JPS6026292A - Crossfin type heat exchanger - Google Patents

Crossfin type heat exchanger

Info

Publication number
JPS6026292A
JPS6026292A JP13319283A JP13319283A JPS6026292A JP S6026292 A JPS6026292 A JP S6026292A JP 13319283 A JP13319283 A JP 13319283A JP 13319283 A JP13319283 A JP 13319283A JP S6026292 A JPS6026292 A JP S6026292A
Authority
JP
Japan
Prior art keywords
heat
streamline
flow
fins
louver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13319283A
Other languages
Japanese (ja)
Inventor
Tsutomu Inohara
猪之原 務
Akira Takahashi
昭 高橋
Tatsu Suga
菅 達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP13319283A priority Critical patent/JPS6026292A/en
Publication of JPS6026292A publication Critical patent/JPS6026292A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To reduce a flow drag of heating medium passing through fins and simultaneously to improve a heat exchanging efficiency, by providing fan-like louvers along the streamline of heating medium created around heating tubes arranged in a staggered fashion. CONSTITUTION:A heating medium flowing in the direction A collides with a heating tube 1, flows along a streamline B and is straightened through the upstanding portion 7 of louver 5. A heating medium flowing along the outer surface of louver 5 around the heating tubes arranged in a zigzag fashion is straightened by the upstanding portion outside the lorver 5, as shown with E. The accelerated heating medium merges with another flow at the rear of heating tube 1, progressively collides with the heating tube 1 arranged at the downstream and flows along the streamline B. A heating medium which flows as shown by the streamline B is branched away at an edge 6 into turbulent flows and has its boundary layer reduced under the flow dividing action of fins. The coefficient of boundary film is thus increased. A radiation of heat which spreads from the heating tube 1 in a radial direction is transmitted through the louver 5 as shown by a streamline C, whereby allowing for the uniform distribution of heat over the fins in an efficient manner, without interrupting the flow line of heat.

Description

【発明の詳細な説明】 本発明は、多数のフィンを並設し、このフィンに多数の
伝熱管を貫通密着させたクロスフィン形熱交換器の改良
に係り、伝熱効率の向上と熱媒体の流動抵抗を小さくし
だ熱交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a cross-fin type heat exchanger in which a large number of fins are arranged in parallel, and a large number of heat transfer tubes are passed through and in close contact with the fins, thereby improving heat transfer efficiency and increasing heat transfer efficiency. This relates to a heat exchanger that reduces flow resistance.

クロスフィン形の熱交換器は、多数並設したフィンを貫
通して伝熱管を配設し、伝熱管内を流れる熱媒体と、伝
熱管外(フィン相互間の隙間)を流れる熱媒体との間で
熱交換させるものである。
A cross-fin type heat exchanger has heat transfer tubes that pass through a large number of fins arranged in parallel, and allows the heat medium flowing inside the heat transfer tubes to flow outside the heat transfer tubes (in the gaps between the fins). It exchanges heat between the two.

この熱交換器において、熱交換効率を向」ニさせる為に
は、フィン相互間の隙間を流れる熱交換媒体の流速を上
げるか、あるいは乱流を起させ、境膜係数を大きくとる
ことが行われている。
In order to improve the heat exchange efficiency in this heat exchanger, it is possible to increase the flow rate of the heat exchange medium flowing through the gaps between the fins, or to increase the film coefficient by causing turbulence. It is being said.

しかしながら、このようにして境膜係数を大きくすると
、逆に流動抵抗が増大する。
However, increasing the film coefficient in this way increases the flow resistance.

このように、一般の熱交換器では、熱交換効率と、流動
抵抗との間には、表裏一体の関係があり、この辺に熱交
換器としての技術的課題が残されている。
As described above, in a general heat exchanger, there is an inextricable relationship between heat exchange efficiency and flow resistance, and technical issues remain in this area as a heat exchanger.

