JPS60262425A - Working method of substrate - Google Patents

Working method of substrate

Info

Publication number
JPS60262425A
JPS60262425A JP11798784A JP11798784A JPS60262425A JP S60262425 A JPS60262425 A JP S60262425A JP 11798784 A JP11798784 A JP 11798784A JP 11798784 A JP11798784 A JP 11798784A JP S60262425 A JPS60262425 A JP S60262425A
Authority
JP
Japan
Prior art keywords
substrate
film
resin
organic polymer
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11798784A
Other languages
Japanese (ja)
Inventor
Takeshi Sukegawa
助川 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11798784A priority Critical patent/JPS60262425A/en
Publication of JPS60262425A publication Critical patent/JPS60262425A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Abstract

PURPOSE:To provide a homogenous fine pattern on a substrate, by using as a treating mask a phase-separated film consisting of organic macromolecules and silicone resin or polysilane resin. CONSTITUTION:Organic macromolecules of acrylate resin or the like are added to silicone resin of polydimethyl siloxane or the like or to polysilane resin of polymethyl phenylsilane or the like so as to produce a phase-separated macromolecule film 1 on a substrate 2. The film is treated with O2 gas plasma so that the organic macromolecule regions 3 are removed while the silicone resin regions 4 are oxidized to leave SiO2 5 on the substrate. The substrate 2 is etched with the use of the film 5 as a mask, which is then removed. When the phase separation is of the order 1mum, it is advantageous that the film has a thickness equivalent to or smaller than the subject thickness. According to this constitution, a homogeneous fine pattern having a large area and a high shape ratio can be provided easily and economically if no regularity is required for the pattern.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基板上に容易に大面積、形状比の高い、ある
いは均質な微細パターンを形成する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for easily forming a large area, high shape ratio, or homogeneous fine pattern on a substrate.

〔従来技術〕[Prior art]

任意の基板上に、数十〜数pあるいは1pyn以下の微
細構造を形成するには、通常写真食刻法が用いられてい
る。この方法は、基板上に感光性を持つレジストを塗布
し、マスクを介して露光後、レジストを現像してマスク
のパターンを転4する。
A photolithography method is usually used to form a fine structure of several tens to several pyn or one pyn or less on an arbitrary substrate. In this method, a photosensitive resist is applied onto a substrate, exposed to light through a mask, and then the resist is developed to transfer the pattern of the mask.

続いて、該レジストパターンをマスクとして基板ごエツ
チングする、あるいはリフトオフ加工を行うことが行わ
れている。
Subsequently, the substrate is etched using the resist pattern as a mask, or lift-off processing is performed.

〔@明が解決しようとする問題点〕[@Problems that Ming tries to solve]

上記の方法は、基板上に規則的な微細構造パターンを形
成するには最適な方法であるが、微細パターンを基板面
に形成する全てに有効、かつ能率的ではない。基板上に
形成される微細パターンに規則性が要求されない場合に
は、上記の写真食刻法ではマスク作成工程、露光工程な
ど不要な工程が多(、経済的な方法とけ言えない。
Although the above method is an optimal method for forming a regular fine structure pattern on a substrate, it is not effective and efficient for forming a fine pattern on a substrate surface. If regularity is not required for the fine pattern formed on the substrate, the above-mentioned photolithography method involves many unnecessary steps such as a mask creation step and an exposure step (and cannot be called an economical method).

大面積にわたって基板の加工を行うには、作製上の困難
性が大きい大面積のマスクが必要となるか、あるいは小
面積のマスクで長時間繰り返して露光しなげればならな
い。また、基板の形状が特異なものに対しては特別な治
具も必要である。
In order to process a substrate over a large area, a large-area mask is required, which is difficult to manufacture, or a small-area mask must be repeatedly exposed for a long time. Additionally, a special jig is required for substrates with unique shapes.

本発明の目的は、上記問題点を解決して1基板面に大面
積、高形状比、均質な微細パターンを容易に、また経済
的に得ることのできる基板の7J[I上方法を提供する
ことにある。 ) 〔問題点を解決Tるための手段〕 本発明は、シリコーン樹脂あるいはポリシラン樹脂と有
機高分子の相分離した膜を被加工基板上に形成し、これ
を加工マスクとして用い、相分離しなパターンを被加工
基板上に転写することを特徴としている。
An object of the present invention is to solve the above-mentioned problems and provide a method for manufacturing a substrate that can easily and economically obtain a large area, high shape ratio, and homogeneous fine pattern on one substrate surface. There is a particular thing. ) [Means for solving the problem] The present invention forms a phase-separated film of silicone resin or polysilane resin and organic polymer on a substrate to be processed, and uses this as a processing mask to prevent phase separation. The feature is that the pattern is transferred onto the substrate to be processed.

