JPS60262126A - Optical shutter element - Google Patents

Optical shutter element

Info

Publication number
JPS60262126A
JPS60262126A JP11847384A JP11847384A JPS60262126A JP S60262126 A JPS60262126 A JP S60262126A JP 11847384 A JP11847384 A JP 11847384A JP 11847384 A JP11847384 A JP 11847384A JP S60262126 A JPS60262126 A JP S60262126A
Authority
JP
Japan
Prior art keywords
optical shutter
optical
electrodes
shutter element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11847384A
Other languages
Japanese (ja)
Inventor
Yoneji Takubo
米治 田窪
Yasutaka Horibe
堀部 泰孝
Nobue Tsujiuchi
辻内 伸恵
Hideyuki Okinaka
秀行 沖中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11847384A priority Critical patent/JPS60262126A/en
Publication of JPS60262126A publication Critical patent/JPS60262126A/en
Priority to US07/048,469 priority patent/US4722597A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/055Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect the active material being a ceramic
    • G02F1/0551Constructional details

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To decrease the change in the light transmissivity of an optical shutter element with a change in ambient temp. by forming plural thin conductive film pieces on a plate-shaped light transmittable ceramics in a manner that the film pieces do not contact with each other and providing electrodes thereon. CONSTITUTION:The plural thin transparent conductor film pieces 12 are formed on at least one surface of the plate-shaped light transmittable ceramics 11 consisting of PLZT (lead titanate zirconate added with La) having an electrooptic effect and photoelastic effect in a manner that the thin film pieces do not contact with each other and the electrodes 13 are provided thereon so as to form the optical shutter. An electric field is liable to concentate around the transparent pieces 12 and the transmissivity of the optical shutter part is different according to places when the voltage is impressed between the electrodes 13 and therefore the change in the light transmissivity over the entire part of the optical shutter part with temp. decreases.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光学式プリンターの書き込み用デノくイス、
カメラにおける高速光シャッターなどの光制御機器に用
いることが出来る固体の光シヤツター素子に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a writing device for an optical printer;
The present invention relates to a solid-state optical shutter element that can be used in optical control devices such as high-speed optical shutters in cameras.

従来例の構成とその問題点 近年、光通信、光学情報処理などの光関連技術の開発が
非常に活発に行なわれており、それに伴う、光学部品、
光制御デバイスの開発が重要視されている。その中にあ
って、電気光学効果、光弾性効果を有する固体の透光性
磁器も、光制御デバイスとしての光ンヤッターとして利
用出来、種々の応用が期待されている。
Conventional configurations and their problems In recent years, the development of optical-related technologies such as optical communication and optical information processing has been very active, and as a result, optical components,
The development of optical control devices is gaining importance. Among these, solid translucent porcelain having an electro-optic effect and a photoelastic effect can also be used as a light controller as a light control device, and is expected to have various applications.

現在、上記光シヤツター素子として知られているものは
、L&添加のチタン酸ジルコン酸鉛(、P L Z T
 )等の透光性磁器の平板上の表裏対称に、もしくは少
なくとも片面に、−組以上の電極を設けた基板を、上記
電極に電圧を印加した時に生じる電界ベクトルの方向に
対して、±450の偏光軸を有する偏光板で挾んだ構造
を有したものである。以下、従来の光シヤツター素子に
ついて、図面を参照しながら説明する。
Currently, what is known as the above-mentioned optical shutter element is lead zirconate titanate (P L Z T
), etc., on a flat plate of translucent porcelain, with −450° or more of electrodes provided symmetrically on the front and back sides, or at least on one side, with respect to the direction of the electric field vector generated when a voltage is applied to the electrodes. It has a structure in which it is sandwiched between polarizing plates having a polarization axis of . Hereinafter, a conventional optical shutter element will be explained with reference to the drawings.