従来のクロスフィン形熱交換器は、第1図及び第2図に
示すように、伝熱管1の囲りにフィン3を切り起した細
長い形状のルーバ2を放射状に形成していた。
In the conventional cross-fin heat exchanger, as shown in FIGS. 1 and 2, elongated louvers 2 with fins 3 cut and raised are formed radially around heat transfer tubes 1.

このようにルーバ2を形成することによって、矢印A方
向に流れている熱媒体が、伝熱管1の囲シに円弧状の流
線Bをなして流れるので、この流線をほぼ直角方向に切
るようになっておシ、第2図に示すように、流線Bはル
ーバ2のエッヂ4に↓つて分流されて乱流となシ、境膜
係数を大きくするようにしている。
By forming the louver 2 in this way, the heat medium flowing in the direction of the arrow A flows along the arc-shaped streamline B around the heat exchanger tube 1, so this streamline is cut almost at right angles. As a result, as shown in FIG. 2, the streamline B is branched off toward the edge 4 of the louver 2, creating a turbulent flow and increasing the film coefficient.

又第2図で示すCは熱流線を示し、伝熱管1の熱がフィ
ン3に熱伝導する径路でちゃ、伝熱管1から放射状に放
熱される熱を効率よくウィンに伝わるように配慮されて
いる。
In addition, C shown in Fig. 2 indicates a heat flow line, and the path through which the heat of the heat transfer tube 1 is conducted to the fins 3 is designed so that the heat radiated from the heat transfer tube 1 is efficiently transferred to the win. There is.

しかしながら、熱媒体の流れは第3図に示すように、伝
熱管1の裏側で渦流りを生じて、この部分で熱媒体が滞
留する。
However, as shown in FIG. 3, the flow of the heat medium generates a vortex on the back side of the heat transfer tube 1, and the heat medium stagnates in this part.

この熱媒体の滞留は、とりもなおさず伝熱管1のこの部
分の境膜係数を小さくすることになシ、伝熱に対し寄与
しないことになる。
This retention of the heat medium does not reduce the film coefficient of this portion of the heat transfer tube 1 and does not contribute to heat transfer.

又このように渦流りが発生すると、流動抵抗も増加する
。従来の上記ルーバでは、上記の渦流りの問題が解決さ
れておらず、熱交換効率及び流動抵抗の点で解決されて
いないのが実情である。
Furthermore, when such a vortex is generated, flow resistance also increases. In the conventional louver, the problem of the swirling current has not been solved, and the actual situation is that the heat exchange efficiency and flow resistance have not been solved.

本発明は、上記実情に伝みなされたものであシ、上記渦
流りをなくすようにルーツ(を形成し、熱効率と流動抵
抗の問題を同時に解決したクロスフィ□ン形熱交換器を
提供せんとするものである。
The present invention was made in consideration of the above-mentioned circumstances, and aims to provide a cross-fin type heat exchanger that forms roots to eliminate the above-mentioned vortex flow and solves the problems of thermal efficiency and flow resistance at the same time. It is something to do.

即ち本発明は、伝熱管を千I”S状に配設し、この伝熱
管の囲りに生ずる熱媒体の流線に沿って扇状のルーバを
設け、熱媒体の流れを扇状のルーバによって整流するこ
とによって渦流をなくすと共に、熱媒体の流れを扇状ル
ーバのエッヂでもって分流し、境膜係数を大きくした事
を特徴とする。
That is, in the present invention, heat transfer tubes are arranged in a 1,000"S shape, fan-shaped louvers are provided along the streamlines of the heat medium generated around the heat transfer tubes, and the flow of the heat medium is rectified by the fan-shaped louvers. This feature eliminates vortices and divides the flow of the heat medium using the edges of the fan-shaped louvers, increasing the film coefficient.

