JPS6026284A - Method of simultaneously treating electric furnace dust and slag - Google Patents

Method of simultaneously treating electric furnace dust and slag

Info

Publication number
JPS6026284A
JPS6026284A JP58133062A JP13306283A JPS6026284A JP S6026284 A JPS6026284 A JP S6026284A JP 58133062 A JP58133062 A JP 58133062A JP 13306283 A JP13306283 A JP 13306283A JP S6026284 A JPS6026284 A JP S6026284A
Authority
JP
Japan
Prior art keywords
slag
electric furnace
furnace dust
dust
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58133062A
Other languages
Japanese (ja)
Inventor
薫 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58133062A priority Critical patent/JPS6026284A/en
Publication of JPS6026284A publication Critical patent/JPS6026284A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Details (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、電気炉ダスト及び製鉄・製鋼工程で生成する
溶融状態の各種鉱滓(本願明細書においてはこれを単に
溶滓という)V同時処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for simultaneously treating electric furnace dust and various molten slags (herein referred to simply as slags) produced in iron and steel manufacturing processes.

電気炉ダストは、微粒子からなっておシ且つ亜鉛、カド
ミウム、鉛等の有害な重金属が敵化物の形態で含有され
ている為、その取扱いが困難で、そのまま廃棄すること
も法律上規制されている。
Electric furnace dust is made up of fine particles and contains harmful heavy metals such as zinc, cadmium, and lead in the form of enemies, so it is difficult to handle and it is legally prohibited to dispose of it as is. There is.

従来、0−タリー+ルン、竪型電気炉等を用いてダスト
から重金踊類を回収した後、無害化した残滓を投棄する
ことが行なわれている。しかしながら、この方法は、多
量のエネル甲−を必要とするのが大きな欠点である。一
方、製鋼の各過程においては、多量の鉱滓が発生ずるが
、従来これは主として廃棄処分されている。しかしなが
ら、鉱滓を単に廃棄処分することは、資源の有効利用と
いう観点からは、大きな問題である。そこで、取扱いの
困難な1を電炉ダスト、スラッジ類を先ず還元剤を加え
てブリケット化又はペレット化した後、溶滓とともに保
温用加熱装置付の反応炉に装入し、揮化するZn、 C
d、 Pb等を吸引回収し、F*、Mn、Ni。
Conventionally, after recovering heavy metals from dust using an 0-tally + run, a vertical electric furnace, etc., the rendered harmless residue is dumped. However, this method has a major drawback in that it requires a large amount of energy. On the other hand, a large amount of slag is generated in each process of steelmaking, but conventionally this has been mainly disposed of as waste. However, simply disposing of slag is a big problem from the standpoint of effective resource utilization. Therefore, electric furnace dust and sludge, which are difficult to handle, are first added with a reducing agent and turned into briquettes or pellets, and then charged together with the slag into a reactor equipped with a heat-retaining heating device to volatilize Zn, C.
d, Pb, etc. are collected by suction, and F*, Mn, and Ni are collected.

Cr 等を選鉱回収する方法が提案されている。この方
法によれば、電気炉ダストがブリケット化又はペレット
化されるので、取扱いの困難という問題点は解決される
ものの、(i)ブリケット又はぺしットの内部まで完全
に反応を進行させる為には大量の熱エネル平−を加える
必要がある、(i)ブリケット化又はペレット化によシ
表面積が著しく減少する為、大量の熱エネル平−を加え
たとしても、未反応部分が残存しやすく、Zn、 Cd
、 Pb 等の回収が十分に行なわれ難い、(ii) 
Yn、 Cd、 Pb等を揮化回収するとともにF t
、 Kn、 Ni、 Cr等を選鉱回収した残余の大量
の固化スラジ破砕物中には、未反応のZn、 Cd、 
Pb等が残存するので、これをそのまま再利用若しくは
投棄することは難しい、等の問題点がある。
A method of beneficiation and recovery of Cr, etc. has been proposed. According to this method, the electric furnace dust is turned into briquettes or pellets, so the problem of difficulty in handling is solved; It is necessary to add a large amount of thermal energy to the mixture. (i) Because the surface area of the briquettes or pellets is significantly reduced, even if a large amount of thermal energy is applied, unreacted portions remain. Easy, Zn, Cd
, it is difficult to sufficiently recover Pb, etc.; (ii)
Volatize and recover Yn, Cd, Pb, etc. and Ft
Unreacted Zn, Cd,
Since Pb and the like remain, there are problems in that it is difficult to reuse or dispose of this as it is.