本発明においては、シリコーン樹脂あるいはポリシラン
樹脂の群より選択された一種以上(以下Sj 樹脂と略
丁)と有機高分子の一種以上からなる相分離した高分子
膜を形成する。相分離した高分子膜は、Si樹脂と有機
高分子を共通の溶剤に溶解し、キャスティングあるいは
回転塗布など通常の高分子膜作成方法で形成できる。前
述のS+樹脂としては、例えば、ポリジメチルシロキサ
ン、ポリメチルフェニルシロキサン、ポリシルセスキオ
キサンなどのシリコーン樹脂、ポリメチルフェニルシラ
ン、ポリジフェニルシラン、ボリジメチルシプンとポリ
メチルフェニルシランの共重合体などのポリシラン樹脂
の一種以上を用いることができる。有機高分子としては
、酸素ガスプラズマにより分解気化し、Si樹脂との相
溶性が悪く、Si 樹脂と共通の溶剤をMするものであ
れば、基本的にいかなるものでもよい。一般に、Si樹
脂は有機縞分子と相溶性が悪いため、例えばアクリレー
ト系樹脂、メタクリレート系樹脂などの一種以上2有効
に用いることができる。相分離した高分子膜の膜厚は必
要に応じて任意の厚さとしてよいが、通常相分離の状態
で決められる。つまり、相分離が例えばl趨オーダーで
ある場合にけ膜厚はそれと同等の厚さ、あるいはそれ以
下の厚さであることが好ましい。
In the present invention, a phase-separated polymer film is formed, which is composed of one or more selected from the group of silicone resins or polysilane resins (hereinafter referred to as Sj resin) and one or more organic polymers. A phase-separated polymer film can be formed by dissolving a Si resin and an organic polymer in a common solvent and using a normal polymer film production method such as casting or spin coating. Examples of the above-mentioned S+ resin include silicone resins such as polydimethylsiloxane, polymethylphenylsiloxane, and polysilsesquioxane, polymethylphenylsilane, polydiphenylsilane, and copolymers of boridimethylcipne and polymethylphenylsilane. One or more types of polysilane resins such as the following can be used. Basically, any organic polymer may be used as long as it is decomposed and vaporized by oxygen gas plasma, has poor compatibility with Si resin, and uses the same solvent as Si resin. Generally, Si resin has poor compatibility with organic striped molecules, so one or more of, for example, acrylate resins and methacrylate resins can be effectively used. The thickness of the phase-separated polymer membrane may be set to any desired thickness if necessary, but it is usually determined based on the phase-separated state. In other words, when the phase separation is, for example, on the order of 1, the film thickness is preferably equal to or less than that.

次の基板のDロエ、つまり基板への微細パターン形成は
、前記相分離した高分子膜を例えば酸素ガスプラズマ処
理してその後に残存する酸化シリコン部分を利用するこ
とで行われる。したがって、写真食刻法で必要となるマ
スクの作製および露光工程、レジストの現像工程は全く
不要であり、引き蔵<no工工程にドライエツチング等
の乾式1程を利用丁れば、レジストの現象に伴う湿式処
理のない基板加工プロセスとなる。主なnO工工程の例
を第1図〜第3図で説明するが、本発明は何らこれによ
り限定されるものではない。
The subsequent D-loe of the substrate, that is, the formation of a fine pattern on the substrate, is performed by treating the phase-separated polymer film with, for example, oxygen gas plasma, and then using the silicon oxide portion remaining after that. Therefore, the mask preparation, exposure process, and resist development process that are required in the photolithography method are completely unnecessary. This is a substrate processing process that does not require wet processing. Examples of main nO process steps will be explained with reference to FIGS. 1 to 3, but the present invention is not limited thereto in any way.