第1図は、従来の光シヤツター素子の構成図を示したも
のであり、1はPLZT平板、2はPLZT平板1上に
形成された電極、3は偏光子、4は検光子を示しており
、前記電極2間に、電圧を印加した時に生じる電界ベク
トルの方向に付して±45°の方向に、偏光軸が互いに
直交するように構成される。このように構成された光シ
ヤツター素子の動作を以下に説明する。
Figure 1 shows the configuration of a conventional optical shutter element, in which 1 is a PLZT flat plate, 2 is an electrode formed on the PLZT flat plate 1, 3 is a polarizer, and 4 is an analyzer. , the polarization axes are arranged to be orthogonal to each other in a direction of ±45° with respect to the direction of an electric field vector generated when a voltage is applied between the electrodes 2. The operation of the optical shutter element configured in this way will be explained below.

第1図3の偏光子の後部から光を照射した場合、PLZ
T平板1上に形成された電極2間に、電圧を印加しない
時は、電気光学効果及び光弾性効果による複屈折は生じ
ず、偏光子3.検光子4によって光は遮断されるが、上
記電極2間に電圧を印加すると、電気光学効果及び光弾
性効果によって複屈折を生じ、光の偏光状態が変化し、
光が透過する。従って前記電極2間に、電圧を印加した
り、しなかったりすることにより、光の強度変調が出来
、光制御素子としての利用が期待出来る。
When light is irradiated from the rear of the polarizer in Figure 1, 3, the PLZ
When no voltage is applied between the electrodes 2 formed on the T flat plate 1, birefringence due to the electro-optic effect and photoelastic effect does not occur, and the polarizer 3. The light is blocked by the analyzer 4, but when a voltage is applied between the electrodes 2, birefringence occurs due to the electro-optic effect and photoelastic effect, and the polarization state of the light changes.
Light passes through. Therefore, by applying or not applying a voltage between the electrodes 2, the intensity of light can be modulated, and the device can be expected to be used as a light control element.

しかしながら、PLZTの電気光学材料は、電気光学効
果としてのカー効果が太きいだけでなく、電圧を印加す
ると、電界の2乗に比例した歪を生じ、複屈折を起こす
という光弾性効果も大きく、この効果は、温度変化に対
する特性の変動が大きいために、従来構造の素子では、
光ンヤッター素子を駆動する電圧を一定にした時に、周
囲の温度変化に対する、光シヤツタ一部の透過率の変化
が大きいという問題点を有していた。
However, PLZT electro-optic material not only has a strong Kerr effect as an electro-optic effect, but also has a large photoelastic effect in which when a voltage is applied, it produces strain proportional to the square of the electric field and causes birefringence. This effect is due to the large variation in characteristics due to temperature changes.
When the voltage for driving the light shutter element is kept constant, there is a problem in that the transmittance of a portion of the light shutter changes greatly in response to changes in ambient temperature.

発明の目的 本発明の目的は、光学式プリンター等、光制御デバイス
として用いて非常に有効であり、周囲温度変化に対する
光透過率の変化がきわめて少ない安定した光シヤツター
素子を提供するものである。
OBJECTS OF THE INVENTION An object of the present invention is to provide a stable optical shutter element that is very effective for use as a light control device in optical printers and the like, and whose light transmittance changes very little in response to changes in ambient temperature.

発明の構成 本発明の光シヤツター素子は、電気光学効果と光弾性効
果を有する固体の板状透光性磁器上の少なくとも一方の
面に、複数の透明な導体薄膜片を、互いの薄膜片どうし
が接触しないように形成し、その上に、光シヤツターを
形成するように電極を設け、前記板状透光性磁器の表裏
に、偏光板を偏光軸が互い[900の角度をなすように
配置された構造を有するものであって、これにより、温
度変化に対する前記光シーヤッター素子の光透過率の変
化を低減し、実使用環境下で、非常に安定した出力の得
られる光シヤツター素子となるものである。
Structure of the Invention The optical shutter element of the present invention has a plurality of transparent conductive thin film pieces arranged on at least one surface of a solid plate-like translucent porcelain having an electro-optic effect and a photoelastic effect. electrodes are provided thereon to form a light shutter, and polarizing plates are arranged on the front and back sides of the plate-shaped translucent porcelain so that the polarization axes make an angle of [900] with respect to each other. This reduces the change in light transmittance of the light shutter element due to temperature changes, resulting in a light shutter element that can provide a very stable output under actual usage environments. It is something.