本発明者は、以上の如き現況に鑑みて種々研究を重ねた
結果、電気炉ダストを浮遊せず且つ溶滓との反応も阻害
しない程度の最小限の大きさに成型若しくは造粒し、傾
倒及び/又は空気、酸素等の吹込み等により内容物を攪
拌し得る様にした反応槽内において上記成型物若しくは
造粒物と溶滓とを混合反応させる場合には、上記従来法
の欠点が実質上解消されることを見出した。即ち、本発
明は、下記の方法に係るものである。
As a result of various studies in view of the above-mentioned current situation, the inventor of the present invention formed or granulated electric furnace dust into a minimum size that does not float or inhibit the reaction with the slag, and then tilted it. And/or when the above-mentioned molded product or granulated product and slag are mixed and reacted in a reaction tank in which the contents can be stirred by blowing air, oxygen, etc., the drawbacks of the above-mentioned conventional method can be avoided. It was found that the problem was virtually eliminated. That is, the present invention relates to the following method.

■ 反応槽に収容された溶滓に顆粒化若しくはフレーク
化した電気炉ダスト及び溶滓を加え、撹拌して混合反応
させた後、混合物の表面部分が溶融状態にある間に冷却
用容器に移して冷却させることを特徴とする電気炉ダス
ト及び溶滓の同時処理方法(これを以下本願第一発明と
いう)。
■ Granulated or flaked electric furnace dust and molten slag are added to the slag stored in the reaction tank, stirred to cause a mixing reaction, and then transferred to a cooling container while the surface portion of the mixture is in a molten state. A method for simultaneously treating electric furnace dust and slag (hereinafter referred to as the first invention of the present application), characterized in that electric furnace dust and slag are cooled.

■ 反応槽に収容された溶滓に顆粒化若しくはフし−ク
化した電気炉ダスト及び溶滓を加え、貸元剤の存在下に
攪拌して混合反応させ、次いで混合物の表面部分が溶融
状態におる間に冷却用容器に移して冷却させた後、得ら
れた固型物を粉砕し、強磁性生成物を磁力選別すること
を特徴とする電気炉ダスト及び溶滓の同時処理方法(こ
れを以下本願第二発明という)。
■ Granulated or flaked electric furnace dust and molten slag are added to the slag stored in a reaction tank, stirred in the presence of a lubricating agent to cause a mixing reaction, and then the surface portion of the mixture is in a molten state. A method for the simultaneous treatment of electric furnace dust and slag, which is characterized by transferring the solid material to a cooling container for cooling, pulverizing the obtained solid material, and magnetically separating the ferromagnetic products. (hereinafter referred to as the second invention).

本発明においては、溶滓の有する熱エネル千−を有効に
利用するので、外部からの熱供給は一切不要である。又
、顆粒化又はフレーク化した電気炉タストを溶滓に混合
反応させることによシ発生する一ガスからは、zn を
60%以上の回収率で、Cd及びpbを60〜97%程
度の回収率で回収し得る。
In the present invention, since the thermal energy of the slag is effectively utilized, no external heat supply is required. Furthermore, from the gas generated by mixing and reacting granulated or flaked electric furnace tast with slag, ZN can be recovered at a recovery rate of 60% or more, and Cd and PB at a recovery rate of about 60 to 97%. can be recovered at a high rate.

更に、本願第一発明において得られる固形反応生成物は
、耐水性、耐薬品性、耐摩耗性等に優れた人造石となる
。しかも、人造石の物性は、溶滓と電気炉ダストとの混
合割合、必要に応じダスト重量の1.5%程度まで添加
される還元剤の量を変化させることにより調整すること
が出来る。例えば、還元剤を添加しない場合には硬質緻
密なものとなシ、又溶滓に対する電気炉タストり混合割
合を増大させるに従って人造石の比11工が増加する。
Furthermore, the solid reaction product obtained in the first invention of the present application becomes an artificial stone with excellent water resistance, chemical resistance, abrasion resistance, etc. Moreover, the physical properties of the artificial stone can be adjusted by changing the mixing ratio of the slag and electric furnace dust, and the amount of reducing agent added to about 1.5% of the dust weight if necessary. For example, if no reducing agent is added, the stone will be hard and dense, and as the mixing ratio of electric furnace slag to slag increases, the ratio of artificial stone will increase.

しかも、この人造石からの重金属の溶出に、実質的に認
められないので、安全である。従って、この様な人造石
は、路盤材、建築用材、埋め立て拐等として広範に使用
し得る。
Moreover, it is safe because virtually no heavy metals are leached from this artificial stone. Therefore, such artificial stones can be widely used as roadbed materials, construction materials, landfill materials, etc.

本願第二発明においては、ダスト中V爪金属が還元剤に
よシ還元され、溶滓中の硫黄と反応しで硫化物となる。
In the second invention of the present application, V-nail metal in the dust is reduced by a reducing agent and reacts with sulfur in the slag to become a sulfide.

硫黄分が不足する場合には、石膏等を添加する。この重
金屈硫化物及びFt、Ni、C。
If the sulfur content is insufficient, add gypsum, etc. This heavy metal sulfide and Ft, Ni, C.

