JPS60262914A - Gas-cooling apparatus of gas-cooled vacuum furnace - Google Patents
Gas-cooling apparatus of gas-cooled vacuum furnaceInfo
- Publication number
- JPS60262914A JPS60262914A JP11709484A JP11709484A JPS60262914A JP S60262914 A JPS60262914 A JP S60262914A JP 11709484 A JP11709484 A JP 11709484A JP 11709484 A JP11709484 A JP 11709484A JP S60262914 A JPS60262914 A JP S60262914A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- gas
- furnace
- fan
- cooling gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B5/00—Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
- F27B5/06—Details, accessories, or equipment peculiar to furnaces of these types
- F27B5/16—Arrangements of air or gas supply devices
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/767—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/773—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B5/00—Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
- F27B5/06—Details, accessories, or equipment peculiar to furnaces of these types
- F27B2005/062—Cooling elements
- F27B2005/066—Cooling elements disposed around the fan
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B5/00—Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
- F27B5/06—Details, accessories, or equipment peculiar to furnaces of these types
- F27B5/14—Arrangements of heating devices
- F27B2005/143—Heating rods disposed in the chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B5/00—Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
- F27B5/06—Details, accessories, or equipment peculiar to furnaces of these types
- F27B5/16—Arrangements of air or gas supply devices
- F27B2005/166—Means to circulate the atmosphere
- F27B2005/167—Means to circulate the atmosphere the atmosphere being recirculated through the treatment chamber by a turbine
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Furnace Details (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、ガス冷式真空炉の炉内に冷却ガスを循環さ
せることによって、高温状態の炉内を急速に冷却するガ
ス冷却装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas cooling device that rapidly cools the inside of a high-temperature gas-cooled vacuum furnace by circulating cooling gas inside the furnace.
まず、崖ス冷式真空炉九ついて説明すると、この炉はい
わゆるガス冷却式の真空熱処理炉であって、高温状態の
炉内が冷却ガスの循環によって急速に冷却されるもので
ある。First, the cliff-cooled vacuum furnace 9 will be explained. This furnace is a so-called gas-cooled vacuum heat treatment furnace, and the high-temperature interior of the furnace is rapidly cooled by circulation of cooling gas.
従来、このような炉のガス冷却装置は、第3図(a)、
(b)K表わされるように構成されていた。同図(e)
の装置は、品物人を収めた炉の加熱室R内に図中の矢印
方向から冷却ガスを強制循環させる7アン1と、このフ
ァン1の前側に備えられてファン1に入る冷却ガスを冷
却するクーラー2を有する構成とされている。一方、同
図(b)の装置は、同図(、)の装置におけるクーラー
2をファン1の後側に備えて、その・7−ア、・ンーP
から出る冷却ガスを冷却する構成とされている。Conventionally, the gas cooling device for such a furnace is as shown in Fig. 3(a).
(b) It was constructed to be represented by K. Figure (e)
This device consists of a 7-amp 1 that forcibly circulates cooling gas from the direction of the arrow in the figure into the heating chamber R of the furnace containing the goods, and a cooling gas provided in front of the fan 1 that cools the cooling gas that enters the fan 1. The structure includes a cooler 2 that On the other hand, the device shown in FIG. 7(b) has the cooler 2 in the device shown in FIG.
It is designed to cool the cooling gas emitted from the
ところが、これら両者の装置にあっては、それぞれ次の
ような問題があった。However, both of these devices have the following problems.
すなわち、前者の装置は、ファン1に入る冷却ガスをク
ーラー2によって冷却して一定温度に保てるものの、フ
ァン10ジユール熱によって冷却ガスが加熱されるため
、冷却ガスはある温度以下には下がらない。したがって
、特に5炉内の冷却が進んで冷却の末期となったときに
冷却速度が遅くなる。一方、後者の装置は、ブーアンI
からの冷却ガス管クーラー2によって冷却してその温度
を下げるため、冷却の末期となったときの冷却効率は良
い。ところが、ファン1に入る冷却ガスの温度が冷却の
開始時点と終シの時点では大きく異なシ、特に、冷却初
期においては、冷却ガスが高温で低密度であるために7
アン1の効率が悪い。That is, in the former device, although the cooling gas entering the fan 1 can be cooled by the cooler 2 and kept at a constant temperature, the cooling gas is heated by the heat of the fan 10, so the cooling gas does not drop below a certain temperature. Therefore, the cooling rate becomes slow especially when the cooling in the 5 furnaces progresses and reaches the final stage of cooling. On the other hand, the latter device
Since the cooling gas pipe cooler 2 is used to lower the temperature, the cooling efficiency is good at the final stage of cooling. However, the temperature of the cooling gas entering the fan 1 differs greatly between the start and end of cooling, especially in the early stage of cooling because the cooling gas is high temperature and low density.