実施例の説明 以下本発明の一実施例について、図面を参照しながら説
明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第2図は、本発明の実施例における光シヤツター素子の
構成図を示したものである。
FIG. 2 shows a configuration diagram of an optical shutter element in an embodiment of the present invention.

第2図において、11はPLZT平板、12はPLZT
平板上に形成された透明な導体薄膜片、13ば、PLZ
T平板上に形成された、光シヤツター動作の制御を行な
う電極、14.15はそれぞれ、偏光子、検光子を示し
ており、前記電極13間に、電圧を印加した時に生じる
電界ベクトルの方向に対して±450の方向に、偏光軸
が互いに直交するように構成されている。
In Fig. 2, 11 is a PLZT flat plate, and 12 is a PLZT plate.
Transparent conductive thin film piece formed on a flat plate, 13ba, PLZ
The electrodes 14 and 15, which are formed on the T-plate and which control the optical shutter operation, represent a polarizer and an analyzer, respectively. On the other hand, the polarization axes are configured to be orthogonal to each other in the directions of ±450.

以上のように構成された本実施例の光シヤツター素子に
ついて、以下にその動作機構を説明する。
The operating mechanism of the optical shutter element of this embodiment configured as described above will be explained below.

本発明にかかわる構成を有する光シヤツター素子におい
ても、従来の構成を有する光シヤツター素子の原理と同
様であり、第2図14の偏光子の後部から光を照射した
場合、PLZT平板11上に形成された電極13間に電
圧を印加しない時は、複屈折は生じず、光は遮断される
が、前記電極13間に電圧を印加すると、光の偏光状態
が変化し、光が透過するようになる。しかし、本発明に
かかわる実施例の場合は、第2図からも明らかなように
、前記電極13間の光シヤツタ一部表面に、 ゛前記透
明導体薄膜片が存在するため、前記電極13間に電圧を
印加した時、透明な導体薄膜片の周囲に電界が集中し易
くなり、PLZT平板11にかかる電界強度が場所によ
って異なる。つまり、光シヤツタ一部の透過率が、場所
によって異なっている。そこで、前記電極13間に印加
する電圧を制御して、前記光シヤツタ一部で、電界の太
きくなる部分では、室温で、半波長電界(透過率が最大
となる時に必要とされる電界)よりも、大きな電界がか
かるようにし、電界の小さくなる部分では、半ダ長電界
に達していない状態にする。
The principle of the optical shutter element having the structure according to the present invention is the same as that of the optical shutter element having the conventional structure, and when light is irradiated from the rear of the polarizer shown in FIG. When no voltage is applied between the electrodes 13, birefringence does not occur and light is blocked, but when a voltage is applied between the electrodes 13, the polarization state of the light changes and the light is transmitted. Become. However, in the case of the embodiment according to the present invention, as is clear from FIG. When a voltage is applied, the electric field tends to concentrate around the transparent conductive thin film piece, and the electric field strength applied to the PLZT flat plate 11 varies depending on the location. In other words, the transmittance of a portion of the light shutter differs depending on the location. Therefore, by controlling the voltage applied between the electrodes 13, in a part of the optical shutter where the electric field becomes thick, a half-wave electric field (the electric field required when the transmittance is maximum) is applied at room temperature. A larger electric field is applied than that, and the half-length electric field is not reached in the portion where the electric field becomes smaller.

P L Z Tl料は、温度が上昇すると、半波長電界
が、大きく上昇するため、従来の光ンヤッター素子の構
成では、光/ヤッタ一部の透過率がかなり変化していた
。しかし、本発明にかかわる光シヤツター素子の構成で
は、温度が室温から上昇した場合、PLZT基板の半波
長電界が上昇するため、電界が集中し、大きくなってい
る部分では、透過率が上昇し、電界のあまり集中してい
ない部分では、透過率が低下する。従って、光シヤツタ
ー素子の透過率は、各部分での透過率を平均したものと
して測定されるため、光シヤツタ一部各部での透過率分
布は変化するが、開口部全体の透過率の温度変化は、低
減することが出来る。
In the P L Z Tl material, the half-wavelength electric field increases significantly as the temperature rises, so in the configuration of a conventional optical Yatta element, the transmittance of the light/Yatta portion changes considerably. However, in the configuration of the optical shutter element according to the present invention, when the temperature rises from room temperature, the half-wavelength electric field of the PLZT substrate increases, so the transmittance increases in the areas where the electric field is concentrated and large. In areas where the electric field is less concentrated, the transmittance decreases. Therefore, the transmittance of a light shutter element is measured as the average transmittance of each part, so although the transmittance distribution in each part of the light shutter changes, the transmittance of the entire aperture changes with temperature. can be reduced.