等の硫化物等からなる液相は、酸化物A°[1と幻、分
^1[しだ液相として存在し、且つ画液和はその才゛ま
独立して凝固する。従って、固形反応生成物中には化合
的に結合していない結晶界面が存在するので、これは該
界面で分離しやすく、粉砕が容易である。
A liquid phase consisting of sulfides, etc., exists as a liquid phase between the oxide A[1] and the oxide A[1], and the liquid phase solidifies independently during that time. Therefore, since there are crystal interfaces in the solid reaction product that are not chemically bonded, it is easy to separate at the interface and easy to grind.

Ft の硫化物の如き強磁性体を含む硫化物粉体は、磁
力で選別することが可能であって金属原料として有用で
あシ、残余の精製された酸化物粉体(シリカ、アルミナ
、カルシア、マクネシア等を主とする)は、七メシト原
料、肥料等として有用である。上記の硫化物は、いわゆ
るベルトライド化合物であると推考される。硫化物相と
酸化物相とを共存させるに際し、反応条件を適切に選択
することによシ、酸化物中にほぼ均一に硫化物相を混在
させることも可能である。
Sulfide powder containing ferromagnetic substances such as Ft sulfide can be magnetically sorted and is useful as a metal raw material, and the remaining purified oxide powder (silica, alumina, calcia , Macnesia, etc.) are useful as raw materials for Shichimeshito, fertilizers, etc. The above sulfide is presumed to be a so-called bertholed compound. When the sulfide phase and the oxide phase are made to coexist, by appropriately selecting reaction conditions, it is possible to make the sulfide phase almost uniformly mixed in the oxide.

電気炉ダストの粒径は、通常数μmのオーターであり、
取扱いが困難なので、本発明ではこれを予め顆粒化又は
フレーク化する。顆粒又はフレークは、浮遊又は飛散を
生じない範囲内で、反応促進の為出来るだけ小さくする
ことが好ましい。又、溶滓と接触した場合に急激に細分
されて表面積を増し、反応速度を増大させる為に、水分
を含んだ柔軟な形態とするか或いは熱分解して気体を発
生する有機系造粒剤(例えば、リクニンスルホン酸、蔗
糖、糖密、〕−ンスターチ、PVA等)によシ造粒する
ことが好ましい。成形時の圧力は特に限定されないが、
例えばフし−ク化の場合には約100〜1000kg/
d程度とするのが一般的である。取扱いの容易さ及び反
応速度を勘案して、顆粒としては直径2〜3M′IR程
度、フレークとしては縦5〜l0II!H程度、横lO
〜25門程度、厚さ2〜3rxyx程度以下とすること
が好ましい。
The particle size of electric furnace dust is usually several micrometers,
Since it is difficult to handle, in the present invention it is granulated or flaked in advance. The granules or flakes are preferably made as small as possible to promote the reaction without causing floating or scattering. In addition, when it comes into contact with the slag, it is rapidly divided into small pieces to increase the surface area and increase the reaction rate.In order to increase the reaction rate, the organic granulating agent is made into a flexible form containing water or thermally decomposed to generate gas. It is preferable to perform granulation using (for example, likuninsulfonic acid, sucrose, molasses, []-starch, PVA, etc.). The pressure during molding is not particularly limited, but
For example, in the case of dyeing, approximately 100 to 1000 kg/
Generally, it is about d. Considering ease of handling and reaction speed, granules have a diameter of 2 to 3 M'IR, and flakes have a length of 5 to 10 II! H level, horizontal lO
It is preferable that the number of gates is about 25 gates and the thickness is about 2 to 3 rxyx or less.

電気炉ダストと溶滓との混合割合は、特に制限されず、
広い範囲で適宜選択することが出来るが、通常溶滓に対
し電気炉ダストを5〜40重量%、好ましくは5〜30
重量%の割合で混合するのが良い。本発明で処理される
溶滓は、溶融状態にあることが必要であシ、その温度は
通常1300〜1400°Cである。
The mixing ratio of electric furnace dust and slag is not particularly limited,
Although it can be appropriately selected within a wide range, the electric furnace dust is usually 5 to 40% by weight, preferably 5 to 30% by weight based on the slag.
It is preferable to mix them in proportions of % by weight. The slag treated in the present invention must be in a molten state, and its temperature is usually 1300 to 1400°C.