Anne 1 is inefficient.
このように、前者の装置にあっては冷却末期の冷却効率
が悪く、後者の装置にあっては冷却初期の冷却効率が悪
い。As described above, the former device has poor cooling efficiency in the final stage of cooling, and the latter device has poor cooling efficiency in the initial stage of cooling.
この発明は、炉内の冷却初期の時点から冷却末期の時点
までの冷却サイクルの全域について、高い冷却効率を保
つことができるガス冷式真空炉のガス冷却装置を提供す
ることを目的とする。An object of the present invention is to provide a gas cooling device for a gas-cooled vacuum furnace that can maintain high cooling efficiency over the entire cooling cycle from the initial stage of cooling in the furnace to the final stage of cooling.
〔発明の構成〕
この発明によるガス冷式真空炉のガス冷却装置は、冷却
ガスを炉内にて強制循環させる7アンと、このファンの
前側に備えられて該ファンに入る冷却ガスを冷却するイ
ンナークーラーと、ファンの後側に備見られて該ファン
から出る冷却ガスを冷却するアウタークーラーとを有し
てなるものである。[Structure of the Invention] A gas cooling device for a gas-cooled vacuum furnace according to the present invention includes a 7-amplifier for forcedly circulating cooling gas in the furnace, and a fan provided in front of the fan to cool the cooling gas entering the fan. It has an inner cooler and an outer cooler that is located behind the fan and cools the cooling gas coming out of the fan.
以下、この発明の一実施例f:第1図および第2図に基
づいて説明する。Embodiment f of the present invention will be described below based on FIGS. 1 and 2.
図中11はガス冷式真空炉の本体であシ、その前側(第
1図中左側)Kは炉蓋12が備えられている。本体11
の内部には、断熱壁13によって加熱室Rが形成されて
いて、この加熱室R内に入れた品物Aをヒーター14に
よって加熱するようになっている。15.16は、それ
ぞれ加熱室Rを開閉可能なドアである。本体1内の後側
(第1図中左側)には、七−夕17によって回転駆動さ
れるファン18が備えられている。この7アン18は、
加熱室Rの加熱後に炉内に導入される冷却ガスを炉内に
て強制循環させるものである。その循環路は、第1図中
の矢印方向に、沿うものでおり、ファン18によって加
圧され九冷却ガスを加熱室Rの外側から炉内の前側に送
り、そして加熱室Rの前側からその加熱室R内を通して
、再び加熱室Rの外側に送る一連の経路となる。In the figure, reference numeral 11 denotes the main body of the gas-cooled vacuum furnace, and the front side (left side K in FIG. 1) of the main body is provided with a furnace lid 12. Main body 11
A heating chamber R is formed inside by a heat insulating wall 13, and the article A placed in this heating chamber R is heated by a heater 14. 15 and 16 are doors that can open and close the heating chamber R, respectively. A fan 18 that is rotationally driven by the Tanabata 17 is provided on the rear side of the main body 1 (on the left side in FIG. 1). This 7 Anne 18 is
Cooling gas introduced into the furnace after heating the heating chamber R is forced to circulate within the furnace. The circulation path runs in the direction of the arrow in FIG. This is a series of paths that pass through the heating chamber R and then send it to the outside of the heating chamber R again.
