JPS60262081A - Distance measuring apparatus by laser - Google Patents

Distance measuring apparatus by laser

Info

Publication number
JPS60262081A
JPS60262081A JP59118310A JP11831084A JPS60262081A JP S60262081 A JPS60262081 A JP S60262081A JP 59118310 A JP59118310 A JP 59118310A JP 11831084 A JP11831084 A JP 11831084A JP S60262081 A JPS60262081 A JP S60262081A
Authority
JP
Japan
Prior art keywords
light
time
distance
laser
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59118310A
Other languages
Japanese (ja)
Inventor
Kiyonobu Kinoshita
木下 清宣
Mikito Kabuki
株木 幹人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP59118310A priority Critical patent/JPS60262081A/en
Publication of JPS60262081A publication Critical patent/JPS60262081A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To enable the measurement of distance accuracy within about 1mm. by counting the time length for measuring a fixed number of square waves switching ON or OFF light each time changes are detected in the quantity of light in reflected waves performed by a laser light. CONSTITUTION:A target is irradiated with a laser light 5 outputted from a laser oscillator 4 and light is switched ON or OFF with the modulation by a light modulator 3 to form a square wave of light each time the quantity of light changes in the reception of a laser light 7 reflected with a reflector 6 mounted on a target with a receiver near a light source. This generates a square wave at the cycle reflecting distance information accurately. Then, the time for counting the fixed number of waves is measured to display the distance converted from the measured value.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は低速で移動する物体までの距離を数mから数+
m1lllれた位置から精度1ma程度で測定する方法
を提供するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention can reduce the distance to an object moving at low speed from several meters to several +
The present invention provides a method for measuring with an accuracy of about 1 ma from a position of 1 mm.

(発明の背景〕 □ 従来移動物体までの距離を測定する方法には種々の方法
があったが、数mから数十m程度の距離を、精度1m程
度で刻々に測定できる簡便な方法は無かった7 しかし、大形構造物の超音波探傷に於て、遠隔操軸され
る無軌道移動体に探触子を取付けて走査する場合に、発
見し元欠陥位置を1mwli度の位置精度÷記録する必
要があり、これを満足できる測1勤法の開発が望まれて
いる。 ′ 〔発明の目的〕 本発明の目的は此のような要望を満たすものである。
(Background of the invention) □ Conventionally, there have been various methods for measuring the distance to a moving object, but there is no simple method that can measure distances from several meters to several tens of meters moment by moment with an accuracy of about 1 meter. 7 However, in ultrasonic flaw detection of large structures, when a probe is attached to a remotely controlled trackless moving body and scanned, the detected original defect position is divided by the position accuracy of 1 mwli degree / recorded. There is a need for the development of a measurement method that can satisfy this need.' [Object of the Invention] The object of the present invention is to meet these needs.

〔発明の概要〕[Summary of the invention]

その構成の機能ブロック図を第1図に示す。 A functional block diagram of its configuration is shown in FIG.

従来光又は電波によって距離を測定する方法としては、
送波の時刻から受波の時刻までの時間差又は位相遅れ角
度を測定して距離を算出する方法が行なおれていたが、
とれ等はすべで送波が目標で反射されて受波される迄の
1回の時間差を測定するものであった。
Conventional methods of measuring distance using light or radio waves include:
The conventional method was to calculate the distance by measuring the time difference or phase delay angle between the time of wave transmission and the time of wave reception.
All of these methods were used to measure the time difference between when a transmitted wave is reflected by a target and when it is received.

□ そのため、これ等の方法に於いては、距離差16.
66PS を測定しなければ、1mの距離差を検出する
ことができず、技術的困難のために、実用可能な便利な
整置を作ることができなかった。
□ Therefore, in these methods, the distance difference is 16.
Without measuring 66 PS, it was not possible to detect a distance difference of 1 m, and due to technical difficulties it was not possible to create a convenient alignment that could be used in practice.

本発明に於ては、レーザー光を目標物に照射し、)目標
物に取付けた反射器で反射し、光源近傍の受波器で受波
される光量が変化する毎に光を開閉して光の矩形波を作
る事によって、正確に距離情報を反映した周期の矩形波
を発生させ、その周期を一定数m個計数する時間を測定
する。
In the present invention, a laser beam is irradiated onto a target object, reflected by a reflector attached to the target object, and the light is opened and closed each time the amount of light received by a receiver near the light source changes. By creating a rectangular wave of light, a rectangular wave with a period that accurately reflects distance information is generated, and the time it takes to count a certain number of m periods is measured.