′1・□′ 本実施例においては、厚さ40o (77
m )のPLZT平板を用い、片面にITO透明電極を
、厚み約1000(八)蒸着し、フォトリングラフィ技
術を用い、5 (1i m )角の正方形の薄膜片のパ
ターンを形成した。前記薄膜片の面積割合は、PLZT
平板に対して、約16:1で一様に形成した。その上に
、0r−Au電極をフォトリングラフィ技術により形成
した。この時、0r−Auの電極厚みは約6000(八
)であった。また、上記電極の電極幅は80(lzm)
、電極間隔ば150(tt m )で形成した。
'1・□' In this example, the thickness is 40o (77
Using a PLZT flat plate of 1 m), an ITO transparent electrode was deposited on one side to a thickness of about 1000 (8 m), and a pattern of 5 (1 m) square thin film pieces was formed using photolithography technology. The area ratio of the thin film piece is PLZT
It was formed uniformly at a ratio of about 16:1 to the flat plate. On top of that, an Or-Au electrode was formed by photolithography technique. At this time, the thickness of the Or-Au electrode was about 6000 (8). In addition, the electrode width of the above electrode is 80 (lzm)
, with an electrode spacing of 150 (tt m ).

第3図は、本実施例における光シヤツター素子の構成で
の、光シヤツター素子の透過率と、温度の関係と、従来
構成における光ンヤノター素子の透過率と温度の関係を
示したものである。第3図において、実線は従来構成に
おける、温度と透過率の関係を、破線は本発明にかかわ
る実施例の構成における温度と透過率の関係を表わして
いる。
FIG. 3 shows the relationship between the transmittance of the optical shutter element and temperature in the configuration of the optical shutter element in this embodiment, and the relationship between the transmittance and temperature of the optical shutter element in the conventional configuration. In FIG. 3, the solid line represents the relationship between temperature and transmittance in the conventional configuration, and the broken line represents the relationship between temperature and transmittance in the configuration of the embodiment according to the present invention.

印加電圧は、いずれも2oQ(v)である。図からも明
らかなように、本発明にかかわる構成を有する光シヤツ
ター素子では、20゛C〜60”Cの実使用温度範囲に
おいて、非常に安定した透過率を示した。
The applied voltage is 2oQ(v) in both cases. As is clear from the figure, the optical shutter element having the structure according to the present invention exhibited very stable transmittance in the actual operating temperature range of 20°C to 60''C.

本実施例では、透明導体薄膜片を6(μm)角の正方形
状のものにしたが、形状は規制するものではない。但し
、その大きさについては、前記透明導体薄膜片の1つが
大きくなると、光シヤツター開口部の透過率のムラが大
きくなり、開口部の非常に大きな光シヤツター素子では
、問題にならないが、例えば、光シヤツター開口部が小
さく、かつ、それをアレイ状に並べた構成にした光シヤ
ツター素子では、透過率のムラが、上記光ンヤノター開
口部のバラツキとなるため好ましくなかった。本実施例
の構成で、導体薄膜片の大きさを変化させた時の、光シ
ヤツタ一部の100(p m )X 100 (l1m
 )の面積内での部分的な透過率ムラ全、光シヤツタ一
部の場所を変えて、測定した結果、導体薄膜片が、電極
間距離15o(μm)に対して15(μm)角取下であ
れば、ムラばほとんどなくなった。また、前記導体薄膜
片の、光シヤツター開口部に対する面積割合は、本実施
例では、光シャンタ一部全体の面積に対して1/16で
あったが、上記面積割合を変えて測定を行なった結果、
1150から1/10の間で、温度変化に対する透過率
変化が温度範囲20〜60″Cの間で1%以内であり、
良好な結果が得られた。
In this embodiment, the transparent conductor thin film piece is made into a square with 6 (μm) sides, but the shape is not limited. However, regarding the size, if one of the transparent conductor thin film pieces becomes large, the unevenness of the transmittance of the light shutter aperture becomes large, and this does not become a problem in a light shutter element with a very large aperture, but for example, In an optical shutter element having a structure in which the optical shutter openings are small and are arranged in an array, unevenness in transmittance is not preferable because it causes variations in the optical shutter openings. With the configuration of this example, when the size of the conductor thin film piece is changed, the part of the optical shutter is 100 (p m ) x 100 (l1 m
), and as a result of measuring by changing the location of part of the light shutter, it was found that the conductor thin film piece had a corner reduction of 15 (μm) with respect to the distance between the electrodes of 15o (μm). In that case, the unevenness has almost disappeared. Furthermore, in this example, the area ratio of the conductor thin film piece to the light shutter opening was 1/16 to the area of the entire part of the light shunter, but measurements were performed with the above area ratio changed. result,
Between 1150 and 1/10, the transmittance change due to temperature change is within 1% in the temperature range of 20 to 60"C,
Good results were obtained.