以下本発明の一実施例について、詳細に説明する。第4
図において、伝熱管1の配列は千鳥状になっており、フ
ィン3を貫通している。5は伝熱管1の流線Bに沿って
、フィン3を切起して設けられた扇状のルーバである。
An embodiment of the present invention will be described in detail below. Fourth
In the figure, the heat exchanger tubes 1 are arranged in a staggered manner and pass through the fins 3. A fan-shaped louver 5 is provided along the streamline B of the heat exchanger tube 1 by cutting and raising the fin 3.

このルーバ5は熱媒体の流れ方向A以外の部分に設けら
れ、熱媒体が矢印入方向に流れて伝熱管IK衝突し、流
線Bのように流れるようにしている。
This louver 5 is provided in a portion other than the flow direction A of the heat medium, so that the heat medium flows in the direction indicated by the arrow, collides with the heat exchanger tube IK, and flows like a streamline B.

この実施例では、流49 Bに沿って4個のルーバ5を
形成しかつこのフィンの分断に依り境界層を小さくして
熱伝達を促進する様にしている。
In this embodiment, four louvers 5 are formed along the flow 49B, and the separation of the fins reduces the boundary layer and promotes heat transfer.

第5図は、ルーバ5を拡大し°C示したものであり、流
線Bは、エッヂ6によって分流されながら、立上シ部7
によって整流される。尚、図中Cは熱流線である。
FIG. 5 shows an enlarged view of the louver 5 in degrees Celsius, and the streamline B is divided by the edge 6 and flows along the rising edge 7.
rectified by Note that C in the figure is a heat flow line.

以上の、ように溝成した本実施例の作用について以下説
明する。第4図において熱媒体は千鳥状に配列され/と
伝熱管1に対し、矢印入方向に流れる。このように流入
した熱媒体は、先ず伝熱管1に衝突し、流i1Bのよう
に流れる。この流gl Bの流れケよ、ルーバ5の立上
り部7によって整流される。一方千鳥状に配列した伝熱
管1の囲りにおいて、ルーバ5の外側を流れる熱媒体は
、矢印Eて示すようにルーバ5の外側の立上シ部にて整
流されて流速を早め、伝熱g1の後部において合流し、
下流側に位置する伝熱管1へと順次衝突し、流線Bに沿
って流れる。
The operation of this embodiment having the grooves as described above will be explained below. In FIG. 4, the heat medium is arranged in a staggered manner and flows in the direction indicated by the arrow with respect to the heat exchanger tubes 1. The heat medium that has flowed in this way first collides with the heat exchanger tube 1 and flows like a stream i1B. This flow glB is rectified by the rising portion 7 of the louver 5. On the other hand, in the area surrounding the heat transfer tubes 1 arranged in a staggered manner, the heat medium flowing outside the louvers 5 is rectified at the rising edge portions outside the louvers 5 as shown by arrow E, increasing the flow velocity and thereby causing heat transfer. merge at the rear of g1,
It sequentially collides with the heat exchanger tube 1 located on the downstream side and flows along the streamline B.

この一連の流れに2いて、ルーバ5によって整流さnな
がら流6+ Bに沿って閲熱管jの後部に流れてきだ熱
媒体は、流速を早めて流れてきた矢印Eの流れによって
、矢印Fのように吸引されて流れに乗る・。
In this series of flows, the heat medium flows along the flow 6+B to the rear of the heat exchanger tube j while being rectified by the louver 5.The heat medium flows in the direction of the arrow F due to the flow of the arrow E, which has sped up the flow velocity. It's like being sucked in and going with the flow.

一方、熱交換効率については第5図に示すように、流線
Bのように流れてきた熱媒体は、エッヂ6に分流されて
流れることにより、この部分で乱流となり、かつフィン
の分断に依り境界層を小さくする4Sにより境膜係数を
大きくする。
On the other hand, regarding the heat exchange efficiency, as shown in Figure 5, the heat medium flowing along the streamline B is diverted to the edge 6 and flows into a turbulent flow at this part, and the fins are separated. Therefore, the boundary layer coefficient is increased by 4S, which reduces the boundary layer.