従って反射器までの距離の中のIIIwllに相当する
光路長2noを光が伝達される時間−X 10−11秒
はm倍されるので、mを適当に選べば容易に測定できる
時間差にすることができる。
Therefore, the optical path length 2no, which corresponds to IIIwll in the distance to the reflector, is the time during which light is transmitted -X 10-11 seconds is multiplied by m, so if m is chosen appropriately, the time difference can be easily measured. I can do it.

また本発明に於てはmを一定数とするので、1周期を構
成する時間の中で、距離に無関係な一定時間遅れは、m
個の波数を計数する時間内に於て] もm倍された一定時間となるので、既知の距離を測定す
る事によって容易に校正する事ができる。
In addition, in the present invention, since m is a constant number, the constant time delay unrelated to distance within the time constituting one cycle is m
Within the time to count the number of waves] is also a constant time multiplied by m, so it can be easily calibrated by measuring a known distance.

― 〔発明の実施例〕 以下本発明の一実施例のブロックダイヤグラムを示す第
1図とそのタイムチャート第2及第3図を用いて、本発
明の詳細な説明する。
- [Embodiment of the Invention] The present invention will be described in detail below with reference to FIG. 1 showing a block diagram of an embodiment of the present invention and FIGS. 2 and 3, which are time charts thereof.

第1図に於て1〜FFIはRSフリップフロップであり
、そのQ出力は2〜増巾器41を経て3〜光変調器Mを
変調し、4〜レ一ザ発振器から出力されるレーザー光を
開閉する。27〜起動パルスを26〜OR素子に入力す
ると、その201出力が1〜FFIのSに入力されQが
Hになって、3〜Mから203出力光が出始める。(第
2図参照) 3〜変調器Mを通った5〜レーザービームは、目標装置
に取付けられた6〜反射器に入射し、入射方向に平行な
7〜反射光ビームとなって送り返えされて、光路を往復
するに要する一定時間後204に8〜光センサーに受光
されて電気信号を発生し、その信号は9〜増巾器A2を
経た後10〜微分回路によって微分され206〜“微分
波となる。微分波の正パルスの、みが24〜ダイオード
を通り26〜OR素子を経て1〜フリツプフロツプFF
I(7)Il、:207−FFIR入カ波が入力され、
 )Q出力208〜をLにすることにより2〜A1の出
力209をLにし3〜Mの出力光210を閉める6従っ
てその一定時間後に211〜受光は減少し、その10〜
微分回路の出力212〜負パルスは25〜ダイオードを
通り!1〜極性反転器によって極性を反転されて213
正パルスとなり、その正パルスが1〜フリツプフロツプ
FF1のSに入力され、214〜QをHにする。
In FIG. 1, 1 to FFI are RS flip-flops, whose Q output passes through 2 to amplifier 41, modulates 3 to optical modulator M, and 4 to laser beam output from laser oscillator. Open and close. When the 27~starting pulse is input to the 26~OR element, its 201 output is input to S of 1~FFI, Q becomes H, and 203 output light starts to be output from 3~M. (See Figure 2) The laser beam 5 that has passed through the modulator M is incident on the reflector 6 attached to the target device, and is sent back as a reflected light beam parallel to the direction of incidence. After a certain period of time required for the light to travel back and forth along the optical path, the light is received by the optical sensor 204 and generates an electrical signal, which signal passes through the amplifier A2 9 and then is differentiated by the differentiating circuit 206. It becomes a differential wave.The positive pulse of the differential wave passes through 24~diode, 26~OR element, and then 1~flip-flop FF.
I(7)Il, :207-FFIR input wave is input,
) By setting the Q output 208 to L, the output 209 of 2 to A1 is set to L, and the output light 210 of 3 to M is closed. 6 Therefore, after a certain period of time, the light reception 211 to decreases, and 10 to
The output 212 of the differentiator circuit - negative pulse passes through the diode 25! 1 ~ The polarity is inverted by the polarity inverter 213
This becomes a positive pulse, and the positive pulse is input to S of flip-flops 1 to FF1, and turns 214 to Q to H.