第1図は、被11[1工基板2上に相分離した高分子膜
1を形成する(第1図(a))。次に、酸素ガスプラズ
マ処理で相分離した高分子膜中の有機高分子部分3ご除
去するとともにSi樹脂部分42酸化して酸化シリコン
5を基板上に残丁(第1図(b))。
In FIG. 1, a phase-separated polymer film 1 is formed on a substrate 2 (FIG. 1(a)). Next, the organic polymer portion 3 in the phase-separated polymer film is removed by oxygen gas plasma treatment, and the Si resin portion 42 is oxidized to leave silicon oxide 5 on the substrate (FIG. 1(b)).

次に基板上の酸化シリコンごマスク材として基板をエツ
チング加工する(第1図(C))。次に、酸化シリコン
を除去する(第1図(d))。
Next, the silicon oxide on the substrate is used as a mask material to etch the substrate (FIG. 1(C)). Next, the silicon oxide is removed (FIG. 1(d)).

第2図は、被加工基板2の上に有機高分子膜6を形成し
、さらにその上に相分離した高分子膜lを形成する(第
2図(a))。次に、酸素ガスプラズマ処理で相分離し
た高分子膜中の有機高分子部分3を除去するとともに、
Si #明部分4を酸化して酸化シリコン5にする。こ
れと同時に該酸化シリコンに覆われていない部分の有機
高分子膜を除去する(第2図(b))。次に、有機高分
子膜6のパターンをマスク材として基板牙エツチング加
工する(第2図(C))。次に残存する有機高分子膜を
除去する(第2図(d))。
In FIG. 2, an organic polymer film 6 is formed on a substrate 2 to be processed, and a phase-separated polymer film 1 is further formed thereon (FIG. 2(a)). Next, while removing the organic polymer portion 3 in the polymer film phase-separated by oxygen gas plasma treatment,
The Si# bright portion 4 is oxidized to silicon oxide 5. At the same time, the portions of the organic polymer film not covered with the silicon oxide are removed (FIG. 2(b)). Next, the substrate is etched using the pattern of the organic polymer film 6 as a mask material (FIG. 2(C)). Next, the remaining organic polymer film is removed (FIG. 2(d)).

第3図は、被加工基板2の上に有機高分子膜6を形成し
、さらKその上に相分離した高分子膜1を形成する(第
3図(a))。次に、譲禦ガスプラズマ処理で相分離し
fc扁分子膜中の有機高分子部分3を除去するとともに
、Sj 樹脂部分4を酸化して酸化シリコン5にする。
In FIG. 3, an organic polymer film 6 is formed on a substrate 2 to be processed, and a phase-separated polymer film 1 is further formed thereon (FIG. 3(a)). Next, the organic polymer portion 3 in the fc bilayer film is phase-separated by a concessional gas plasma treatment, and the organic polymer portion 3 is removed, and the Sj resin portion 4 is oxidized to silicon oxide 5.

これと同時に該酸化シリコンに涜われていない部分の有
機高分子膜を除去する。このとき有機高分子膜6のパタ
ーンは該順化シリコンより細くなるよう酸素ガスプラズ
マ段によって堆積する(甫3図(C))。次に1有機高
分子6のパターンをその上にある酸化シリコン、該堆積
した物質とともに除去する(第3図(d))。
At the same time, the portions of the organic polymer film not covered by the silicon oxide are removed. At this time, the pattern of the organic polymer film 6 is deposited by an oxygen gas plasma stage so as to be thinner than the conditioned silicon (FIG. 3(C)). Next, the pattern of one organic polymer 6 is removed together with the silicon oxide on it and the deposited material (FIG. 3(d)).

以上、述べたように本発明の方法によれば、露光工程を
経ずに基板上に微細パターンを設けることができる。ま
た、相分離の状態、丁なわら、相分離した高分子膜にお
いてSi樹脂が占める面積と有機高分子が占める面積の
割合および、膜中の )相分離したSi 樹脂部分の大
きさは、Si樹脂と有機高分子の混合比や混合するSi
 樹脂および有機高分子の種類によって選択できる。
As described above, according to the method of the present invention, a fine pattern can be provided on a substrate without an exposure process. In addition, the state of phase separation, the ratio of the area occupied by the Si resin to the area occupied by the organic polymer in the phase-separated polymer membrane, and the size of the phase-separated Si resin part in the membrane are Mixing ratio of resin and organic polymer and Si to be mixed
It can be selected depending on the type of resin and organic polymer.

