
方向に連続するスリット状蒸気流通口(8)を設けた薄
肉円筒体(6)を挿入し、薄肉円筒体(6)の両端下8
1sを作動液流通口としたしのである。尚薄肉円筒体(
6)の上部軸方向に連Vciするスリット状蒸気流通口
(9)を設りだ例についC説明したがこれに限るものC
はなく、例えば不連続スリット状、穴状の蒸気流通口を
設(j、更には上部軸方向に複数個の穴を設(〕て作動
液流通口としてもよい。また蒸発管(1)が短尺の場合
は薄肉円筒体(1)の両端上部を蒸気流通口とし、上部
を作動液流通口どしてしよい。尚図にJjいて(9)は
管外面に伝熱面積の拡大のために設(プたフィンを承り
That is, as shown in FIG. 1(a) and ([]), the present invention has a evaporator tube (1) installed horizontally, which has a diameter that is somewhat smaller than that of the chain tube (1) and is connected to the inner wall of the tube (1). Insert a thin cylinder (6) provided with a slit-shaped vapor flow port (8) continuous in the upper axial direction forming a narrow gap (7), and
1s is used as a hydraulic fluid flow port. Furthermore, thin-walled cylindrical body (
Although we have explained the example in which a slit-shaped steam flow port (9) that connects Vci in the upper axial direction of 6) is provided, the explanation is not limited to this.
Instead, for example, a discontinuous slit-like or hole-like vapor flow port may be provided (j, or furthermore, a plurality of holes may be provided in the upper axial direction) to serve as a working fluid flow port. In the case of a short length, the upper parts of both ends of the thin-walled cylinder (1) may be used as steam flow ports, and the upper part may be used as a hydraulic fluid flow port. Set up (we accept petafin).

また第2図(イ)、(ロ)は水平に取付ける蒸発管(1
)内に、鎖管(1)より幾分細径(管(1)の内壁との
間に細隙(7)を形成する上部軸方向に連続するスリン
1〜状魚気流通口(8)を設【プた複数個の短尺薄肉円
筒体(6a)、(6b)・・・を間11A(10)を設
けて挿入し、該間隙(10)を作動液流通口としたもの
であるゎ作 用〕 水平蒸発管内に幾分細径の薄肉円筒体を挿入して、該管
内壁と薄肉円筒体間に細隙を形成することにより、作動
液の表面張力によって管内面の作動液との接触面積を増
大させ、高い熱伝達率を得たものぐ、l1ll隙は小さ
いほど有効である。また水平蒸発管が短い場合は薄肉円
筒体の両端上部を蒸気流通口、上部をft動液流通口と
することができるが、水平蒸発管が長い場合に(よ蒸気
の排出及び作8液の供給が不十分となり、ドライアウト
の原因となる。この場合は適宜薄肉円筒体の上部軸方向
に蒸気流通口を形成し、下部軸方向に作動液流通口を設
c)るか、又は短尺の薄肉円筒体を複数個、間隙を設け
て挿入するなと、蒸気の排出及び作動液の供給が十分に
行なわれるようにづる。
Also, Figures 2 (a) and (b) show the evaporation tube (1) installed horizontally.
) has a somewhat smaller diameter than the chain pipe (1) (a sulin 1-shaped fish air flow opening (8) that continues in the upper axial direction and forms a slit (7) with the inner wall of the pipe (1)). A plurality of short, thin-walled cylinders (6a), (6b), etc. are inserted with a gap 11A (10) provided therebetween, and the gap (10) is used as a hydraulic fluid flow port. Effect] By inserting a thin-walled cylinder with a somewhat small diameter into the horizontal evaporation tube and forming a slit between the inner wall of the tube and the thin-walled cylinder, the surface tension of the working fluid causes the interaction between the working fluid on the inner surface of the tube and the thin-walled cylinder. In order to increase the contact area and obtain a high heat transfer coefficient, the smaller the l1ll gap, the more effective it is.Also, if the horizontal evaporation tube is short, the tops of both ends of the thin-walled cylindrical body are vapor flow ports, and the top is ft fluid flow ports. However, if the horizontal evaporation tube is long, the exhaust of steam and the supply of liquid will be insufficient, causing dryout. In this case, it may be necessary to Forming a steam flow port and installing a hydraulic fluid flow port in the lower axial direction c), or inserting multiple short thin-walled cylinders with gaps between them, will prevent steam discharge and hydraulic fluid supply. I pray that it will be done to the fullest.