従って、3〜変調器の出力光が出始めた後では。Therefore, after the output light of the 3~ modulator starts to come out.

光が往復する一定時間後に9増巾器の出力が立上り、そ
の微分の正波が1〜FFIのRに入力することによって
Qを1、に転じ、3〜変調器によって光を遮断する。
After a certain period of time during which the light travels back and forth, the output of amplifier 9 rises, and the positive wave of its differentiation is input to R of 1 to FFI to change Q to 1, and the light is blocked by modulator 3.

光が遮断されたて定時間後に9〜増巾器A2の出力は立
下がり、微分波の負パルスは11〜極性反転器で極性を
反転されて正パルスとなり、1〜FF1のSに入力して
QをHに戻し、3〜変調器から光を投射し始める。
After a certain period of time after the light is interrupted, the output of amplifier A2 from 9 falls, and the negative pulse of the differential wave is reversed in polarity by the polarity inverter from 11 to become a positive pulse, which is input to S of 1 to FF1. to return Q to H, and start projecting light from the 3~ modulator.

このようにして3〜変調器の出力光は、一定周期の矩形
波となり、これに伴って1〜FF1のQ出力も矩形波と
なる。
In this way, the output light of the modulators 3 to 1 becomes a rectangular wave with a constant period, and accordingly, the Q outputs of the modulators 1 to FF1 also become rectangular waves.

この矩形波の周期は、変調器出力面から反射器表面まで
の空中光路伝達の時間と、反射器内伝達時間と、受光面
までの空中光路伝達時間と、8〜受光器から3〜変調器
までの電気信号の遅れ時間と、変調器の長さによる信号
の立上り時間とから構成されるが、空中光路伝達時間は
距離に比例し、その他は一定となる。、鼻下第1図及第
3図参照。
The period of this rectangular wave is determined by the time of aerial optical path transmission from the modulator output surface to the reflector surface, the intra-reflector transmission time, the aerial optical path transmission time from 8 to the receiver to 3 to the modulator. It consists of the delay time of the electric signal until the end of the signal and the rise time of the signal depending on the length of the modulator, but the aerial optical path transmission time is proportional to the distance, and other things are constant. , see Figures 1 and 3 below the nose.

1〜FILのQ出力の・220〜矩形波は、12〜カウ
ンタC1に同じ波形の入力波221が入力されて、その
立下り222〜毎にカウント数223〜を変え一定数を
カウントした224〜の後キャリー信号225を13〜
DフリツプフロツプFF2のDに入力する。
1~The Q output of FIL 220~The rectangular wave is obtained by inputting the input wave 221 of the same waveform to 12~counter C1, changing the count number 223~ every time it falls 222~, and counting a constant number 224~ After the carry signal 225 is set to 13~
Input to D of D flip-flop FF2.

14〜デジタルスイッチDIG、SWIは12〜カウン
タC]に227〜LOAD信号が入力されたとき1.C
1にLO^Dする数置を設定するもので、必要とするカ
ウント数mをセットするためのものである。
14~Digital switches DIG and SWI are 12~When the 227~LOAD signal is input to the counter C]1. C
This is to set the number position to be LO^D to 1, and is to set the required count number m.

15〜一定周波発振器は、12〜カウンタC1がmを計
数する時間を測るための228〜クロッり信号の発振器
である。
15 - Constant frequency oscillator is an oscillator of 228 - clock signal for measuring the time for 12 - counter C1 to count m.

12〜C,1のキャリー信号が立上った225〜の後で
クロック信号が立−ヒつだとき229〜に13〜FF2
はキャリー信号を読込み、クロックが立下ったとき23
0〜にF、F2のQをH226にし互をLにする。
When the clock signal goes low after 225~ when the carry signal of 12~C, 1 rises, 13~FF2 starts at 229~.
reads the carry signal and when the clock falls 23
0~ set F, Q of F2 to H226 and both set to L.

」;3〜12F2のQがHになった後でクロックが立、
トユる23■、〜になると、16〜Dフリツプフロツプ
FF3はFF2のQのHを読込み、クロックが立Fる2
32・〜になったときFF3のQ227〜をI−iにす
る。
”; After Q of 3 to 12F2 becomes H, the clock starts,
When it reaches 23■, ~, 16~D flip-flop FF3 reads the H of Q of FF2, and the clock rises F2.
When it becomes 32.~, Q227~ of FF3 is set to I-i.