以下、実施例につき説明する。Examples will be described below.

〔実施例1〕 シリコン基板上にアルミニウムをa stem厚に蒸着
した基板を用意した。次に、ポリシルセスキオキサン0
3gとポリn−ブチルメタクリレートQkgをキシレン
2θdに溶解し、前記基板上に回転塗布法によって20
θθrp’n、60秒の条件で塗布した。塗布膜厚はQ
/j#mであった。lθθ”C11時間加熱処理した後
、酸素ガスプラズマ処理を平行平板型プラズマエツチン
グ装置(日車ア本ルバ社製、DEM−451型)を用い
酸素ガス圧b OmTorr、 RFパワー2θθWで
10分間行い、ポリn−ブチルメタクリレートを除去し
、ポリシルセスキオキサンを酸化シリコンにした。酸化
シリコン部分はほぼ円形の島状になり、直径は03〜a
2μ翼であった。次に、前記エツチング装置でアルミニ
ウムをa2μm厚エツチングした。エツチングにはCC
7,ガスな用いた。エツチング後、酸化シリコン部分を
CF4ガスを用いたプラズマエツチングで除去した。パ
ター/を走査電子顕微韓で観察したところ酸化シリコン
のパターンが転写できていることがわかった。
[Example 1] A substrate was prepared by depositing aluminum to a stem thickness on a silicon substrate. Next, polysilsesquioxane 0
3 g and poly n-butyl methacrylate Q kg were dissolved in xylene 2θd, and 20
Coating was carried out under the conditions of θθrp'n and 60 seconds. The coating film thickness is Q
/j#m. After heat treatment for 11 hours, oxygen gas plasma treatment was performed for 10 minutes at an oxygen gas pressure of OmTorr and an RF power of 2θθW using a parallel plate plasma etching device (manufactured by Nichisha Almoto Co., Ltd., model DEM-451). Poly n-butyl methacrylate was removed and polysilsesquioxane was made into silicon oxide.The silicon oxide part became a nearly circular island shape with a diameter of 03~a.
It was a 2μ wing. Next, the aluminum was etched to a thickness of 2 μm using the etching apparatus. CC for etching
7. I used gas. After etching, the silicon oxide portion was removed by plasma etching using CF4 gas. When the pattern was observed using a scanning electron microscope, it was found that the silicon oxide pattern had been transferred.

〔実施例2〕 酸化シリコン膜(膜厚aSμm)付シリコン基板を用意
し、この上にAZ1350ホトレジスト(商品名 シン
プレイ社)をaSμm厚に塗布し、20θ℃、1時間加
熱処理した。次に、ポリシルセスキオキサンaSgとポ
リn−ブチルメタクリレート05gをキシレン2θIL
IK溶解し、前記基板上に回転塗布法で2000r凹、
60秒の条件で塗布した。100″CS/時間加熱処哩
した後、酸素ガスプラズマ処理を平行平板型プラズマエ
ツチング装置(日車アネルバ社製、I)F)M−451
型)ご用い酸素ガス圧3θmTorrs RFパワーi
s。
[Example 2] A silicon substrate with a silicon oxide film (film thickness aS μm) was prepared, and AZ1350 photoresist (trade name: Shinprey Co., Ltd.) was applied thereon to a thickness of aS μm, and heat treated at 20θ° C. for 1 hour. Next, 05 g of polysilsesquioxane aSg and poly n-butyl methacrylate were added to xylene 2θIL.
IK melted, 2000r concave by spin coating method on the substrate,
It was applied for 60 seconds. After heat treatment for 100″CS/hour, oxygen gas plasma treatment was performed using a parallel plate plasma etching device (manufactured by Nichisha Anelva Co., Ltd., I)F) M-451.
Type) Oxygen gas pressure used 3θmTorrs RF power i
s.