本発明方法は、例えば、次の様にして実施される。第1
図に示す如く、反応槽(1)に予め溶滓を入れた後、顆
粒化又はフレーク化した電気炉ダスト及び溶滓を更に加
える。溶滓は、フード(3)を開放した状態で上部から
流し込み、電気炉ダストは、タスト投入口(5)から投
入する。この際必要ならば、還元剤及び/又はその他の
添加剤を電気炉ダストと混合して、加えても良い。次い
でフード(3)を閉じ、反応槽(1)内の収容物を攪拌
して、反応を急速に進行させる。攪拌は、第2図に(1
−12)、 (1−b)及び(I−C)として示す傾倒
装置(7)による揺動攪拌、空気又は酸素供給ライン(
9)を経て吹出し口(ロ)及び0唾から吹出される空気
又は酸素による攪拌、攪拌板(図示せず)による攪拌等
のいずれであっても良い。電気炉ダストと溶滓との混合
反応によシ、酸化亜鉛、酸化カドミウム、酸化鉛等を含
むガスが発生するので、これをフード(3)に開口すス
フレ十シプルパイプ(1Gを経て集塵器(17)に導い
て金属成分を補集した後、常法に従って各金属を回収す
る。
The method of the present invention is carried out, for example, as follows. 1st
As shown in the figure, slag is placed in the reaction tank (1) in advance, and then granulated or flaked electric furnace dust and slag are further added thereto. The slag is poured from the top with the hood (3) open, and the electric furnace dust is poured from the dust inlet (5). At this time, if necessary, a reducing agent and/or other additives may be mixed with the electric furnace dust and added. Next, the hood (3) is closed, and the contents in the reaction tank (1) are stirred to rapidly advance the reaction. Stirring is shown in Figure 2 (1
-12), (1-b) and (I-C) rocking agitation by tilting device (7), air or oxygen supply line (
Any of the following methods may be used: stirring by air or oxygen blown out from the outlet (b) and zero saliva via 9), stirring by a stirring plate (not shown), or the like. The mixed reaction between the electric furnace dust and the slag generates gases containing oxidation, zinc oxide, cadmium oxide, lead oxide, etc., which are then passed through the soufflé pipe (1G) to the dust collector, which is opened to the hood (3). (17) to collect the metal components, and then collect each metal according to a conventional method.

反応終了後、反応槽(1)内収容物の表面状態が溶融状
態にある間に、第2図の(1−d)の位置に反応槽を傾
けて、冷却用容器Q’)に注下し、ここで反応生成物を
冷却固化させる。固化物は、前述の如く、人造石とした
り、硫化物と酸化物とに分別されて夫々の目的に再利用
される。
After the reaction is completed, while the surface of the contents in the reaction tank (1) is in a molten state, tilt the reaction tank to the position (1-d) in Figure 2 and pour it into the cooling container Q'). Then, the reaction product is cooled and solidified. As mentioned above, the solidified product is made into artificial stone or separated into sulfide and oxide and reused for their respective purposes.

尚、反応槽(1)は、耐火物シリによυ内張し、鉄皮(
ホ)によシ外装する構造とすることが好ましい。
In addition, the reaction tank (1) is lined with refractory material and lined with iron shell (
(e) It is preferable to have a structure in which it is externally covered.

本発明において還元剤を使用する場合には、重金属の回
収率が向上するのみならず、固型生成物中の硫化物と酸
化物の分離精製が良好となる。還元剤としては、公知の
有機系及び無機系のものが全て、使用可能であるが、粉
炭、粉コークス・℃ミガラ等のカーボン系のものが好ま
しい。還元剤の使用量は、特に限定はされないが、電気
炉タクトに対し通常2〜I’1重量%程度とするのが良
い。
When a reducing agent is used in the present invention, not only the recovery rate of heavy metals is improved, but also the separation and purification of sulfides and oxides in the solid product becomes better. As the reducing agent, all known organic and inorganic ones can be used, but carbon-based ones such as pulverized coal, pulverized coke, and ℃ molasses are preferable. The amount of the reducing agent to be used is not particularly limited, but it is usually about 2 to I'1% by weight based on the electric furnace tact.

還元剤は、電気炉ダストの顆粒又はフレークに混合若し
くはまぶしておいても良く、空気又は酸素とともに吹込
んでも良く、或いは電気炉ダストと溶滓との混合時に同
時に添加し5でも良い。但し、電気炉ダストと還元剤と
を混合した後、顆粒化又はフし−り化することは、ダス
トと溶滓との反応を遅らせるので、避けるべきである。
The reducing agent may be mixed or sprinkled on the granules or flakes of the electric furnace dust, may be blown into the granules or flakes of the electric furnace dust, may be blown in together with air or oxygen, or may be added at the same time when the electric furnace dust and the slag are mixed. However, granulation or slag formation after mixing the electric furnace dust and the reducing agent should be avoided as this will delay the reaction between the dust and the slag.

以下に実施例を挙げて本発明をより一層明らかにする。Examples are given below to further clarify the present invention.

尚実施例において%とあるのは重量%を意味する。In the examples, % means weight %.

実施例1 電気炉ダストとして、5iO26,50%、”2’30
.78%、F/ 20348−19%、Ca04,72
%、MyO6,33%、ZnO2,2,60%、MnO
4,57%、CdOQ、02%及びpbo t、24%
の割合で含有するダストを使用した。
Example 1 As electric furnace dust, 5iO26, 50%, "2'30
.. 78%, F/20348-19%, Ca04,72
%, MyO6, 33%, ZnO2, 2,60%, MnO
4,57%, CdOQ, 02% and pbo t, 24%
Dust containing the following ratio was used.