このとき23〜A N D素子にl? F’ 2のQの
Lと、FF3のQのHが入力されるが、その出力LOA
D信号はLのままであり、LOADはされない。
At this time, 1? The L of Q of F'2 and the H of Q of FF3 are input, but the output LOA
The D signal remains at L and is not loaded.

しかし、12〜カウンタC1の入力が立上る233〜の
時刻になると、12〜カウンタC1の−IP−YIJ−
信号′°4〜′17.)” )J 、 ++71後1′
。7り235〜が立上り、続いて236〜立下ると、2
37〜FF2−Q237〜が立下る。そうすると13〜
ドF2−互がHになるので、23〜AND素子出力はI
IとなりC2にLOAD信号238〜が入力され、20
〜デジタルスイッチDIG、SW2の内容が18〜C2
にLOADされる。
However, at time 233 when the input of 12~counter C1 rises, -IP-YIJ- of 12~counter C1
Signal '°4~'17. )”) J, ++71 after 1′
. 7ri 235~ rises, then 236~ falls, 2
37~FF2-Q237~ falls. Then 13~
Since both F2 and F2 become H, the output of the AND element from 23 to I becomes
LOAD signal 238 ~ is input to C2, and 20
~Contents of digital switch DIG, SW2 are 18~C2
is loaded.

13〜FF2のQがHになると、17〜レジスタRE 
GにL A T CH信号が入力され、18〜距離力ウ
レタC2の内容を17〜レジスタに寞し取り、239〜
その数値を19〜数字表字器DISPLAYで表示する
When Q of 13~FF2 becomes H, 17~Register RE
The L A T CH signal is input to G, the contents of 18~ distance power ureta C2 are taken to 17~ register, and 239~
The numerical value is displayed from 19 to numeric display device DISPLAY.

12〜カウンタC1のキャリーが立下ると、キャリー信
号は21〜信号反転器で信号反転されて、立上り信号に
なって22〜AND素子に入力され。
12 - When the carry signal of the counter C1 falls, the carry signal is inverted by the signal inverter 21 - becomes a rising signal and is input to the AND element 22 -.

15〜発振器のクロック信号を18〜力ウンタC1二人
力し始める。
15~Start outputting the oscillator clock signal 18~Power counter C1.

18〜カウンタC2では、22〜AND素子の出力が立
上ったとき、クロックも同時に立上つそ22〜AND素
子の出力を02の第1桁に読込み、クロックが下るとき
C2の第1桁の出力をH又はLに変える。
18~In counter C2, when the output of 22~AND element rises, the clock also rises at the same time.Read the output of 22~AND element into the first digit of 02, and when the clock falls, the first digit of C2. Change the output to H or L.

、13〜FF2の。がL)こなった後でクロックが (
立−Lり続いて立下がると、16〜F Fi 3のQは
Lに転する。
, 13-FF2. After the clock becomes (L), the clock becomes (
When the signal rises to -L and then falls, the Q of 16 to F Fi 3 changes to L.

従って18〜C2のLOAD信号も止み、C2はカラン
1−を始める。□ 此のとき12〜C1もカウント状態にあるので、先組形
波周期の矩形波の波数をm個係数した後、キャリー信号
を発生する。
Therefore, the LOAD signals from 18 to C2 also stop, and C2 starts running 1-. □ Since 12 to C1 are also in the counting state at this time, a carry signal is generated after multiplying the wave number of the rectangular wave of the preset wave period by m coefficients.

従って18〜C2がカウントするのは12〜カウンタC
]のキャリー信号がHになる期間と16〜F F3− 
QがHになる期間以外の時間である。
Therefore, 18~C2 counts 12~Counter C
] during which the carry signal becomes H and 16 to FF F3-
This is a time other than the period when Q becomes H.

此の期間中に計数された数nは、此の期間に進む光の距
離を薗で表わした数の172となるように、15〜発振
器の周波数を定める。
The frequency of the oscillator is determined from 15 so that the number n counted during this period is 172, which is the number expressed in terms of the distance of light traveling during this period.

すなわち、距離を1wnを識別するためのクロッf、は となる。In other words, the clock f to identify the distance 1wn is becomes.