なお、本発明にかかわる実施例では、電極材料としてC
r−Auを使用したが、他の電極材料でも同様の結果が
得られることは容易に推測される。
In addition, in the examples related to the present invention, C was used as the electrode material.
Although r-Au was used, it is easy to imagine that similar results could be obtained with other electrode materials.

また、電極形状も、本実施例のような交差指形電極形状
に限定するものではなく、他の電極構造においても、同
様の結果が得られることも容易((推測出来る。
Further, the electrode shape is not limited to the interdigital electrode shape as in this example, and it can be easily assumed that similar results can be obtained with other electrode structures.

発明の効果 以上の説明から明らかなように、本発明は、電気光学効
果と光弾性効果を有する固体の板状透光性磁器上の少な
くとも一方の面に、複数の透明な導体薄膜片を互いの薄
膜片どうしが接触しないように形成し、その上に、光シ
ヤツターを形成するように電極を設け、前記板状透光性
磁器の表裏に、偏光板を偏光軸が互いに9o0の角度を
なすように配置された構造を有するものであって、これ
により、温度変化に対する前記光シャ・ンター素子の光
透過率の変化を低減し、実使用環境下で、非常に安定し
た出力の得られる光シヤツター素子を提供するものであ
る。
Effects of the Invention As is clear from the above description, the present invention has a plurality of transparent conductor thin film pieces mutually disposed on at least one surface of a solid plate-like translucent porcelain having an electro-optic effect and a photoelastic effect. The thin film pieces are formed so that they do not contact each other, and electrodes are provided thereon to form a light shutter, and polarizing plates are placed on the front and back sides of the plate-shaped translucent porcelain so that their polarization axes make an angle of 9o0 with each other. This structure reduces the change in the light transmittance of the light shunter element due to temperature changes, and provides light output that is extremely stable under actual usage environments. The present invention provides a shutter element.

以上に述べたことは、今後増々開発が注目されている光
制御デバイス、光情報処理技術の中にあって、光学式プ
リンター等の書き込みヘッドや、その他の応用機器のデ
バイスに、PLZT素子を応用するにあたって、大きな
効果を与えるものである。
The above is an example of the application of PLZT elements to the writing heads of optical printers and other applied devices in optical control devices and optical information processing technologies, which are attracting increasing attention for development in the future. It has a great effect on this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の光シヤツター素子の構成図、第2図は
、本発明にかかわる一実施例の光7ヤツター素子の構成
図、第3図は、従来の構成の光/ヤッター素子と、本発
明にかかわる一実施例の構成の光ンヤッター素子の温度
と透過率の関係を示した図である。 、 1 ’1−゛−゛゛″“F&、 12−=!−”1
μ 片、13・・・・・・光シヤツター制御電極、14
・・・・・・偏光子、16・・・・・・検光子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 5 −14( 第3図 50 温度(′C) 一
FIG. 1 is a block diagram of a conventional optical shutter element, FIG. 2 is a block diagram of an optical shutter element according to an embodiment of the present invention, and FIG. 3 is a block diagram of a conventional optical shutter element, FIG. 2 is a diagram showing the relationship between temperature and transmittance of an optical Nyatter element configured as an example of the present invention. , 1 '1-゛-゛゛''"F&, 12-=! -”1
μ piece, 13... Optical shutter control electrode, 14
...Polarizer, 16...Analyzer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 5-14 (Figure 3 50 Temperature ('C) -