又、伝熱管1よシ放射状に広がる放熱は、熱流線Cで示
すようにルーバ5を伝わって伝2淳され、熱流線を断つ
ことなく効率よくフィン全体に均一に熱伝導される。
Further, the heat dissipated radially from the heat transfer tube 1 is transmitted through the louvers 5 as shown by heat flow lines C, and is efficiently and uniformly conducted to the entire fin without cutting off the heat flow lines.

以上、詳述した通り本発明のクロスフィン形熱交挨器に
よれば、伝熱管を千鳥状に配列(−1伝熱管の囲シに扇
状のルーバケ設けたので、流入してぐる熱媒体をルーバ
によって整流し、伝熱管の後部において渦流を生ずるこ
となく、熱媒体を流通させることができた。
As described in detail above, according to the cross-fin type heat exchanger of the present invention, the heat exchanger tubes are arranged in a staggered manner (-1) Since the fan-shaped louver buckets are provided around the heat exchanger tubes, the heat medium flowing in and around the heat exchanger is arranged in a staggered manner. The flow was rectified by the louver, and the heat medium was able to flow without creating a vortex flow at the rear of the heat transfer tube.

その結果、熱媒体の整流と伝熱管後部の渦流をなくすこ
との相剰作用により、熱媒体の流通速度を速くしても、
流動抵抗が大きくならない。
As a result, due to the mutual effect of rectifying the heat medium and eliminating vortex flow at the rear of the heat transfer tube, even if the flow rate of the heat medium is increased,
Flow resistance does not increase.

一方ルーバのエッヂによって流線を1分して乱流にし、
かつフィンの分断により境界層を小さくする事によ勺境
股係数を増大させ、且つ熱流腺を断たないようにして熱
の伝導をフィン全体にわたって均一に伝わるようにした
ので、熱交換効率を向上する事ができた。
On the other hand, the edge of the louver divides the streamline into a turbulent flow,
In addition, by dividing the fins and making the boundary layer smaller, the boundary coefficient is increased, and the heat flow glands are not cut off to ensure that heat is conducted uniformly over the entire fin, thereby increasing heat exchange efficiency. I was able to improve.

このようにして、フィン間を流れる熱媒体の流動抵抗を
小さくシ1、且つ熱交換効軍を同時に向上させることが
でき、優れた効果を冶する。
In this way, the flow resistance of the heat medium flowing between the fins can be reduced and the heat exchange efficiency can be improved at the same time, resulting in excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のクロスフィン形熱交換器のフィン平面
図、第2図は第1図のルーバを拡大して示した。H視図
である。第3図は、伝熱管に対する熱媒体の流線を示し
た説明用図である。 第4図及び第5図は、本発明の一実施・例であり、第4
図はフィンの)Z面図、第5図は第4図のルーバを拡大
して示した斜視図である。 1・・・伝熱管 3・・−フイ1 5・・−ルーバ 6・・・エッヂ 7・・・立上り部 第1図 第2節 第4図 第3図 第5間
FIG. 1 is a fin plan view of a conventional cross-fin heat exchanger, and FIG. 2 is an enlarged view of the louvers in FIG. 1. This is a view from H. FIG. 3 is an explanatory diagram showing streamlines of the heat medium relative to the heat exchanger tube. FIG. 4 and FIG. 5 are one embodiment/example of the present invention, and FIG.
The figure is a Z-plane view of the fin, and FIG. 5 is an enlarged perspective view of the louver shown in FIG. 4. 1...Heat transfer tube 3...-Fieure 1 5...-Louver 6...Edge 7...Rising part Figure 1 Section 2 Figure 4 Figure 3 Between

Claims (1)