〔実施例〕〔Example〕

(1)外径60.5調、肉厚1.5m、長さ1320姻
のステンレス鋼管の外周に高さ12.7mm、ピップ 
4.5嗣のラジアルフィンを取付けた水平蒸発管と、フ
ィン元径27.+8 s、ツイン外径5L25 msの
フィンチ」−/からなる凝縮管を用い、第3図に示り熱
サイクルを形成し、水平蒸発管内に第1図(イ)、(ロ
)に示づように上部軸方向に巾15ams 20m、3
0#l、40#l#lのスリット状蒸気流通口を形成し
た外径35Ml11.45m、 52M、 57111
111、肉厚1.2#I+のスjンレス鋼円筒体を挿入
し、管内蒸発熱伝達率を測定し、蒸発管内に円筒体を挿
入しない場合と比較した。
(1) A stainless steel pipe with an outer diameter of 60.5 mm, a wall thickness of 1.5 m, and a length of 1320 mm, with a height of 12.7 mm and pips on the outer periphery.
A horizontal evaporation tube with a 4.5-inch radial fin and a fin diameter of 27. +8 s, twin outer diameter 5L 25 ms finch''-/ to form a thermal cycle as shown in Fig. 3, and inside the horizontal evaporation tube as shown in Fig. 1 (a) and (b). Width 15ams 20m in the upper axial direction, 3
Outer diameter 35Ml, 11.45m, 52M, 57111 with slit-shaped steam flow ports of 0#l, 40#l#l
111, a stainless steel cylindrical body with a wall thickness of 1.2#I+ was inserted, and the evaporative heat transfer coefficient within the tube was measured, and compared with the case where the cylindrical body was not inserted into the evaporation tube.

その結果管内熱光熱伝達率は円筒体を挿入しない場合1
500〜3000Kcal /−IILh ’Cであっ
たが、円筒体を挿入すると4000−7000K ca
l / TIth ”Cに向上した。また管内蒸発熱伝
達率は挿入した円筒体の外径増大と共に向上し、またス
リットi+も狭いほど向上し、スリット巾15〜20M
、円筒体の外径52・〜!1711111で最も高い管
内熱伝達率が得られた。
As a result, the heat and light heat transfer coefficient inside the tube is 1 when no cylindrical body is inserted.
It was 500-3000Kcal/-IILh'C, but when the cylinder is inserted, it is 4000-7000Kca
l / TIth ”C.In addition, the evaporative heat transfer coefficient in the tube increases as the outer diameter of the inserted cylinder increases, and the narrower the slit i+, the better it is.
, the outer diameter of the cylindrical body is 52.~! The highest in-tube heat transfer coefficient was obtained with 1711111.

(2)外径50.8調、肉厚2調、長さ3000MのS
 T B 35からなる管材の外周に、5pccからな
る厚さ 111111.高さ12.7aI+の条を5M
のピッチで取付けてラジアルフィンを゛形成した。これ
を水平に配置して該管内に5US304からなる外径4
41111.肉厚0,8#I#I、長さ2995+1#
lて・上部軸り向に巾10ii#lのスリットを形成し
た円筒体を挿入し、第1図(イ)、(ロ)に示す水平蒸
発管を形成した。また5US304からなる外径441
1m、肉厚0.851#I、長さ 495IIIII+
で1部軸1ノ向にcl]IoMのスリットを形成した円
ね体を6木、5闇の間隔を設けて挿入し、第2図(イ)
、(ロ)に小ず水平蒸発管を形成し1こ。この両蒸発管
内に作動液として水を40vo1%の割合で供給し、管
外周に40x 103Kcal / 7Ith ・”I
O’ Kcal / mbの熱鍛を加えて蒸発熱伝達率
を測定した。
(2) S with outer diameter 50.8 scale, wall thickness 2 scale, and length 3000M
The outer periphery of the tube material made of T B 35 has a thickness of 5 pcc 111111. 5M row with height 12.7aI+
The radial fins were formed by attaching them at a pitch of . This is placed horizontally and the outside diameter 4 made of 5US304 is placed inside the pipe.
41111. Wall thickness 0.8#I#I, length 2995+1#
A cylindrical body with a slit having a width of 10 mm in the vertical direction and the upper axis was inserted to form the horizontal evaporation tube shown in FIGS. 1(a) and 1(b). Also, outer diameter 441 made of 5US304
1m, wall thickness 0.851#I, length 495III+
Insert circular bodies with slits of cl]IoM in the direction of 1 part axis 1 at intervals of 6 mm and 5 mm, as shown in Figure 2 (a).
, (b) Form a small horizontal evaporation tube. Water is supplied as a working fluid into both evaporation tubes at a ratio of 40 vol 1%, and 40 x 103 Kcal / 7 Ith ・”I
Heat forging of O' Kcal/mb was added and the evaporative heat transfer coefficient was measured.