そうすると、空中光路2Qnwnのm倍に当る時間Q となってnの計数値は距離をI単位で表した数となる。Then, the time Q corresponding to m times the aerial optical path 2Qnwn Therefore, the count value of n is the number expressing the distance in I units.

実際の先組形波の周期は、前述した通り距離に比例する
時間のほかに一定遅れ時間を含んでおり、此の一定遅れ
時間に相当するC2のカウント数をC2のカウント数か
ら差引かなければならない。
As mentioned above, the actual period of the preset wave includes a constant delay time in addition to the time proportional to the distance, and the count number of C2 corresponding to this constant delay time must be subtracted from the count number of C2. Must be.

20〜デジタルスイッチDIG、SW2は定数分のカウ
ント数の補数を02に入力して置くための入力用で、C
2の内容は定数を差引いたものを表わす。
20~Digital switch DIG, SW2 is for input to input the complement of the constant count number into 02, and C
The content of 2 represents the value after subtracting the constant.

今若しf。=1.5MHz=1.5X10’Hzとする
と となり容易にカウント可能な周波数で距離をカウントで
きることがわかる。
Just now f. = 1.5 MHz = 1.5 x 10' Hz, and it can be seen that the distance can be counted at a frequency that can be easily counted.

12〜C1は214でキャリーを出すものとすると、カ
ウント数16384だから、m = 40,000とす
るには、14〜デジタルスイツチで6384をLoad
 L/てやればよい。
Assuming that 12~C1 issues a carry with 214, the count number is 16384, so to set m = 40,000, load 6384 with 14~digital switch.
L/You should do it.

先組形波の周波数は、距離をQ =3000mmとした
とき、定数部分を無視すれば、 2 X 3 X 10” となり、Q =30,000m= 30 nwとしたと
き5M七となり、何れも容易にカウントできる周波数と
なる。
The frequency of the preset wave is 2 x 3 x 10'' when the distance is Q = 3000 mm, ignoring the constant part, and 5 M7 when Q = 30,000 m = 30 nw, both of which are easily calculated. This is the frequency that can be counted.

従ってQ=30mのときm =10 t 000をカウ
ントなるから、0 、2 secで1. mm移動する
ものまで園単0.23 までか保証の限界となり、定数遅れを考えるととれより
遅くなる。
Therefore, when Q = 30 m, m = 10 t 000 is counted, so 0.2 sec is 1. For those that move mm, the guaranteed limit is 0.23 mm, and considering the constant delay, it will be slower than normal.

若しも10倍の速さまで1m単位で測定する必要があれ
ば、m = 1000とし、!、、 = 1.j OM
 Hzとする必要がある。
If you need to measure up to 10 times the speed in units of 1 m, set m = 1000, and! ,, = 1. j OM
It needs to be Hz.

第4図に光変調器の原理図を示す。FIG. 4 shows a diagram of the principle of the optical modulator.

100〜レーザー光は101〜偏光板を通って110〜
の図に示す角度の偏差のみを104〜光電結晶体に送り
込む。
100 ~ Laser light passes through 101 ~ polarizing plate 110 ~
Only the angular deviation shown in the figure is sent to 104~photoelectric crystal.

光電結晶体の結晶軸X1. X2. X3の方向は11
3に示されている。
Crystal axis X1 of photoelectric crystal. X2. The direction of X3 is 11
3.

104には上下に電極104と105がつけられていて
、106〜変調電源Vの電圧がかけられている。
Electrodes 104 and 105 are attached to the top and bottom of 104, and voltages from 106 to modulated power source V are applied.

結晶104を通る偏光は、電極に電圧がかかると常光線
と異常光線に分れ、その伝播送度の差が大きくなり、結
晶を出る光は111〜に示す如き楕円偏光107に変り
、これが112に示す偏光のみを通す1.09〜検光子
によって、その偏光面の成分のみがビーム光として目標
に照射される。
When a voltage is applied to the electrodes, the polarized light passing through the crystal 104 is divided into an ordinary ray and an extraordinary ray, and the difference in propagation power increases, and the light exiting the crystal changes into elliptically polarized light 107 as shown in 111 to 112. By means of an analyzer that passes only the polarized light shown in 1.09, only the components of the polarized plane are irradiated onto the target as a beam of light.