電気炉還元滓トシテ、5sO237−78%、Al 0
3 14.82%、Ca032.92%、M(107,48
%、Ft 2030−05%及UMnO2,60%の割
合テ含有スるスラグを使用した。
Electric furnace reduced slag, 5sO237-78%, Al 0
3 14.82%, Ca032.92%, M(107,48
%, Ft 2030-05% and UMnO2, 60% slag was used.

電気炉タスト250 kqに水50リットルを加え、公
知の)し−り製造装置を用いて約51111 XI Q
 羽×2.5朋の大きさでフレーク化し、次いでこれを
自然乾燥させた。一方、スラクバンに入れた溶滓約10
0 kq上に該フレーク及び七ミカラ約250k(iを
温度1320°Cの電気炉滓約1200kgとともに加
え、鉄杓で攪拌した。発生するガスをスラグパンの上方
からガス収集装置に導き、重金属の酸化物を回収した。
51111
It was formed into flakes with a size of 2.5 feathers, and then air-dried. On the other hand, about 10 molten slags were added to Surakban.
The flakes and about 250 kg (i) of seven millimeters were added to 0 kq along with about 1200 kg of electric furnace slag at a temperature of 1320 °C, and stirred with an iron ladle.The generated gas was introduced from above the slag pan to a gas collection device to oxidize heavy metals. Collected things.

処理された電気炉ダスト中の含有量を基準として各酸化
物の揮化率をめると、酸化亜鉛約67.97%、酸化カ
ドミウムはぼ100%、酸化亜鉛67.36%であった
。jJスの発生は約10分間続いた。ガス発生後の残部
を24詩間程度放置しておくと、耐桑品性、耐水性、耐
摩耗性等に優れた人造石が得られた。
The volatilization rate of each oxide based on the content in the treated electric furnace dust was about 67.97% for zinc oxide, almost 100% for cadmium oxide, and 67.36% for zinc oxide. The outbreak of jJs lasted about 10 minutes. When the residue after gas generation was left for about 24 hours, an artificial stone with excellent mulberry resistance, water resistance, abrasion resistance, etc. was obtained.

この人造石の諸物性は以下の通シであった。The physical properties of this artificial stone were as follows.

比重3.15 硬 度(マイクロじツカース) 520耐酸性 コシク
リートに比し強い 耐アルカリ性 1%苛性ソーダ水溶液に30日以上浸漬
するも変化なし 耐水性 30日以上浸漬するも変化なしまたこの人造石
を微粉砕して環境庁告示第4号の方法に準じてカドミウ
ム及び鉛の浴出量を調べたが、全く検出されなかった。
Specific gravity: 3.15 Hardness (microscale): 520 Acid resistance Stronger alkali resistance than cosicrete Water resistance: No change after being immersed in a 1% caustic soda solution for over 30 days Water resistance: No change after being immersed in a 1% caustic soda solution for over 30 days It was pulverized and the amounts of cadmium and lead released from the bath were examined according to the method specified in the Environment Agency Notification No. 4, but none were detected.

またJIS A3011に従い人造石に紫外線を照射し
て石灰による安定性を調べたところ、この人造石は極め
て化学的に安定であることが認められた。
Furthermore, when the artificial stone was irradiated with ultraviolet rays to examine its stability with lime according to JIS A3011, it was found that this artificial stone was extremely chemically stable.

X線粉末回析により該人造石中に含まれる鉱物を調べた
ところ、アケルマナイト(メリライト)、カスごディン
、マーウィナイト、l 2 Coo 7A1203及び
ダイカルシウムフェライトが認められた。尚、電気炉還
元滓を冷却して得られる石には、鉱物としてアケルマナ
イト(メリライト)、カスじディン及び強磁性体のスじ
ネルが含まれている。
When the minerals contained in the artificial stone were examined by X-ray powder diffraction, akermanite (melilite), casgodine, marwinite, l 2 Coo 7A1203, and dicalcium ferrite were recognized. The stone obtained by cooling the electric furnace reduction slag contains minerals such as akermanite (mellilite), cassidine, and ferromagnetic sujinel.

実施例2 電気炉ダスト] 00 kqを用い、℃ミガラを使用し
ない以外は実施例1と同様にして人造石を得た。
Example 2 Electric Furnace Dust] Artificial stone was obtained in the same manner as in Example 1, except that 0.00 kq was used and ℃ Migara was not used.

この人造石を立方体に切断すべくタイ17七ンドカツタ
ーを用いて切断を試みたが、切断に要する時間がかかり
、またタイ′p′f:ンドの損失が大きく、切断が困難
であった。
Attempts were made to cut this artificial stone into cubes using a Tie 177 cutter, but cutting was difficult as it took a long time and the loss of ties was large.