【特許請求の範囲】[Claims] 多数の伝熱フィンを並設し、このフィンを貫通して千鳥
状に配設した伝熱管と、前記フィンを切起し伝熱管回り
の流線に沿って設けた扇状のルーバとから成シ、該ルー
バを伝rA管に対するガス流れ方向以外の部分に設け、
ルーバによって伝熱管口シのガス流れを整流するように
したことを特徴とするクロスフィン形熱交換器。
A system consisting of a large number of heat transfer fins arranged in parallel, heat transfer tubes penetrating the fins and arranged in a staggered manner, and fan-shaped louvers cut and raised from the fins and installed along the streamlines around the heat transfer tubes. , the louver is provided in a portion other than the gas flow direction with respect to the transmission rA pipe,
A cross-fin heat exchanger characterized in that the gas flow at the mouth of the heat transfer tube is rectified by a louver.
JP13319283A 1983-07-21 1983-07-21 Crossfin type heat exchanger Pending JPS6026292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13319283A JPS6026292A (en) 1983-07-21 1983-07-21 Crossfin type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13319283A JPS6026292A (en) 1983-07-21 1983-07-21 Crossfin type heat exchanger

Publications (1)

Publication Number Publication Date
JPS6026292A true JPS6026292A (en) 1985-02-09

Family

ID=15098854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13319283A Pending JPS6026292A (en) 1983-07-21 1983-07-21 Crossfin type heat exchanger

Country Status (1)

Country Link
JP (1) JPS6026292A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017044A3 (en) * 2010-08-05 2012-04-05 Behr Gmbh & Co. Kg Plate-shaped heat exchanger for a cooling device comprising at least one heat exchanger package

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143948A (en) * 1975-06-06 1976-12-10 Hitachi Ltd Heat exchanger
JPS5599591A (en) * 1979-01-25 1980-07-29 Matsushita Electric Ind Co Ltd Heat exchanger with fin
JPS5716319A (en) * 1980-07-03 1982-01-27 Teraoka Seiko Co Ltd Date setting device for electronic balance provided with label issuing function

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143948A (en) * 1975-06-06 1976-12-10 Hitachi Ltd Heat exchanger
JPS5599591A (en) * 1979-01-25 1980-07-29 Matsushita Electric Ind Co Ltd Heat exchanger with fin
JPS5716319A (en) * 1980-07-03 1982-01-27 Teraoka Seiko Co Ltd Date setting device for electronic balance provided with label issuing function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017044A3 (en) * 2010-08-05 2012-04-05 Behr Gmbh & Co. Kg Plate-shaped heat exchanger for a cooling device comprising at least one heat exchanger package
US9638476B2 (en) 2010-08-05 2017-05-02 Mahle International Gmbh Plate-shaped heat exchanger for a cooling device comprising at least one heart exchanger package

Similar Documents

Publication Publication Date Title
JP3048549B2 (en) Air conditioner heat exchanger
JPS63183391A (en) Heat exchanger of fin tube type
JP2966825B2 (en) Air conditioner heat exchanger
JPH08291988A (en) Structure of heat exchanger
JPH10197182A (en) Heat exchange for air conditioner
US5947194A (en) Heat exchanger fins of an air conditioner
JPS6026292A (en) Crossfin type heat exchanger
JPH08170890A (en) Cross fin heat exchanger
JPS616592A (en) Finned heat exchanger
JPH02217792A (en) Fin tube type heat exchanger
JP2609838B2 (en) Air conditioner heat exchanger
JPS616591A (en) Finned heat exchanger
JPS60223995A (en) Heat exchanger equipped with fin
JPS6319745Y2 (en)
JPS62172193A (en) Heat exchanger
JPS6142198B2 (en)
JPS60194290A (en) Heat exchanger equipped with fins
JPS62123293A (en) Heat exchanger with fin
JPS5923982Y2 (en) heat exchanger with fins
JPH01155197A (en) Fin tube type heat exchanger
KR200152095Y1 (en) Heat exchanger for air conditioner
JPS63259393A (en) Finned-tube type heat exchanger
KR100261690B1 (en) Heat exchanger
KR100187225B1 (en) Heat exchanger
JPS6155595A (en) Heat exchanger with fin