此のような光変調器によって、光を高速に開閉すること
ができ、結晶としてL i T a O、結晶の寸法0
.311III×0.3rm×2211II+を使用し
たとき、波 (長0.6μ書のレーザー光を200Mb
it/sのパルスに変調でき本発明の変調素子として充
分である。
With such an optical modulator, light can be opened and closed at high speed, and the crystal size is 0.
.. When using 311III x 0.3rm x 2211II+, the wavelength
It can be modulated into a pulse of it/s and is sufficient as a modulation element of the present invention.

第4図に光変調器長さによる光パルスの立上り及び立下
り速さと微分出力の関係を示す。
FIG. 4 shows the relationship between the rise and fall speeds of optical pulses and the differential output depending on the length of the optical modulator.

立上り又は立下りの時間は、光が電極め長さを通過する
時間であり、その変化は直線的であるから、“同じ高さ
をよぎる時刻の間隙は、正しい周期を与える。
The rise or fall time is the time it takes for the light to pass through the length of the electrode, and its change is linear, so the gap between the times when the light crosses the same height gives the correct period.

d図に微分波形を示し、微分波の立上りが変調開始時刻
と一致する事を示している。
Figure d shows the differential waveform, and shows that the rise of the differential wave coincides with the modulation start time.

□本発明の光源にレーザビームを使用する理由は、約3
0m往複合計60mを通って、検出に必要な充分な光の
反射を得るためと、目標を正確に選択して、定められた
反射面からの反射を得ることによって、距離測定点の位
置を正確に定義するためである。
□The reason for using a laser beam as the light source of the present invention is about 3.
The position of the distance measurement point is accurately determined by passing through a total of 60 m from 0 m to obtain sufficient light reflection necessary for detection, and by accurately selecting the target and obtaining reflection from a defined reflective surface. This is to define it.

しかし目標に取付けた反射器が平面であると、ビームの
入射方向が法線よりずれたとき、法線に対する2倍の方
向誤差の方向に反射され、送波点で有効に受光する事が
できない。
However, if the reflector attached to the target is flat, when the incident direction of the beam deviates from the normal line, it will be reflected in a direction with twice the direction error relative to the normal line, and the beam will not be effectively received at the transmitting point. .

そこで本発明に於ては直角プリズムを組合せた第7図に
示す如き反射器を使用して、反射器の向きに多少の角度
誤差があっても、正しく入射方向と平行な方向に反射波
を送り返えす反射器を使用する。
Therefore, in the present invention, a reflector as shown in FIG. 7 combined with a right-angle prism is used, so that even if there is some angular error in the direction of the reflector, the reflected wave can be correctly directed in a direction parallel to the incident direction. Use a reflector to send back.

第6図は平面内で入射方向の誤差があっても。Figure 6 shows the situation even if there is an error in the direction of incidence within the plane.

その平面と直角な互に90″の角度の2つの平面鏡によ
って、入射方向に平行な反射光を生ずる原理図である。
FIG. 2 is a diagram showing the principle of producing reflected light parallel to the incident direction by two plane mirrors at an angle of 90″ to each other perpendicular to the plane.

第6図の反射操作を直角な面内に於ても行なうように鏡
面を組合せたものが第7図の反射器である。その反射面
としてはプリズム面の全反射が利用できる。
The reflector shown in FIG. 7 is a combination of mirror surfaces so that the reflection operation shown in FIG. 6 can be performed even in a perpendicular plane. Total reflection on a prism surface can be used as the reflecting surface.

このような反射器は、月までの距離をレーザー光で測定
するために、月面に設置されたというニュースによって
一般に知られている。
This type of reflector is commonly known from the news that it was installed on the lunar surface to measure the distance to the moon using laser light.

移動体の全周任意な方向から照射されるレーザービーム
を、照射された方向に反射するには、このような反射プ
リズムを移動体に回転軸によって取付け、移動体上でレ
ーザビーム照射を感知したら反射器をレーザービーム方
向まで回転して止めればよく、その停止角度に多少の誤
差は許される。
In order to reflect a laser beam irradiated from any direction around the moving object in the irradiated direction, a reflecting prism like this is attached to the moving object with a rotating shaft, and when the laser beam irradiation is detected on the moving object, It is sufficient to rotate the reflector to the direction of the laser beam and stop it, and some error in the stopping angle is allowed.