比重3.08 硬 度(マイクロじツヵース) 514圧縮強度 2.
5 ton / cJ 耐酸性 コンクリートに比し強い 耐アルカリ性 1%苛性ソータ水溶液に30日以上浸漬
するも変化なし 耐水性 30日以上浸漬するも変化なしまたこの人造石
を微粉砕して環境庁告示第4号の方法に準じてカドミウ
ム及び鉛の溶出量を調べたが、全く検出されなかった。
Specific gravity 3.08 Hardness (micro hardness) 514 Compressive strength 2.
5 ton / cJ Acid resistance Stronger alkali resistance than concrete No change after being immersed in a 1% caustic sorter solution for over 30 days Water resistance No change after being immersed in a 1% caustic sorter solution for over 30 days In addition, this artificial stone can be finely ground to comply with the Environmental Agency notification. The amount of leached cadmium and lead was investigated according to method No. 4, but none were detected.

またJIS A301+に従い人造石に紫外線を照射し
て石灰による安定性を調べたところ、この人造石は極め
て化学的に安定であることが認められた。
Furthermore, when the artificial stone was irradiated with ultraviolet rays to examine its stability with lime according to JIS A301+, it was found that this artificial stone was extremely chemically stable.

X線粉末回析によシ該人造石中に含まれる鉱物を調べた
ところ、アケルマナイト(メリライト)、カスじダイン
、マーウィナイト及び12 Ca。
When the minerals contained in the artificial stone were examined by X-ray powder diffraction, the minerals contained in the artificial stone were found to be akermanite (melilite), kasudidine, marwinite, and 12 Ca.

7 Al2O3が認められた。7 Al2O3 was observed.

一方ダストとスラグの混合時に発生するガスから酸化亜
鉛、酸化カドミウム、酸化鉛を回収することができた。
On the other hand, we were able to recover zinc oxide, cadmium oxide, and lead oxide from the gas generated when dust and slag were mixed.

処理されたタストから夫々の揮化率をめると酸化亜鉛5
9.12%、酸化カドミラミ電炉タスト170kを用い
、七三カラを使用しない以外は実施例1と同様にして人
造石を得た。
When the respective volatilization rates are calculated from the processed tast, zinc oxide 5
An artificial stone was obtained in the same manner as in Example 1 except that 9.12% oxidized Cadmirami electric furnace Tast 170k was used and Shichisan Kara was not used.

比重3.13 硬 度(マイクロごツカース) 398圧縮強度 1.
’9 ton 10J 耐酸性 −コシクリートに比し強い 耐アルカリ性 1%苛性ソータ水溶液に30日以上浸漬
するも変化なし 耐水性 30日以上浸漬するも変化なしまたこの人造石
を微粉砕して環境庁告示第4号の方法に準じてカドミウ
ム及び鉛の溶出量を調べたが、全く検出されなかった。
Specific gravity: 3.13 Hardness (microscopic): 398 Compressive strength: 1.
'9 ton 10J Acid resistance - Stronger alkali resistance than Cosicrete No change after being immersed in a 1% caustic sorter solution for over 30 days Water resistance No change after being immersed in a 1% caustic sorter aqueous solution for over 30 days Also, this artificial stone is finely pulverized and approved by the Environment Agency. The amount of leached cadmium and lead was investigated according to the method No. 4, but none were detected.

またJIS A3011に従い人造石に紫外線を照射し
て石灰による安定性を調べたところ、この人造石は極め
て化学的に安定であることが認められた。
Furthermore, when the artificial stone was irradiated with ultraviolet rays to examine its stability with lime according to JIS A3011, it was found that this artificial stone was extremely chemically stable.

X線粉末回析によシ該人造石中に含まれる鉱物を調べた
ところ、アケルマナイト(メリライト)、カスじディン
、マーウィナイト及びI 2 CaO7Al2O3が認
められた。
When the minerals contained in the artificial stone were examined by X-ray powder diffraction, akermanite (melilite), kasuddin, marwinite, and I 2 CaO 7 Al 2 O 3 were recognized.

一方ダストとスラリの混合時に発生するノjスから酸化
亜鉛、酸化カドミウム、酸化鉛を回収することができた
。揮化率は、酸化亜鉛61.44%、酸化カドミウムは
ぼ100%、酸化鉛65.54%であった。
On the other hand, we were able to recover zinc oxide, cadmium oxide, and lead oxide from the nozzle generated when the dust and slurry were mixed. The volatilization rate was 61.44% for zinc oxide, nearly 100% for cadmium oxide, and 65.54% for lead oxide.

実施例4 電気炉ダストとしてSs O24,4、Q%、Al20
30.81%、Fe 20344−94%、Ca01.
57%、Myo 0.02%、ZnO24,67%、p
bo 1.53%、Mn04.36%、CdOO,02
%の割合で含有すルタストを使用し、電気炉還元滓とし
てS#0237.97含有するスラグを使用した。
Example 4 Ss O24,4, Q%, Al20 as electric furnace dust
30.81%, Fe 20344-94%, Ca01.
57%, Myo 0.02%, ZnO24, 67%, p
bo 1.53%, Mn 04.36%, CdOO, 02
% of slutast was used, and slag containing S#0237.97 was used as the electric furnace reduced slag.