その結果曲名は4000−7000Kcal / 1T
Lh ”C1後者は4000−8500Kcal / 
mh ’Cの蒸発熱伝達率が得られた。比較のため円筒
体を挿入することなく測定したところ蒸発熱伝達率は1
500〜3000Kcal /尻h”Cであった。
As a result, the song name is 4000-7000Kcal / 1T
Lh “C1 latter is 4000-8500Kcal/
An evaporative heat transfer coefficient of mh'C was obtained. For comparison, the evaporative heat transfer coefficient was measured without inserting the cylindrical body.
It was 500-3000Kcal/h"C.

また上記測定において熱流束を高めたところ、第1図(
イ)、(ロ)に示す水平蒸発管は管中央部付近に作動液
が供給されず、局部的にドライアウト現象が認められた
が、第2図(イ)、(ロ)に承り水平蒸発管には熱流束
を高めても同等異常が認められなかった。
In addition, when the heat flux was increased in the above measurement, the results shown in Figure 1 (
In the horizontal evaporation tubes shown in (a) and (b), working fluid was not supplied near the center of the tube, and a dry-out phenomenon was observed locally. No similar abnormality was observed in the tube even when the heat flux was increased.

(発明の効果) 本発明によれば外表面に付着するダス[−の除去が容易
なばかりか、管内蒸発熱伝達率を若しく向上し、熱交換
器の性能を高めることができる顕毬な効果を奏づるもの
である。
(Effects of the Invention) According to the present invention, it is possible to not only easily remove dust [-] adhering to the outer surface, but also to improve the evaporative heat transfer coefficient within the tube and improve the performance of the heat exchanger. It is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)、(ロ)(よ本発明水平蒸発管の一例を示
1もので、くイ)は側断面図、(1」)は横断面図、第
2図(イ)、(ロ)は本発明水平蒸発管・の仙の一例を
示すもので、(イ)は側断面図、(ロ)は横断面図、第
3図は水平蒸発管を用いた熱交換器の一例を示づ概念図
である。 1・・・水平蒸発管 2・・・凝縮管 3・・・蒸気管 4・・・凝縮液管 5・・・作動液 6・・・薄肉円筒体 7・・・細隙 8・・・蒸気流通口 9・・・フィン 10・・・間隙
Figures 1 (a) and (b) (1) show an example of the horizontal evaporation tube of the present invention, (a) is a side sectional view, (1'') is a cross sectional view, and B) shows an example of the horizontal evaporator tube of the present invention, (A) is a side sectional view, (B) is a cross-sectional view, and FIG. 3 is an example of a heat exchanger using the horizontal evaporator tube. FIG. 1...Horizontal evaporation pipe 2...Condensation pipe 3...Steam pipe 4...Condensate pipe 5...Working liquid 6...Thin-walled cylinder 7...Slit 8...Steam Flow port 9...Fin 10...Gap

Claims (4)