77ン18の前側、つまり7アン18への冷却ガスの入
口側には、ファン18に入る冷却ガスを冷却するインナ
ークーラー19が備えられ、またファン18の後側、り
まシフアン18からの冷却ガスの出口側には、ファン1
8から出る冷却ガスを冷却するアウタークーラー20が
備えられている。これら両クーラー19.20の間はバ
ックル21によって仕切られている。An inner cooler 19 for cooling the cooling gas entering the fan 18 is provided on the front side of the 77 fan 18, that is, the inlet side of the cooling gas to the 7 fan 18, and an inner cooler 19 is provided on the rear side of the fan 18 to cool the cooling gas entering the fan 18. Fan 1 is installed on the gas outlet side.
An outer cooler 20 is provided to cool the cooling gas emitted from the cooling gas. A buckle 21 separates the two coolers 19, 20 from each other.
しかして、本ガス冷却装置によって炉内を冷却するIC
Fi、加熱完了後の高温状態の炉内に冷却ガスを導入し
て77ン18を駆動し、これによって冷却ガスを炉内に
て循環させる。そして、両クーラー19,2011Cよ
って、ファン181C入る冷却ガスとファン18から出
る冷却ガスを冷却する。Therefore, the IC that cools the inside of the furnace using this gas cooling device
Fi, cooling gas is introduced into the high temperature furnace after heating is completed, and the 77 engine 18 is driven, thereby circulating the cooling gas within the furnace. The cooling gas entering the fan 181C and the cooling gas exiting from the fan 18 are cooled by both coolers 19 and 2011C.
インナークーラー19は、加熱WLR内を通って熱を吸
収してきた冷却ガスを冷却してその熱を奪い、一定の低
い温度としてファン1stc送る。したがつて、炉内の
冷却初期の時点において、ファン18に入る冷却ガスが
特に高温、低密度となることがない。この結果、冷却初
期の時点におけるファン18の効率低下が回避されるこ
とになる。一方、アウタークーラー20は、ファン18
0ジユール熱忙よって加熱されて出てくる冷却ガスを再
び冷却してそのジュール熱を奪う。したがって、炉内の
冷却末期の時点においても冷却ガスが充分に低い温度に
下けられることになる。The inner cooler 19 cools the cooling gas that has absorbed heat while passing through the heating WLR, removes the heat, and sends it to the fan 1stc at a constant low temperature. Therefore, at the initial stage of cooling inside the furnace, the cooling gas entering the fan 18 does not have a particularly high temperature or low density. As a result, a decrease in efficiency of the fan 18 at the initial stage of cooling can be avoided. On the other hand, the outer cooler 20 has a fan 18
The cooling gas that comes out after being heated by 0 Joule heat is cooled again and the Joule heat is removed. Therefore, the temperature of the cooling gas can be lowered to a sufficiently low temperature even at the final stage of cooling inside the furnace.
このように、インナークーラー19は、特に冷却初期の
時点で大きな効果を発揮し、一方、アクタ−クーラー2
0は、%に冷却末期の時点で大きな効果を発揮する。こ
の結果、炉内の冷却初期の時点から冷却末期の時点まで
の冷却サイクルの全範囲における冷却効率が常に高い状
態に保たれるととくなシ、加熱室R内の品物人が急速忙
冷却される。In this way, the inner cooler 19 has a great effect especially at the initial stage of cooling, while the actor cooler 2
0 has a great effect at the end of cooling. As a result, if the cooling efficiency is always kept high throughout the entire range of the cooling cycle from the initial stage of cooling inside the furnace to the final stage of cooling, the items in the heating chamber R will be rapidly cooled. Ru.
ところで、例えは品物人の温度が1200’Cのとき、
加熱室Rから出る冷却ガスの温度は600℃程度、イン
ナークーラー19の出口では200”C程度、アウター
クーラー20の出口では150℃程度となり、ファン1
8の温度が200℃を越えることはない。したがって、
ファン18の運転状態は常に安定している。また、ファ
ン18はジュール熱によって冷却ガスを30゛C程度上
昇させる。By the way, for example, when the temperature of a person is 1200'C,
The temperature of the cooling gas coming out of the heating chamber R is about 600°C, about 200"C at the outlet of the inner cooler 19, and about 150"C at the outlet of the outer cooler 20.
The temperature of No. 8 never exceeds 200°C. therefore,
The operating state of the fan 18 is always stable. Further, the fan 18 uses Joule heat to raise the temperature of the cooling gas by about 30°C.