電気炉タスト50に9を用い、還元剤プリーズ3%のモ
ミガラの代シに使用した以外は実施例1と同様にして生
成反応物を得た。
A reaction product was obtained in the same manner as in Example 1, except that electric furnace Tast 50 was used as a substitute for rice husk and 3% of the reducing agent Please was used as a rice husk substitute.

得られた固型生成物においては、SiO2及びCaOを
主とする酸化物とFz 、 Mn等を主とする金属硫化
物とが明確に分離して存在しており、その境界面から極
めて容易に粉砕された。粉砕後、Ft3S4等の強磁性
体成分13.12%が、磁力選別によシ分離除去された
In the obtained solid product, oxides mainly composed of SiO2 and CaO and metal sulfides mainly composed of Fz, Mn, etc. exist clearly separated, and it is extremely easy to separate them from the interface. Shattered. After pulverization, 13.12% of ferromagnetic components such as Ft3S4 were separated and removed by magnetic separation.

電気炉タスト中の重金属酸化物の揮化率は、酸化亜鉛7
6.16%、酸化カドミウムはぼ100%、酸化鉛93
.7%であった。
The volatilization rate of heavy metal oxides during electric furnace tast is zinc oxide 7
6.16%, almost 100% cadmium oxide, 93% lead oxide
.. It was 7%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例において使用する反応槽の
概要を示す図面、第2図は、反応槽の傾倒を示す図面で
ある。 (1)・・・反応槽、(3)・・・フード、(5)・・
・ダスト投入口、(7)・・・傾倒装置、(9)・・・
空気又は酸素供給ライン、(ロ)、α力・・・吹出し口
、QO・・・フレ+シプルバイプ、α力・・・集塵器、
θ呻・・・冷却用容器。 (以 上) 代理人 弁理士 三 枝 英 二 第1図 第2図 −b ノ 手続補正書く自発) 昭和58年8月26日 1 事件の表示 昭和58年特許願第133062号 2 発明の名称 電気炉ダスト及び溶滓の同時処理方法 3 補正をする者 事件との関係 特許出願人 凸材 薫 4代理人 自発 6 補正の対象 明細書中「発明の詳細な説明」の項 7 補正の内容 別紙添付の通り 補正の内容 1 明細書第3頁第12行rYn JとあるのをrZn
 Jと訂正する。 2 明細書第8頁第12〜13行「通常1300〜14
00℃」とあるのを「通常1300〜1500℃」と訂
正する。 3 明@書第9頁第8〜9行[酸素による撹拌、撹拌板
(図示せず)による撹拌等」とあるのを「酸素による撹
拌等」と訂正する。 (以 上)
FIG. 1 is a diagram showing an outline of a reaction tank used in an embodiment of the present invention, and FIG. 2 is a diagram showing the tilting of the reaction tank. (1)...Reaction tank, (3)...Hood, (5)...
・Dust inlet, (7)...Tilt device, (9)...
Air or oxygen supply line, (b), α force...outlet, QO...flexible pipe, α force...dust collector,
θ groan...cooling container. (Above) Agent: Eiji Saegusa, Patent Attorney Voluntary amendment to amend the procedure in Figure 1, Figure 2-b) August 26, 1980 1 Indication of the case 1988 Patent Application No. 133062 2 Name of the invention Electricity Simultaneous processing method for furnace dust and slag 3 Relationship with the case of the person making the amendment Patent applicant Convex material Kaoru 4 Spontaneity of the agent 6 Section 7 of “Detailed description of the invention” in the specification subject to amendment Attachment of attached sheet of contents of amendment Contents of amendment 1 Page 3 of the specification, line 12 rYn J is replaced by rZn
Correct it with J. 2. Page 8 of the specification, lines 12-13 “Usually 1300-14
00℃" should be corrected to ``Normally 1300-1500℃.'' 3 Mei@, page 9, lines 8-9 [stirring with oxygen, stirring with a stirring plate (not shown), etc.] should be corrected to "stirring with oxygen, etc."(that's all)

Claims (1)