【特許請求の範囲】[Claims] (1)熱交換器の蒸発部に水平に取付tノ、内部の作動
液を外部より加熱して蒸発させる蒸発管において、該管
内に内壁との間に細隙を形成し、上部に蒸気流通口と下
部に作動液流通口を有する薄肉円筒体を挿入したことを
特徴とする熱交換器用水平蒸発管。
(1) In an evaporation tube that is installed horizontally in the evaporation section of a heat exchanger and heats the internal working fluid from the outside to evaporate it, a slit is formed between the tube and the inner wall to allow steam to flow through the top. A horizontal evaporation tube for a heat exchanger, characterized in that a thin-walled cylindrical body having a working fluid flow port at the mouth and the bottom is inserted.
(2)薄肉円筒体の両端又は/及び上部軸方向に連続又
tよ不連続の熱気流通口を形成する特許請求の範囲第1
項記載の熱交換器用水平蒸発管。
(2) Claim 1, which forms continuous or discontinuous hot air flow ports at both ends and/or in the upper axial direction of the thin-walled cylindrical body.
Horizontal evaporation tube for heat exchanger as described in Section 1.
(3)薄肉円筒体の両端又lよ/及び下部軸方向に不連
続の作動液流通口を形成する特許請求の範囲第1項又は
第2項記載の熱交換器用水平蒸発管。
(3) A horizontal evaporation tube for a heat exchanger according to claim 1 or 2, wherein discontinuous working fluid flow ports are formed at both ends and/or in the lower axial direction of the thin-walled cylindrical body.
(4)管内に複数個の薄肉円筒体を間隙を設(プで挿入
、該間隙部の上部を蒸気流通口、下部を作動液流通口と
する特許請求の範囲第1項、第2項又は第3項記載の熱
交換器用水平蒸発管。
(4) A plurality of thin-walled cylindrical bodies are inserted into the pipe by inserting a gap therein, and the upper part of the gap is a vapor flow port and the lower part is a hydraulic fluid flow port. Horizontal evaporation tube for heat exchanger according to item 3.
JP12015884A 1984-03-07 1984-06-12 Horizontal evaporating tube for heat exchanger Granted JPS60263096A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP12015884A JPS60263096A (en) 1984-06-12 1984-06-12 Horizontal evaporating tube for heat exchanger
DE19853507981 DE3507981A1 (en) 1984-03-07 1985-03-06 HEAT EXCHANGER WITH ISOLATED EVAPORATION AND CONDENSATION ZONES
GB08505772A GB2156505B (en) 1984-03-07 1985-03-06 Heat exchanger
GB8609530A GB2172697B (en) 1984-03-07 1986-04-18 An evaporation pipe for a heat exchanger
GB08609531A GB2173413B (en) 1984-03-07 1986-04-18 A method of refluxing condensed liquid in a separate type heat exchanger
US06/894,738 US4745965A (en) 1984-03-07 1986-08-11 Separate type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12015884A JPS60263096A (en) 1984-06-12 1984-06-12 Horizontal evaporating tube for heat exchanger

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP28669289A Division JPH02197793A (en) 1989-11-02 1989-11-02 Horizontal evaporating tube for heat exchanger

Publications (2)

Publication Number Publication Date
JPS60263096A true JPS60263096A (en) 1985-12-26
JPH0239718B2 JPH0239718B2 (en) 1990-09-06

Family

ID=14779387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12015884A Granted JPS60263096A (en) 1984-03-07 1984-06-12 Horizontal evaporating tube for heat exchanger

Country Status (1)

Country Link
JP (1) JPS60263096A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496746U (en) * 1972-04-21 1974-01-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496746U (en) * 1972-04-21 1974-01-21

Also Published As

Publication number Publication date
JPH0239718B2 (en) 1990-09-06

Similar Documents

Publication Publication Date Title
US4745965A (en) Separate type heat exchanger
JPH102683A (en) Steam condensing device
US4260015A (en) Surface condenser
JPS60263096A (en) Horizontal evaporating tube for heat exchanger
JPH04359797A (en) Heat exchanger
JPS5773392A (en) Corrugated fin type heat exchanger
JPH0231313B2 (en) BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI
JP2785851B2 (en) Heat exchanger tubes for heat exchangers
CN209116823U (en) A kind of pipe heat exchanger with flow-disturbing
JPH02197793A (en) Horizontal evaporating tube for heat exchanger
JPS6115088A (en) Heat transfer tube for boiling
US20030037909A1 (en) Method of action of the plastic heat exchanger and its constructions
JPH0547967Y2 (en)
JPS5933828B2 (en) Heat exchanger
JPS6222994A (en) Multi-tubular heat exchanger
JPH01244286A (en) Shell tube type heat exchanger
JPS59109778A (en) Heat exchanger of condenser type
JPS5919888Y2 (en) Open type heat exchanger
SU870905A1 (en) Heat-exchanger collector
JPS59112197A (en) Heat exchanger
JPS61228292A (en) Heat transfer tube with heat pipe built-in fins
SU1272089A1 (en) Heat pipe
JPS5938596A (en) Heat exchanger
JPS58500378A (en) Heat exchanger
JP2691539B2 (en) Condenser