また此のようなプリズム反射器を複数個円環状または半
球状となるように並べれば、全周どの方向から到来した
レーザービームも、それぞれに平行な反射光ビームとし
て反射されるので、複数方向から同時に測距することが
可能になり、11Il11単位で座標の標定が可能にな
る。
In addition, if multiple prism reflectors like this are arranged in an annular or hemispherical shape, laser beams arriving from any direction around the circumference will be reflected as reflected light beams parallel to each other. Simultaneous distance measurement becomes possible, and coordinate positioning becomes possible in units of 11Il11.

従って、此の装置と、目標となる移動体につけた反射器
の刻々の方向に追従して、送波レーザービームの方向を
変える機構とを組合わせれば、任意な運動をする移動物
体までの距離を測定することができる。
Therefore, by combining this device with a mechanism that changes the direction of the transmitted laser beam by following the changing direction of the reflector attached to the target moving object, it is possible to change the distance to a moving object that moves arbitrarily. can be measured.

本方式は3〜数十m程度の移動体までの直距離を測定す
る事を主目的として発明したものであるが、光源の強さ
さえ充分であ′れば、数Kmまでの距離でも1+nm単
位で測定できる方法である。しかし測定に必要な時間は
距離に比例して大きくなる。
This method was invented with the main purpose of measuring the direct distance to a moving object from 3 to several tens of meters, but if the light source is strong enough, it can be measured in units of 1+nm even at distances of several kilometers. This is a method that can be measured using However, the time required for measurement increases in proportion to the distance.

−また0、1mm単位で測定するには、mの数を10倍
にすればよいが、これも測定時間が10倍になる。
-Also, in order to measure in units of 0.1 mm, the number of m should be multiplied by 10, but this also increases the measurement time by 10 times.

此のような応用は、ポールによる測地測量の測距装置と
しても有用である。
Such an application is also useful as a distance measuring device for geodetic surveying using poles.

〔発明の効果〕〔Effect of the invention〕

本発明によって2点又は3点の定点から無軌道自走移動
体に取付けた超音波探触子の刻々の位置を、直距離1w
w++単位で記録する事が可能となるので、発見した欠
陥位置を再現可能な、正確な座標として表わす事ができ
るようになる。
According to the present invention, the instantaneous position of an ultrasonic probe attached to a trackless self-propelled vehicle can be determined from two or three fixed points by a direct distance of 1w.
Since it is possible to record in w++ units, it becomes possible to express the discovered defect position as reproducible and accurate coordinates.

従って従来位置検出のために設けていた歯付軌道の必要
が無くなり、遠隔制御無軌道走行体による超音波探傷が
可能になり、軌道設置のための建設費を節約する事がで
きる。
Therefore, there is no need for a toothed track that was conventionally provided for position detection, and ultrasonic flaw detection using a remotely controlled trackless vehicle becomes possible, thereby saving construction costs for track installation.

又これを測地用に応用した場合、従来の測距装置に比べ
、その精度を高める事ができる。
Furthermore, when this is applied to geodetic applications, the accuracy can be improved compared to conventional distance measuring devices.

従って地盤の伸縮を数Kmを0.1肩車位で測定する事
によって、地震予知の資料を得る事も容易にできるよう
になる。
Therefore, by measuring the expansion and contraction of the ground over several kilometers at 0.1 shoulder height, it becomes easy to obtain data for earthquake prediction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の機能ブロック図、 (第2
図はレーザ光が矩形波となることを示、すタイムチャー
ト図、第3図は第1図の各部電圧波形間の関係を示すタ
イムチャート図、第4図は本発明に用いる光変調装置の
原理図、第5図は光変調器の出力光の立上り及立下りの
詳細な様子と、微分波立上り時刻の関係を示す説明図、
第6図は本発明に使用する反射器の原理説明図、第7図
は本装置に使用する反射器の構造と光線の経路の説明図
である。 3・・・光変−器M、4・・・連続レーザービーム発振
器、5・・・送出レーザー光、6・・・反射器、7・・
・反射レーザー光、8・・・光センサ−P8.9・・・
増)重器、10・・・微分回路、11・・・極性反転器
、24・・・ダイオード、25・・・ダイオード、26
・・・起動用OR素子。 27・・・起動パルス入力。 代理人 弁理士 高橋明夫 不ω日 も6図 弔]図
FIG. 1 is a functional block diagram of one embodiment of the present invention.
The figure is a time chart showing that the laser beam becomes a rectangular wave, Figure 3 is a time chart showing the relationship between the voltage waveforms of each part in Figure 1, and Figure 4 is a time chart of the optical modulation device used in the present invention. The principle diagram, FIG. 5 is an explanatory diagram showing the detailed rise and fall of the output light of the optical modulator and the relationship between the differential wave rise time,
FIG. 6 is an explanatory diagram of the principle of the reflector used in the present invention, and FIG. 7 is an explanatory diagram of the structure of the reflector and the path of light rays used in the present apparatus. 3... Optical converter M, 4... Continuous laser beam oscillator, 5... Sending laser beam, 6... Reflector, 7...
・Reflected laser light, 8... Optical sensor - P8.9...
Increase) Heavy equipment, 10... Differential circuit, 11... Polarity inverter, 24... Diode, 25... Diode, 26
...OR element for starting. 27...Start pulse input. Agent Patent Attorney Akio Takahashi Condolences on Unsuccessful Days] Figure