【特許請求の範囲】 ■ 反応槽に収容された溶滓に顆粒化若しくはフし−り
化した電気炉ダスト及び溶滓を加え、攪拌して混合反応
させた後、混合物の表面部分が溶融状態にある間に冷却
用容器に移して冷却させることを特徴とする電気炉ダス
ト及び溶滓の同時処理方法。 ■ 反応槽に収容された溶滓に顆粒化若しくはフし−ク
化した電気炉タスト及び溶滓を加え、還元剤の存在下に
撹拌して混合反応させ、次いで混合物の表面部分が溶融
状態にある間に冷却用容器に移して冷却させた後、得ら
れた固型物を粉砕し、強磁性生成物を磁力選別すること
を特徴とする電気炉ダスト及び溶滓の同時処理方法。
[Claims] ■ Granulated or flocculated electric furnace dust and molten slag are added to the slag stored in a reaction tank, and after stirring and causing a mixing reaction, the surface portion of the mixture is in a molten state. 1. A method for simultaneously treating electric furnace dust and slag, which comprises transferring the dust and slag to a cooling container for cooling. ■ Granulated or flaked electric furnace tast and molten slag are added to the slag stored in a reaction tank, stirred in the presence of a reducing agent to cause a mixing reaction, and then the surface portion of the mixture becomes molten. 1. A method for simultaneously processing electric furnace dust and slag, which comprises transferring the powder to a cooling container for cooling, pulverizing the obtained solid material, and magnetically separating ferromagnetic products.
JP58133062A 1983-07-20 1983-07-20 Method of simultaneously treating electric furnace dust and slag Pending JPS6026284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58133062A JPS6026284A (en) 1983-07-20 1983-07-20 Method of simultaneously treating electric furnace dust and slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58133062A JPS6026284A (en) 1983-07-20 1983-07-20 Method of simultaneously treating electric furnace dust and slag

Publications (1)

Publication Number Publication Date
JPS6026284A true JPS6026284A (en) 1985-02-09

Family

ID=15095934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58133062A Pending JPS6026284A (en) 1983-07-20 1983-07-20 Method of simultaneously treating electric furnace dust and slag

Country Status (1)

Country Link
JP (1) JPS6026284A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295263A (en) * 1985-06-25 1986-12-26 有限会社星野産商 Slag disintegration efflorescence prevention
JPH02153850A (en) * 1988-12-02 1990-06-13 Mitsubishi Mining & Cement Co Ltd Production of calcium aluminate-containig slag
JPH02164748A (en) * 1988-12-16 1990-06-25 Kurimoto Ltd Method and device for treatment of slag
US6091313A (en) * 1997-05-15 2000-07-18 Tdk Corporation Magnetostatic wave device including magnetic garnet layer having an inclined side face

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061304A (en) * 1973-10-02 1975-05-26
JPS53122604A (en) * 1977-03-31 1978-10-26 Nippon Jiriyoku Senkou Kk Treatment of melted slag

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061304A (en) * 1973-10-02 1975-05-26
JPS53122604A (en) * 1977-03-31 1978-10-26 Nippon Jiriyoku Senkou Kk Treatment of melted slag

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295263A (en) * 1985-06-25 1986-12-26 有限会社星野産商 Slag disintegration efflorescence prevention
JPH0260622B2 (en) * 1985-06-25 1990-12-17 Hoshino Sansho Jugen
JPH02153850A (en) * 1988-12-02 1990-06-13 Mitsubishi Mining & Cement Co Ltd Production of calcium aluminate-containig slag
JPH02164748A (en) * 1988-12-16 1990-06-25 Kurimoto Ltd Method and device for treatment of slag
US6091313A (en) * 1997-05-15 2000-07-18 Tdk Corporation Magnetostatic wave device including magnetic garnet layer having an inclined side face

Similar Documents

Publication Publication Date Title
US4725307A (en) Method of treating dust and sludge simultaneously with steel slag
CN112390526B (en) Method for harmlessly treating cyanided tailings in surface crystallization process of microcrystalline glass granules
CN114672643B (en) Method for synergistically utilizing high-iron red mud and molten steel slag
US5180421A (en) Method and apparatus for recovering useful products from waste streams
Ma, G.* & Garbers-Craig A review on the characteristics, formation mechanisms and treatment processes of Cr (VI)-containing pyrometallurgical wastes
EP2609226B1 (en) Process for magnesium production
Hanewald et al. Processing EAF dusts and other nickel-chromium waste materials pyrometallurgically at INMETCO
JPS6026284A (en) Method of simultaneously treating electric furnace dust and slag
TW200844389A (en) Molded body containing titanium
Fursman Utilization of red mud residues from alumina production
CA1086073A (en) Electric smelting of lead sulphate residues
FEhS of EAF and AOD Slags
JP3702385B2 (en) Exhaust gas treatment agent, method for producing the same, and exhaust gas treatment method
Schweers et al. A pyrometallurgical process for recycling cadmium containing batteries
CN115505745A (en) Method for treating fly ash in sintering process by using steel slag thermal coupling technology
US2417101A (en) Titaniferous magnetite treatment
US4778523A (en) Process for using steelmaking slag
KR20020033008A (en) Method for recovering useful metal from slag generated in steel-making process while treating the slag
EP0819183B1 (en) Treatment of fly ash
JP2001521583A (en) How to recycle brass foundry waste.
US3203758A (en) Utilization of steel mill pickle liquor
JPS5924102B2 (en) How to add cement to steel dust
JPS60162736A (en) Treatment of electric furnace dust
Hanewald et al. Recycling Chromium‐Bearing Refractories Through Pyrometallurgical Technology
JPS6056407B2 (en) How to treat electric furnace dust