Claims (3)

【特許請求の範囲】[Claims] (1)電気光学効果と光弾性効果を有する固体の板状透
光性磁器上の少なくとも一方の面に、複数の透明な導体
薄膜片を、互いの薄膜片どうしが接触しないように形成
し、その上に、光シヤツターを形成するように電極を設
け、前記板状透光性磁器の表裏に、偏光板を偏光軸が互
いに90°の角度をなすように配置された構造を有する
ことを特徴とする光シヤツター素子。
(1) A plurality of transparent conductive thin film pieces are formed on at least one surface of a solid plate-like translucent porcelain having an electro-optical effect and a photoelastic effect, so that the thin film pieces do not come into contact with each other, It has a structure in which electrodes are provided thereon to form a light shutter, and polarizing plates are arranged on the front and back sides of the plate-shaped translucent porcelain so that their polarization axes make an angle of 90° to each other. Optical shutter element.
(2)透明な導体薄膜片の最長寸法が、上記電極の電極
間距離の10分の1以下であることを特徴とする特許請
求の範囲第1項記載の光シヤツター素子。
(2) The optical shutter element according to claim 1, wherein the longest dimension of the transparent conductor thin film piece is one-tenth or less of the distance between the electrodes.
(3)透明な導体薄膜片の全体の面積割合が、前記光シ
ヤツター素子の開口部全体の面積に対して、1/6o〜
1/10であることを特徴とする特許請求の範囲第1項
記載の光シャツ・ター素子。
(3) The total area ratio of the transparent conductor thin film piece is 1/6 to 1/6 of the area of the entire opening of the optical shutter element.
The optical shirt-tar element according to claim 1, characterized in that the size is 1/10.
JP11847384A 1984-06-08 1984-06-08 Optical shutter element Pending JPS60262126A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11847384A JPS60262126A (en) 1984-06-08 1984-06-08 Optical shutter element
US07/048,469 US4722597A (en) 1984-06-08 1987-05-08 Electrooptic shutter array element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11847384A JPS60262126A (en) 1984-06-08 1984-06-08 Optical shutter element

Publications (1)

Publication Number Publication Date
JPS60262126A true JPS60262126A (en) 1985-12-25

Family

ID=14737541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11847384A Pending JPS60262126A (en) 1984-06-08 1984-06-08 Optical shutter element

Country Status (1)

Country Link
JP (1) JPS60262126A (en)

Similar Documents

Publication Publication Date Title
US5734491A (en) Electro-optic modulator with threshold bias
US4993811A (en) Ridge array light valve device
JPS60262126A (en) Optical shutter element
CA1075388A (en) Electro-optic matrix display
US3449038A (en) Electro-optical switching devices
JP3160447B2 (en) Manufacturing method of flat panel display
US5157539A (en) Multi-element electrooptic modulators with crystal axes oriented obliquely to direction of electric field
US20040047533A1 (en) Device for contolling polarisation in an optical connection
JPS60262125A (en) Optical shutter element
JPS61118724A (en) Optical shutter array element
US3467463A (en) Electrooptic device with birefringent crystals embedded in a glass matrix
JPH0414328B2 (en)
JPS626218A (en) Optical shutter array element
JPS60262124A (en) Optical shutter array element
JPS61145527A (en) Optical shutter element
JPS606922A (en) Thin-film optical control element
JPH03177814A (en) Optical shutter
JPH0430005B2 (en)
JPS60129726A (en) Optical control element
JPS60237426A (en) Optical shutter element
JPS6234124A (en) Optical shutter array
JPS602915A (en) Optical shutter element
JPS604923A (en) Optical shutter
JPS61273526A (en) Optical controlling element
JPH09185026A (en) Electrooptical modulator having threshold bias value