Wで9分間エツチングした。走査磁子顕1mで観察した
ところ基板上にAZ1350ホトレジストが晶さaSμ
m1直径a3〜a2μmの円柱状に形成できていた。次
に、このAZホトレジストパターンをマスクとして酸化
シリコン膜をエツチングした。ncftfi!!エツチ
ング装置(日車アネルバ社製)企用いCF、ガス圧/X
/ 0”TOrr % RFパワーisowでS分間エ
ツチングした。エツチング後、酸素プラズマでAZホト
レジストを除去して走査電子顕微鏡で観察したところ、
シリコン基板上に高さaSμm1直径a5〜a2μmの
円柱状の酸化シリコンが形成されていた。
It was etched with W for 9 minutes. When observed with a 1m scanning magneton microscope, AZ1350 photoresist was crystallized on the substrate aSμ.
It was formed into a cylindrical shape with m1 diameter of a3 to a2 μm. Next, the silicon oxide film was etched using this AZ photoresist pattern as a mask. ncftfi! ! Etching device (manufactured by Nichisha Anelva Co., Ltd.) used CF, gas pressure/X
/ 0" TOrr % Etching was performed for S minutes with RF power isow. After etching, the AZ photoresist was removed with oxygen plasma and observed with a scanning electron microscope.
A cylindrical silicon oxide with a height of aS μm1 and a diameter of a5 to a2 μm was formed on the silicon substrate.

〔実施例3〕 相分離した高分子膜としてポリジメチルシロキサンaS
gとポリ (/、l−ジメチルテトラフルオロプロピル
メタクリレート)(1)、、lをキシレン10dに溶解
した溶液を回転塗布(コθθ0rpn。
[Example 3] Polydimethylsiloxane aS as a phase-separated polymer membrane
A solution of g and poly (/, l-dimethyltetrafluoropropyl methacrylate) (1), and l dissolved in xylene 10d was spin-coated (θθ0rpn).

60秒)したものを用いる他は実施例2と同様に加工を
行った。走査′遊子顕微鏡で観察したところ、シリコン
基板上に扁さQ!;Arn、直径l〜25μmの円柱状
の酸化シリコンが形成されていた。
Processing was carried out in the same manner as in Example 2, except that the same process was used as in Example 2. When observed using a scanning microscope, it was found that there was a flatness Q on the silicon substrate! ; Arn, cylindrical silicon oxide with a diameter of 1 to 25 μm was formed.

〔実施例4〕 シリコン基板を用意し、その上に実施例3と同様にAZ
ホトレジスト膜、相分離した高分子膜ご形成した。ただ
しAZホトレジスト膜の加熱処理は行わなかった。次に
、実施例3と同じ条件で酸素ガスプラズマ処理を11分
間行った。次にこの上に酸化シリコンをa2μm厚に蒸
着した。その後、酢酸イソアミル中でAZホトレジスト
を除去した。
[Example 4] A silicon substrate is prepared, and AZ is deposited on it in the same manner as in Example 3.
A photoresist film and a phase-separated polymer film were formed. However, the AZ photoresist film was not heat-treated. Next, oxygen gas plasma treatment was performed for 11 minutes under the same conditions as in Example 3. Next, silicon oxide was deposited on this to a thickness of 2 μm. The AZ photoresist was then removed in isoamyl acetate.

走査電子顕微鏡で観察したところaコルOkpm径の微
細な穴を持つ酸化シリコン膜が形成できた。
When observed with a scanning electron microscope, a silicon oxide film having fine holes with a diameter of a cor Okpm was formed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の基板27[J工方法は、
写真食刻法で必要となるマスクの作製工程、露光工程が
老く不要であり、また、写真食刻法では困難とされる1
μm以下の微細加工も可能であり、数μm−1μm以下
までの加工ができ、基板上に大面積、高形状比、均質な
#細パターンを容易に経済的に得ることができる。した
がって、LSI5IC等の牛導体素子に塔載するヒート
シンクの作製、磁気ディスクの潤滑保護膜の作製、セン
サー表面のBロエ、ラマン赦乱元測定1分析用基板の作
成、フィルターの作成に利用できる利点がある。
As explained above, the substrate 27 of the present invention [J method is
The mask manufacturing process and exposure process required in photo-etching are time consuming and unnecessary, and they are also considered difficult in photo-etching.
Microfabrication of micrometers or less is also possible, and processing from several micrometers to less than 1 micrometer is possible, and it is possible to easily and economically obtain a large area, high shape ratio, and homogeneous #fine pattern on a substrate. Therefore, it has the advantage that it can be used for fabricating a heat sink mounted on a conductor element such as LSI5IC, fabricating a lubricating protective film for a magnetic disk, fabricating a substrate for B loe and Raman absorption source measurement 1 analysis on the sensor surface, and fabricating a filter. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)、第2図(a)〜fd)、第3 
m(a))〜(d)uいずれも本発明の実施例を示す図
であって、基板の加工方法を水子工程図である。 1・・・・・・8i樹脂と有機高分子の相分離膜、2・
・・・・・基板、3・・・・・・相分離膜中の有機高分
子部分、4・・・・・・相分離膜中のSi 樹脂部分、
5・・・・・・酸素ガスプラズマ処理後のSi 樹脂部
分(酸化シリコン)、6・・・・・・有機高分子膜、7
・・・・・・堆積物質。
Figure 1 (a) to (d), Figure 2 (a) to fd), Figure 3
m(a)) to (d)u are all diagrams showing examples of the present invention, and are Mizuko process diagrams illustrating a method of processing a substrate. 1...8i resin and organic polymer phase separation membrane, 2.
... Substrate, 3 ... Organic polymer part in the phase separation membrane, 4 ... Si resin part in the phase separation membrane,
5... Si resin part (silicon oxide) after oxygen gas plasma treatment, 6... Organic polymer film, 7
...Deposited material.