しかし、このジュール熱はアウタークーラー20によっ
て奪われる。However, this Joule heat is removed by the outer cooler 20.
第2図に、炉内の各WKおける温度変化を冷却時間に対
応して表わす。同図中曲線Iは品物人の温度、曲線lは
加熱室R出口の冷却ガス温度、曲線1tli7アン1B
の出口側の冷却ガス温度、曲線Wtiファン180入口
側の冷却ガス温度、曲線■は加熱室R入口の冷却ガス温
度の変化曲線である。FIG. 2 shows temperature changes in each WK in the furnace in response to cooling time. In the figure, curve I is the temperature of the product, curve l is the temperature of the cooling gas at the outlet of heating chamber R, and curve 1tli7an1B.
Curve Wti is the cooling gas temperature at the inlet of the fan 180, and curve (2) is a change curve of the cooling gas temperature at the inlet of the heating chamber R.
なお、両クーラー19.20の容量は、ファン180入
口側が70〜80%となるようにするのが最も効果的で
あった。Note that it was most effective to set the capacity of both coolers 19 and 20 to 70 to 80% on the inlet side of the fan 180.
以上説明したように、この発明によるガス冷式真空炉の
ガス冷却装置は、炉内にて冷却ガスを強制循環させるフ
ァンの前側と後側のそれぞれにり一う−を備えて、7ア
ンに入る冷却ガスとファンから出る冷却ガスを冷却する
構成であるから、ファンに入る冷却ガスを一定の温度に
冷却し、かつファンのジュール熱を奪って充分に冷却し
た冷却ガスを炉内圧送シ出すことができ、この結果、炉
内の冷却初期の時点から冷却末期の時点までの冷却サイ
クルの全域について高い冷却効率を保って炉内を急速に
冷却させることができる。As explained above, the gas cooling device for the gas-cooled vacuum furnace according to the present invention is equipped with fans on the front and rear sides for forced circulation of cooling gas in the furnace, and has a cooling capacity of 7 am. Since it is configured to cool the cooling gas that enters and the cooling gas that exits from the fan, the cooling gas that enters the fan is cooled to a certain temperature, and the Joule heat of the fan is taken away and the sufficiently cooled cooling gas is pumped into the furnace. As a result, the inside of the furnace can be rapidly cooled while maintaining high cooling efficiency over the entire cooling cycle from the initial stage of cooling in the furnace to the final stage of cooling.
第1図は本発明のガス冷却装置を備えたガス冷式真空炉
の縦断面図、第2図は第1図のガス冷式真空炉をガス冷
却したときの炉内各部の温度変化の特性図、第5図(a
、l、(b)Fiそれぞれ従来のガス冷却装置の異なる
例を表わすブロック構成図である。
11・・・・・・本体、18・・・・・・7アン、19
・・・・・・インナークーラー、20・・・・・・アウ
タークーラー。
第1図
第2図
=C
第3図Figure 1 is a longitudinal cross-sectional view of a gas-cooled vacuum furnace equipped with the gas cooling device of the present invention, and Figure 2 is the characteristic of temperature changes in various parts of the furnace when the gas-cooled vacuum furnace of Figure 1 is cooled with gas. Figure, Figure 5 (a
, l, and (b) Fi are block configuration diagrams showing different examples of conventional gas cooling devices, respectively. 11...Body, 18...7 Ann, 19
...Inner cooler, 20...Outer cooler. Figure 1 Figure 2 =C Figure 3
Claims (1)
却するガス冷式真空炉において、冷却ガスを炉内にて強
制循環させるファンと、このファンの前側に備えられて
該ファンに入る冷却ガスを冷却するインナークーラーと
、ファンの後側圧備えられて該77ンから出る冷却ガス
を冷却するアウタークーラーとを有してなることt−特
徴とするガス冷式真空炉のガス冷却装置。In a gas-cooled vacuum furnace that circulates cooling gas inside the furnace in a high-temperature state to rapidly cool the inside of the furnace, there is a fan that forcibly circulates the cooling gas inside the furnace, and a fan that is installed in front of the fan and is connected to the fan. A gas cooling device for a gas-cooled vacuum furnace characterized by comprising an inner cooler that cools the cooling gas that enters, and an outer cooler that is provided with a pressure on the rear side of a fan and that cools the cooling gas that exits from the tank. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11709484A JPS60262914A (en) | 1984-06-07 | 1984-06-07 | Gas-cooling apparatus of gas-cooled vacuum furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11709484A JPS60262914A (en) | 1984-06-07 | 1984-06-07 | Gas-cooling apparatus of gas-cooled vacuum furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60262914A true JPS60262914A (en) | 1985-12-26 |