Claims (1)

【特許請求の範囲】[Claims] ■、レーザー光を目標位置で反射させ、反射波の光量変
化を光検出器で検出する度に光を開又は閉、して矩形波
信号を発生し、この矩形波を一定波数計測する時間を、
一定周期クロックパルスで計数し、その数値で距離を表
す°ことを特徴とする、レーザー測距装置。
■The laser beam is reflected at the target position, and each time a photodetector detects a change in the light intensity of the reflected wave, the light is opened or closed to generate a rectangular wave signal, and it takes a certain amount of time to measure this rectangular wave at a certain number of waves. ,
A laser distance measuring device that counts using constant cycle clock pulses and expresses distance using the numerical value.
JP59118310A 1984-06-11 1984-06-11 Distance measuring apparatus by laser Pending JPS60262081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59118310A JPS60262081A (en) 1984-06-11 1984-06-11 Distance measuring apparatus by laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59118310A JPS60262081A (en) 1984-06-11 1984-06-11 Distance measuring apparatus by laser

Publications (1)

Publication Number Publication Date
JPS60262081A true JPS60262081A (en) 1985-12-25

Family

ID=14733509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59118310A Pending JPS60262081A (en) 1984-06-11 1984-06-11 Distance measuring apparatus by laser

Country Status (1)

Country Link
JP (1) JPS60262081A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265636A (en) * 1993-03-16 1994-09-22 Nec Corp Laser distance measuring apparatus
US5534992A (en) * 1993-08-30 1996-07-09 Hamamatsu Photonics K.K. Optical measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265636A (en) * 1993-03-16 1994-09-22 Nec Corp Laser distance measuring apparatus
US5534992A (en) * 1993-08-30 1996-07-09 Hamamatsu Photonics K.K. Optical measuring apparatus

Similar Documents

Publication Publication Date Title
JP3189840B2 (en) Method and apparatus for measuring voltage between two objects
US4902888A (en) Optical fiber sensor
JPH0439038B2 (en)
CA1276810C (en) Phase reading fiber optic interferometer
JPS60262081A (en) Distance measuring apparatus by laser
Payne An optical distance measuring instrument
Bohm et al. 'Signal Processing Schemes For The Fiber-Optic Gyroscope'
McKie et al. Optical sensing of in‐plane ultrasonic transients
JP2000028722A (en) Method and apparatus for distance measurement by laser beam
JP3236941B2 (en) Distance measurement method for lightwave distance meter
SU1080012A1 (en) Electro-optical method of measuring distance
JPS59166818A (en) Method and device for optically measuring capacity of tank
SU1179103A1 (en) Interferometer for distance measurement
JP2903220B2 (en) Distance measurement method for lightwave distance meter
SU1499122A2 (en) Arrangement for checking linear displacements
JP3096795B2 (en) Tracking ranging system
SU1741034A1 (en) Device for measuring parameters of signal reflections from input of microwave components
SU1672217A1 (en) Electro-optical light range finder
SU976410A1 (en) Magneto-optical hysteriograph
SU1083073A1 (en) Magnetic compass
RU2100810C1 (en) Method for measurement of velocity of object and device which implements said method
RU2208803C1 (en) Radio signal frequency meter
JPS58198781A (en) Distance measuring device using light
RU2084901C1 (en) Method for autonomous measurement of linear movement and device which implements said method
SU998870A1 (en) Vibrational displacement meter