Claims (4)

【特許請求の範囲】[Claims] (1)シリコーン樹脂あるいはポリシラン樹脂と有機高
分子の相分離した膜を被加工基板上に形成し、これを加
工マスクとして用い、相分離したパターンを被加工基板
上に転写することを特徴とする基板のDロエ方法。
(1) A phase-separated film of silicone resin or polysilane resin and organic polymer is formed on the substrate to be processed, and this is used as a processing mask to transfer the phase-separated pattern onto the substrate to be processed. D Loe method of substrate.
(2)被加工基板上にシリコーン樹脂あるいはポリシラ
ン樹脂と有機高分子の相分離した被膜を形成する工程、
次にこれ2酸素ガスプラズマ処理して有機高分子を除去
するとともにシリコーン樹脂あるいはポリシラン樹脂を
酸化して基板上に酸化シリコンの微細パターンを形成す
る工程、次に、これをマスクとして基板をエツチングn
ロエする工程を含むことを特徴とする特許請求の範囲第
1項記載の基板の加工方法。
(2) forming a phase-separated film of silicone resin or polysilane resin and organic polymer on the substrate to be processed;
Next, the second step is to perform oxygen gas plasma treatment to remove the organic polymer and oxidize the silicone resin or polysilane resin to form a fine pattern of silicon oxide on the substrate.Next, the substrate is etched using this as a mask.
2. The method of processing a substrate according to claim 1, further comprising the step of rolling.
(3)被り■工阪上に該基板のエツチング時にマスク材
となる被膜を形成する工程、次に該マスク材上にシリコ
ーン樹脂あるいはポリシラン樹脂と有8Mg分子の相分
離した破膜ご形成する工程、次にこれを酸素ガスプラズ
マ処理して有機高分子ご除去するとともにシリコーン樹
脂あるいはポリシラン樹脂を酸化して基板上に順化シリ
コンの微細ツマターンを形成する工程、次に該酸化シリ
コンをマスクとして被加工基板上のマスク材をエツチン
グして鹸化シリコンの微細パターンをマスク材に転写す
る工程、次に該パターン化されたマスク材をマスクとし
て基板をエツチングする工程を含むことを特徴とする特
′Wfi11求の範囲第1項記載の基板の加工方法。
(3) Covering ■ A step of forming a film on the substrate to serve as a mask material during etching of the substrate, then a step of forming a phase-separated broken film of silicone resin or polysilane resin and Mg molecules on the mask material; Next, this is treated with oxygen gas plasma to remove organic polymers, and the silicone resin or polysilane resin is oxidized to form fine patterns of conditioned silicon on the substrate.Then, the oxidized silicon is used as a mask to form fine patterns on the substrate. A special feature of Wfi11 characterized in that it includes a step of etching a mask material on a substrate to transfer a fine pattern of saponified silicon onto the mask material, and then a step of etching the substrate using the patterned mask material as a mask. A method for processing a substrate according to item 1.
(4)被加工基板上に有機高分子膜を形成する工程、次
に該有S高分子換上にシリコーン樹脂あるいはポリシラ
ン樹脂と有機編分子の相分離した被膜を形成する工程、
次にこれを酸素ガスプラズマ処理してシリコーン樹脂あ
るいはポリシラン樹脂を順化して酸化シリコンとすると
ともに相分*膜中の有機高分子を除去し、同時に順化シ
リコンに擁われていない部分の基板上の有機高分子膜を
選択的に除去して基板上に有機高分子パターンを形成す
る工程、該有機高分子パターンを利用して基板上にリフ
トオフ加工によりパターンご形成する工程を含むことを
特徴とする特許請求の範囲第1項記載の基板の加工方法
(4) a step of forming an organic polymer film on the substrate to be processed, then a step of forming a phase-separated film of silicone resin or polysilane resin and organic knitted molecules on the S-containing polymer layer;
Next, this is subjected to oxygen gas plasma treatment to acclimatize the silicone resin or polysilane resin to silicon oxide, remove the organic polymer in the phase separation film, and at the same time remove the parts of the substrate that are not covered by the acclimatized silicon. The organic polymer film is selectively removed to form an organic polymer pattern on the substrate, and the organic polymer pattern is used to form a pattern on the substrate by lift-off processing. A method for processing a substrate according to claim 1.
JP11798784A 1984-06-08 1984-06-08 Working method of substrate Pending JPS60262425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11798784A JPS60262425A (en) 1984-06-08 1984-06-08 Working method of substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11798784A JPS60262425A (en) 1984-06-08 1984-06-08 Working method of substrate