Family
ID=14703244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11709484A Pending JPS60262914A (en) | 1984-06-07 | 1984-06-07 | Gas-cooling apparatus of gas-cooled vacuum furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60262914A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62194752U (en) * | 1986-05-31 | 1987-12-11 | ||
US6365877B1 (en) * | 2000-11-07 | 2002-04-02 | Industrial Technology Research Institute | Blackbody furnace |
JP2013181222A (en) * | 2012-03-02 | 2013-09-12 | Dowa Thermotech Kk | Apparatus for gas-cooling workpiece |
CN105618884A (en) * | 2016-02-26 | 2016-06-01 | 沈阳广泰真空科技有限公司 | Horizontal type vacuum furnace for diamond particle brazing |
CN108895830A (en) * | 2018-07-11 | 2018-11-27 | 昆山金美创机械有限公司 | One kind being suitable for LED semiconductor vacuum oven |
-
1984
- 1984-06-07 JP JP11709484A patent/JPS60262914A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62194752U (en) * | 1986-05-31 | 1987-12-11 | ||
US6365877B1 (en) * | 2000-11-07 | 2002-04-02 | Industrial Technology Research Institute | Blackbody furnace |
JP2013181222A (en) * | 2012-03-02 | 2013-09-12 | Dowa Thermotech Kk | Apparatus for gas-cooling workpiece |
CN105618884A (en) * | 2016-02-26 | 2016-06-01 | 沈阳广泰真空科技有限公司 | Horizontal type vacuum furnace for diamond particle brazing |
CN108895830A (en) * | 2018-07-11 | 2018-11-27 | 昆山金美创机械有限公司 | One kind being suitable for LED semiconductor vacuum oven |
CN108895830B (en) * | 2018-07-11 | 2019-12-06 | 昆山金美创机械有限公司 | Vacuum baking oven suitable for LED semiconductor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60262914A (en) | Gas-cooling apparatus of gas-cooled vacuum furnace | |
US3898864A (en) | Refrigeration evaporator coil | |
US2952981A (en) | Regenerative air cycle refrigeration | |
CN107436097A (en) | Cooling means, sintering process and the sintering furnace of sintering furnace | |
JPS605827A (en) | Heat treating furnace for metallic strip | |
JP4098179B2 (en) | Heat treatment furnace | |
JPS6210210A (en) | Atmosphere furnace | |
SU1740459A1 (en) | Cover furnace compartment and method of heating and cooling charge therein | |
JP2790022B2 (en) | Heat storage electric heating device | |
GB474976A (en) | Improvements in or relating to the drying of gases | |
JPS6333953Y2 (en) | ||
JPH05157461A (en) | Heating furnace | |
JPS60152616A (en) | Heat treating device | |
JPS6040657A (en) | Device for recovering heat from equipment behind continuous casting machine | |
JPS58153068A (en) | Defroster through which temperature in refrigerator do not rise | |
JPS6313666A (en) | Soldering device | |
JPS5919911Y2 (en) | Heating cooling device | |
JPH0390838A (en) | Thermal shock testing device | |
JPH0256587B2 (en) | ||
JPS55140042A (en) | High-frequency heater | |
JPH03204587A (en) | Sintering furnace | |
JPS572941A (en) | Air conditioner provided with cooling, heating and dehumidifying apparatus | |
JPS62253333A (en) | Cooking apparatus | |
JPS6140830A (en) | Gas circulating furnace | |
JPH0867910A (en) | Method for preventing dew condensation in water-cooling type vacuum heat treatment furnace |