Publications (1)

Publication Number Publication Date
JPS60262425A true JPS60262425A (en) 1985-12-25

Family

ID=14725213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11798784A Pending JPS60262425A (en) 1984-06-08 1984-06-08 Working method of substrate

Country Status (1)

Country Link
JP (1) JPS60262425A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114524A (en) * 1988-10-24 1990-04-26 Fujitsu Ltd Manufacture of semiconductor device
JPH08130213A (en) * 1994-11-01 1996-05-21 Agency Of Ind Science & Technol Surface working method using phase separation of polymer
WO2002099864A1 (en) * 2001-05-31 2002-12-12 Infineon Technologies, Ag Method for removing polysilane from a semiconductor without stripping
JP2009277710A (en) * 2008-05-12 2009-11-26 Ricoh Co Ltd Organic transistor, method of manufacturing organic transistor, organic transistor array, and display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114524A (en) * 1988-10-24 1990-04-26 Fujitsu Ltd Manufacture of semiconductor device
JPH08130213A (en) * 1994-11-01 1996-05-21 Agency Of Ind Science & Technol Surface working method using phase separation of polymer
WO2002099864A1 (en) * 2001-05-31 2002-12-12 Infineon Technologies, Ag Method for removing polysilane from a semiconductor without stripping
US6740594B2 (en) 2001-05-31 2004-05-25 Infineon Technologies Ag Method for removing carbon-containing polysilane from a semiconductor without stripping
JP2009277710A (en) * 2008-05-12 2009-11-26 Ricoh Co Ltd Organic transistor, method of manufacturing organic transistor, organic transistor array, and display device

Similar Documents

Publication Publication Date Title
US6383952B1 (en) RELACS process to double the frequency or pitch of small feature formation
JP3848070B2 (en) Pattern formation method
US7314834B2 (en) Semiconductor device fabrication method
JPS60262425A (en) Working method of substrate
JP3871923B2 (en) Pattern forming method and manufacturing method of active matrix substrate using the same
US5747117A (en) Method of applying a film to a substrate
JPH04176123A (en) Manufacture of semiconductor device
JPH0472223B2 (en)
JPS6150377B2 (en)
JPS63254729A (en) Forming method for resist pattern
JP3439488B2 (en) Method for manufacturing semiconductor device
KR100695756B1 (en) LIGA process and method manufacturing microstructures using the same
JPH0511652B2 (en)
JPS60110124A (en) Processing method of fine pattern
JP2589471B2 (en) Method for manufacturing semiconductor device
JPH02224331A (en) Manufacture of semiconductor device
JPH02143413A (en) Manufacture of semiconductor device
JPS5950053B2 (en) Photo engraving method
JPS6045246A (en) Formation of resist pattern
JPH0385544A (en) Resist pattern forming method
JPH0470626B2 (en)
JPH0888159A (en) Formation of resist pattern having high aspect ratio
JP2005084312A (en) Resist patterning method and method for manufacturing semiconductor device
JPS5852341B2 (en) Manufacturing method of semiconductor device
JPS62279630A (en) Method of applying resist